Introduction to Sentiment Analysis
Overview

- What is sentiment analysis (SA)?
- Why is it worth doing?
- What are the challenges?
- (Very broadly) how is it done?
What is Sentiment?

- Sentiment = feelings
 - Attitudes
 - Emotions
 - Opinions
- Subjective impressions, not facts
What is Sentiment?

- Generally, a binary opposition in opinions is assumed
- For/against, like/dislike, good/bad, etc.
- Some sentiment analysis jargon:
 - “Semantic orientation”
 - “Polarity”
What is Sentiment Analysis?

- Using NLP, statistics, or machine learning methods to extract, identify, or otherwise characterize the sentiment content of a text unit.
- Sometimes referred to as *opinion mining*, although the emphasis in this case is on extraction.
Questions SA might ask

- Is this product review positive or negative?
- Is this customer email satisfied or dissatisfied?
- Based on a sample of tweets, how are people responding to this ad campaign/product release/news item?
- How have bloggers' attitudes about the president changed since the election?
Other related tasks

- Information extraction (discarding subjective information)
- Question answering (recognizing opinion-oriented questions)
- Summarization (accounting for multiple viewpoints)
Other related tasks

- “Flame” detection
- Identifying child-suitability of videos based on comments
- Bias identification in news sources
- Identifying (in)appropriate content for ad placement
Applications in Business Intelligence

- Question: “Why aren't consumers buying our laptop?”
- We know the concrete data: price, specs, competition, etc.
- We want to know subjective data: “the design is tacky,” “customer service was condescending”
- Misperceptions are also important, e.g. “updated drivers aren't available” (even though they are)
Applications in Business Intelligence

- It is very difficult to survey customers who didn't buy the company's laptop
- Instead, you could use SA to
 A) search the web for opinions and reviews of this and competing laptops. Blogs, Epinions, amazon, tweets, etc.
 B) create condensed versions or a digest of consensus points
Cross domain applications

- Insights and applications from SA have been useful in other areas
 - Politics/political science
 - Law/policy making
 - Sociology
 - Psychology
Political SA

- Numerous applications and possibilities
- Analyzing trends, identifying ideological bias, targeting advertising/messages, gauging reactions, etc.
- Evaluation of public/voters' opinions
- Views/discussions of policy
- More on this in lecture 3
SA and Sociology

- Idea propagation through groups is an important concept in sociology (cf. Rogers 1962, *Diffusion of Innovations*)
- Opinions and reactions to ideas are relevant to adoption of new ideas
- Analyzing sentiment reactions on blogs can give insight to this process
SA and Psychology

- Potential to augment psychological investigations/experiments with data extracted from NL text
- Dream sentiment analysis (Nadeau et al., 2006)
In general,

- Humans are subjective creatures and opinions are important. Being able to interact with people on that level has many advantages for information systems.
How SA is different

- Comparatively few categories (positive/negative, 3 stars, etc) compared to text categorization
- Crosses domains, topics, and users
- Categories not independent (opposing or regression-like)
- Characteristics of answers to opinion-based questions are different from fact-based questions, so opinion-based IE differs from trad IE
Challenges in SA

- People express opinions in complex ways
- In opinion texts, lexical content alone can be misleading
- Intra-textual and sub-sentential reversals, negation, topic change common
- Rhetorical devices/modes such as sarcasm, irony, implication, etc.
A letter to a hardware store*

“Dear <hardware store>

Yesterday I had occasion to visit <your competitor>. The had an excellent selection, friendly and helpful salespeople, and the lowest prices in town.

You guys suck.

Sincerely,”

*an apocryphal example
What to classify

- There are many possibilities for what we might want to classify:
 - Users
 - Texts
 - Sentences (paragraphs, chunks of text?)
 - Predetermined descriptive phrases (<ADJ N>, <N N>, <ADV ADJ>, etc)
 - Words
 - Tweets/updates
Classifying words/short phrases

- The building blocks of sentiment expression
- Short phrases may be just as important (or moreso) as words:
 - “lowest prices”
 - “high quality”
- We need an approach to deal with these before moving on to other classification tasks
Polarity keywords

• There seems to be *some* relation between positive words and positive reviews
• Can we come up with a set of keywords by hand to identify polarity?
Pang et al. (2002)

- Two human subjects were asked to pick keywords that would be good indicators of sentiment polarity

<table>
<thead>
<tr>
<th></th>
<th>Proposed word list</th>
<th>Accuracy</th>
<th>Ties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human 1</td>
<td>Pos: dazzling, brilliant, phenomenal, excellent, fantastic</td>
<td>58%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Neg: suck, terrible, awful, unwatchable, hideous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human 2</td>
<td>Pos: gripping, mesmerizing, riveting, spectacular, cool, awesome, thrilling, badass, excellent, moving, exciting</td>
<td>64%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>Neg: bad, cliched, sucks, boring, stupid, slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics-based</td>
<td>Pos: love, wonderful, best, great, superb, still, beautiful</td>
<td>69%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>Neg: bad, worst, stupid, waste, boring, ?, !</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key-word methods

- Data-driven methods can be used to generate keyword lists that model better than human-generated keyword lists.
- Unigram methods on similar data have reached 80% accuracy (Pang et al, 2002).
- Not bad, but lower than you'd usually see in topic-based binary text classification.
Smileys

- A common approach for working with tweets and short text updates
- Very little text to work with
- Sentiment most succinctly represented with emoticons/smiley emojis
Some actual examples of sentiment text
Amazon (5 star)

“The characters are so real and handled so carefully, that being trapped inside the Overlook is no longer just a freaky experience. You run along with them, filled with dread, from all the horrible personifications of evil inside the hotel's awful walls. There were several times where I actually dropped the book and was too scared to pick it back up. Intellectually, you know it's not real. It's just a bunch of letters and words grouped together on pages. Still, whenever I go into the bathroom late at night, I have to pull back the shower curtain just to make sure.”
Amazon.com (1 star)

“The original Star Wars trilogy was a defining part of my childhood. Born as I was in 1971, I was just the right age to fall headlong into this amazing new world Lucas created. I was one of those kids that showed up early at toy stores [...] anxiously awaiting each subsequent installment of the series.

I'm so glad that by my late 20s, the old thrill had faded, or else I would have been EXTREMELY upset over *Episode I: The Phantom Menace*... perhaps the biggest let-down in film history.”
“Ten years on from *Exile*, Liz has finally managed to achieve what seems to have been her goal ever since the possibility of commercial success first presented itself to her: to release an album that could have just as easily been made by anybody else.”
“It took a couple of goes to get into it, but once the story hooked me, I found it difficult to put the book down -- except for those moments when I had to stop and shriek at my friends, "SPARKLY VAMPIRES!" or "VAMPIRE BASEBALL!" or "WHY IS BELLA SO STUPID?" These moments came increasingly often as I reached the climactic chapters, until I simply reached the point where I had to stop and flail around laughing.”
Tools and Resources

- Heuristic/hand made references
 - Inadequate in practice on their own
 - Can be useful for augmenting ML approaches
- Sentiment-oriented data sets
 - Highly domain sensitive
 - Difficult to create/collection
Heuristic/manual references
General Inquirer

- Content analysis tool
- Created in 1966
- Database of words and manually created semantic and cognitive categories, including positive and negative connotations
- Used to generate counts of words in categories

http://www.wjh.harvard.edu/~inquirer/
LIWC

- Linguistic Inquiry and Word Count
- Similar to GI
- Counts words belonging to categories, including positive and negative

http://www.liwc.net/
Wordnet

- A lexical database for English with emphasis on synonymy
- Nouns, verbs, adjectives and adjectives are grouped into synonym sets
- Words are linked according to lexical and conceptual relations (creating a “net”)
- Not specifically sentiment oriented, but has been used to help derive sentiment related information (Hu & Liu)

http://wordnet.princeton.edu/
SentiWordNet

- A lexical resource for opinion mining
- Based on Wordnet synsets
- Each synset is assigned three sentiment scores: positivity, negativity, and objectivity

http://sentiwordnet.isti.cnr.it/
Whissell's Dictionary of Affective Language

- About 9000 words rated in terms of their Pleasantness, Activation, and Imagery (concreteness)
- App:
 http://sail.usc.edu/~kazemzad/emotion_in_text_cgi/DAL_app/

The steak was tough and tasteless but the wine was wonderful
Datasets for SA learning
Pang & Lee data sets

- Movie review polarity datasets
- Sentiment scale datasets
- Subjectivity datasets
- http://www.cs.cornell.edu/People/pabo/movie-review-data/
Blitzer et al Multi-domain sentiment dataset

- Reviews from Amazon.com from many product types (domains)
- Include star ratings
- Also divided into positive/negative

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
MPQA Opinion Corpus

- Multi-Perspective Question Answering (MPQA) (Stoyanov et al, 2005)
- News articles and other text documents manually annotated for opinions and other private states (i.e., beliefs, emotions, sentiments, speculations, etc.).
- 692 documents (15,802 sentences)

http://www.cs.pitt.edu/mpqa/
Data for PMI-IR-based polarity identification

- The Web (for unsupervised training via PMI-IR)
- Waterloo-Multitext (alternate support database for PMI-IR method of assigning semantic orientation to phrases. Private access)
Thomas, Pang, & Lee, 2006

- Congressional speech data
- Transcripts of floor debates on policy

http://www.cs.cornell.edu/home/llee/data/convote.html
Creating Sentiment-oriented Data sets

- **Self-annotated data**
 - Data has “built in” ordinal or binary labeling of some kind to complement NL text, ideally by the author of the text.
 - E.g. Amazon reviews (1-5 stars)
 - Pitchfork.com record reviews (0.0-10.0 range)

- **Hand-annotated data**
 - Annotated independently of the author
 - Usually labor intensive
Inter-annotator agreement

- Hand annotated sentiment data can vary in reliability
- Inter-annotator agreement is the degree to which multiple human annotators arrive at the same annotations when confronted with the same NL text
- Represents theoretical upper bound for sentiment classification
Mechanical turk

- Snow et al (2008) analyzed Amazon's mturk service for NLP annotation
- Roughly $1 for 1000 labels
- 5 non-expert annotators achieve equivalent accuracy to 1 expert annotator
Things to consider

- What elements do you want to classify, rank, or score?
- What classification/scale do you want to use?
- Is domain-appropriate annotated data available?
- If not, can it be created? Is inter-annotator agreement acceptable?
Techniques in Sentiment Analysis
Overview

- Semantic orientation and polarity of words
- Text-based sentiment classification
- Incorporating shallow linguistics
- Other approaches
Semantic Orientation

- Hatzivassiloglou & McKeown, 2002
- A real-number measure of positive or negative sentiment in a phrase
- *Polarity* is a binary value either positive or negative
Where to start?

- Texts are made up of words
- Words are in dictionaries
- Let's look up the words in the text, see what they mean, and be done with it!
- This (slightly more sophisticated) is what we do when we use heuristic tools
Heuristic methods

- “Heuristic” means applying what we know
- Dictionaries, thesauruses, word lists, etc
- General Inquirer (1966) groups words into 180 categories (like a dictionary with more categories)
- Wordnet creates a network of synonymy (like an extended, souped-up thesaurus with richer semantic organization)
HASSLE **Neg** Noun Hostile Work |

HASTE Noun Travl Actv |

HASTEN IAV SUPV Travl Actv |

HAT Noun Object Tool | noun: A shaped covering for the head

HATE#1 SV **Neg** SUPV Hostile Ngtv Psv Arousal | 80% verb: To dislike passionately, to detest

HATE#2 **Neg** Noun EMOT Hostile Ngtv Psv Arousal | 19% noun: Intense dislike, aversion, hostility

HATE#3 **Neg** Modif EVAL EMOT Hostile Ngtv Psv Arousal | 0% adj: 'hated'-loathed--'the hated dictator'

5 TOR(K+0,K+0,,10,ROOT.S.

6 TOR(K-1,K-1,APLY(2),DET.PREP.

7 TOR(K-1,K-1,APLY(1),,TO.MOD.LY.HU.DO.DEF.

8 TOR(K+1,K+1,APLY(1),APLY(2),DET.PRON.

10 TOR(K+0,K+0,,APLY(1),ED.

11 TOR(K-1,K-1,APLY(3),APLY(1),DET.PREP.

HATER **Neg** Noun HU Ngtv Psv Hostile Role |

HATRED **Neg** Noun EMOT Hostile Ngtv Psv Arousal |

HAUGHTY IndAdj **Neg** Modif Emot Strng Power |
General Inquirer and polarity

- For identifying word polarity, we can use Neg and Pos categories
- Some problems
 - Binary, no gradations/weighting
 - Manually classed (intuitions are not always reliable)
 - Single word level only
 - Blind to context
- You cannot accurately classify texts as positive or negative using only lexical GI values
Wordnet

- Synonyms grouped in synsets
- Relationships between synsets:
 - HYPONYM: “type-of” relationship
 - HYPERNYM: {oak} -> {tree}
 - HAS-MEMBER: {family, family unit} -> {child, kid}
 - HAS-STUFF: {tank, army tank} -> {steel}
 - ENTAIL: {snore, saw wood} -> {sleep, slumber}
 - CAUSE-TO: {develop} -> {grow, become larger}
 - ATTRIBUTE: {hypocritical} -> {insincerity}
Wordnet

- Relationships between words:
 - PERTAINYM: academic -> academia
 - ANTONYM: presence -> absence
 - SIMILAR-TO: abridge -> shorten
 - SEE-ALSO: touch -> touch down
Polarity identification with Wordnet

 - Begin with a set of “seed” adjectives of known orientation: “good”, “fantastic”, “wonderful”, “awful”, “terrible”, “bad”, etc.
 - For unknown adjectives, measure proximity via synonymy/antonymy relations to seed adjectives
 - If an adjective is close in synonymy to positive words, or close in antonymy to negative words, it's positive
 - Add newly labeled words to seed set
Evaluating sentence polarity

- Extract “opinion sentences” based on the presence of a predetermined list of product features and adjectives
 - e.g. “The lens is excellent”
- Evaluate the sentences based on counts of positive vs negative polarity words (as determined by the Wordnet algorithm)
Results (Hu & Liu, 2004)

- Predicting sentence polarity based on constituent word orientations
- Lowish extraction recall and precision due to disagreement with human annotators on what constitutes an “opinion sentence”

<table>
<thead>
<tr>
<th>Product name</th>
<th>Opinion sentence extraction</th>
<th></th>
<th>Sentence orientation accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall</td>
<td>Precision</td>
<td></td>
</tr>
<tr>
<td>Digital camera 1</td>
<td>0.719</td>
<td>0.643</td>
<td>0.927</td>
</tr>
<tr>
<td>Digital camera 2</td>
<td>0.634</td>
<td>0.554</td>
<td>0.946</td>
</tr>
<tr>
<td>Cellular phone</td>
<td>0.675</td>
<td>0.815</td>
<td>0.764</td>
</tr>
<tr>
<td>Mp3 player</td>
<td>0.784</td>
<td>0.589</td>
<td>0.842</td>
</tr>
<tr>
<td>DVD player</td>
<td>0.653</td>
<td>0.607</td>
<td>0.730</td>
</tr>
<tr>
<td>Average</td>
<td>0.693</td>
<td>0.642</td>
<td>0.842</td>
</tr>
</tbody>
</table>
Polarity identification with Wordnet

- **Advantages**
 - Very fast
 - No training data necessary
 - Good predictive accuracy

- **Disadvantages**
 - Does not deal with multiple word sense, context issues
 - Does not work for multiple word phrases (or non-adjective words)
Osgood values for words

- Theory of Semantic Differentiation (Osgood, 1957)
- Three values pertinent to the emotive meaning of adjectives
 - Potency (strong or weak)
 - Activity (active or passive)
 - Evaluative (good or bad)
Deriving Osgood values with Wordnet

- Kamps and Marx (2002) used Wordnet to assign scores to words based on Osgood factors.
- For each Osgood factor, compared the minimal path length (MPL) in Wordnet between two words representing the factor's range.
- E.g., for Evaluative factor (EVA), compare MPLs for word between “good” and “bad”
Deriving Osgood values with Wordnet

- Only adjectives connected by synonymy to both opposites receive scores (i.e., an adjective must have a synonymy path to both “good” and “bad” to receive an EVA score)
- Yields a list of adjectives with EVA, POT and ACT scores
Semantic orientation of phrases

- Words may not be enough
 - unpredictable plot – unpredictable steering
 - flakey crust - flakey politician
 - ridiculous comedy – ridiculous drama
 - cheap construction – cheap deal

- We might want to assign SO scores to certain kinds of phrases

- Binary polarity judgments don't capture nuance
The PMI-IR method

- Turney (2002)
- Using Pointwise Mutual Information (PMI) on data gathered using Information Retrieval (IR) techniques
- Yields real-numbered positive and negative scores for potentially any combination of words
- Requires WWW-sized unstructured training data resources
The PMI-IR method

- Extract descriptive 2-word phrases based on POS

<table>
<thead>
<tr>
<th>First Word</th>
<th>Second Word</th>
<th>Third Word (Not Extracted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>NN or NNS</td>
<td>anything</td>
</tr>
<tr>
<td>RB, RBR, or RBS</td>
<td>JJ</td>
<td>not NN nor NNS</td>
</tr>
<tr>
<td>JJ</td>
<td>JJ</td>
<td>not NN nor NNS</td>
</tr>
<tr>
<td>NN or NNS</td>
<td>JJ</td>
<td>not NN or NNS</td>
</tr>
<tr>
<td>RB, RBR, or RBS</td>
<td>VB, VBD, VBN or VBG</td>
<td>anything</td>
</tr>
</tbody>
</table>
The PMI-IR method

- For each phrase, conducted Altavista searches using the NEAR operator, one with the word *excellent* and one with the word *poor*.
- NEAR operator (now discontinued) searched for the phrase occurring within ten words of the value word.
- Derive a score based on returned hit counts for each search and hit counts of the words and phrases on their own
The PMI-IR method

- Calculating PMI
- *word1* is the descriptive phrase, *word2* is the value word
- \(p() \) is Altavista hit count (\& is NEAR operator)

\[
\text{PMI}(\text{word}_1, \text{word}_2) = \log_2 \left(\frac{p(\text{word}_1 \& \text{word}_2)}{p(\text{word}_1)p(\text{word}_2)} \right)
\]
The PMI-IR method

- Deriving semantic orientation from PMI

\[
SO(\text{phrase}) = \text{PMI}(\text{phrase, } \text{"excellent"}) - \text{PMI}(\text{phrase, } \text{"poor"})
\]
Classifying whole documents

- Based on average SO of phrases in the review

<table>
<thead>
<tr>
<th>Extracted Phrase</th>
<th>Part-of-Speech Tags</th>
<th>Semantic Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>online experience</td>
<td>JJ NN</td>
<td>2.253</td>
</tr>
<tr>
<td>low fees</td>
<td>JJ NNS</td>
<td>0.333</td>
</tr>
<tr>
<td>local branch</td>
<td>JJ NN</td>
<td>0.421</td>
</tr>
<tr>
<td>small part</td>
<td>JJ NN</td>
<td>0.053</td>
</tr>
<tr>
<td>online service</td>
<td>JJ NN</td>
<td>2.780</td>
</tr>
<tr>
<td>printable version</td>
<td>JJ NN</td>
<td>-0.705</td>
</tr>
<tr>
<td>direct deposit</td>
<td>JJ NN</td>
<td>1.288</td>
</tr>
<tr>
<td>well other</td>
<td>RB JJ</td>
<td>0.237</td>
</tr>
<tr>
<td>inconveniently</td>
<td>RB VBN</td>
<td>-1.541</td>
</tr>
<tr>
<td>located</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other bank</td>
<td>JJ NN</td>
<td>-0.850</td>
</tr>
<tr>
<td>true service</td>
<td>JJ NN</td>
<td>-0.732</td>
</tr>
<tr>
<td>Average Semantic Orientation</td>
<td></td>
<td>0.322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extracted Phrase</th>
<th>Part-of-Speech Tags</th>
<th>Semantic Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>little difference</td>
<td>JJ NN</td>
<td>-1.615</td>
</tr>
<tr>
<td>clever tricks</td>
<td>JJ NNS</td>
<td>-0.040</td>
</tr>
<tr>
<td>programs such</td>
<td>NNS JJ</td>
<td>0.117</td>
</tr>
<tr>
<td>possible moment</td>
<td>JJ NN</td>
<td>-0.668</td>
</tr>
<tr>
<td>unethical practices</td>
<td>JJ NNS</td>
<td>-8.484</td>
</tr>
<tr>
<td>low funds</td>
<td>JJ NNS</td>
<td>-6.843</td>
</tr>
<tr>
<td>old man</td>
<td>JJ NN</td>
<td>-2.566</td>
</tr>
<tr>
<td>other problems</td>
<td>JJ NNS</td>
<td>-2.748</td>
</tr>
<tr>
<td>probably wondering</td>
<td>RB VBG</td>
<td>-1.830</td>
</tr>
<tr>
<td>virtual monopoly</td>
<td>JJ NN</td>
<td>-2.050</td>
</tr>
<tr>
<td>other bank</td>
<td>JJ NN</td>
<td>-0.850</td>
</tr>
<tr>
<td>extra day</td>
<td>JJ NN</td>
<td>-0.286</td>
</tr>
<tr>
<td>direct deposits</td>
<td>JJ NNS</td>
<td>5.771</td>
</tr>
<tr>
<td>online web</td>
<td>JJ NN</td>
<td>1.936</td>
</tr>
<tr>
<td>cool thing</td>
<td>JJ NN</td>
<td>0.395</td>
</tr>
<tr>
<td>very handy</td>
<td>RB JJ</td>
<td>1.349</td>
</tr>
<tr>
<td>lesser evil</td>
<td>RBR JJ</td>
<td>-2.288</td>
</tr>
<tr>
<td>Average Semantic Orientation</td>
<td></td>
<td>-1.218</td>
</tr>
</tbody>
</table>
Results (Turney, 2002)

<table>
<thead>
<tr>
<th>Domain of Review</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>automobiles</td>
<td>84.00 %</td>
</tr>
<tr>
<td>Honda Accord</td>
<td>83.78 %</td>
</tr>
<tr>
<td>Volkswagen Jetta</td>
<td>84.21 %</td>
</tr>
<tr>
<td>banks</td>
<td>80.00 %</td>
</tr>
<tr>
<td>Bank of America</td>
<td>78.33 %</td>
</tr>
<tr>
<td>Washington Mutual</td>
<td>81.67 %</td>
</tr>
<tr>
<td>movies</td>
<td>65.83 %</td>
</tr>
<tr>
<td>The Matrix</td>
<td>66.67 %</td>
</tr>
<tr>
<td>Pearl Harbor</td>
<td>65.00 %</td>
</tr>
<tr>
<td>travel destinations</td>
<td>70.53 %</td>
</tr>
<tr>
<td>cancun</td>
<td>64.41 %</td>
</tr>
<tr>
<td>puerto vallarta</td>
<td>80.56 %</td>
</tr>
<tr>
<td>all</td>
<td>74.39 %</td>
</tr>
</tbody>
</table>
Incorporating diverse information sources

- We might want to combine information sources
- Words, phrases, other methods of evaluation, topic information, sentence position, etc...
- To do this involves building more sophisticated models
Pang et al. 2002

- Compared a variety of well-known text classification techniques and feature sets (IMDB dataset)

<table>
<thead>
<tr>
<th>Features</th>
<th># of features</th>
<th>frequency or presence?</th>
<th>NB</th>
<th>ME</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) unigrams</td>
<td>16165</td>
<td>freq.</td>
<td>78.7</td>
<td>N/A</td>
<td>72.8</td>
</tr>
<tr>
<td>(2) unigrams</td>
<td>”</td>
<td>pres.</td>
<td>81.0</td>
<td>80.4</td>
<td>82.9</td>
</tr>
<tr>
<td>(3) unigrams+bigrams</td>
<td>32330</td>
<td>pres.</td>
<td>80.6</td>
<td>80.8</td>
<td>82.7</td>
</tr>
<tr>
<td>(4) bigrams</td>
<td>16165</td>
<td>pres.</td>
<td>77.3</td>
<td>77.4</td>
<td>77.1</td>
</tr>
<tr>
<td>(5) unigrams+POS</td>
<td>16695</td>
<td>pres.</td>
<td>81.5</td>
<td>80.4</td>
<td>81.9</td>
</tr>
<tr>
<td>(6) adjectives</td>
<td>2633</td>
<td>pres.</td>
<td>77.0</td>
<td>77.7</td>
<td>75.1</td>
</tr>
<tr>
<td>(7) top 2633 unigrams</td>
<td>2633</td>
<td>pres.</td>
<td>80.3</td>
<td>81.0</td>
<td>81.4</td>
</tr>
<tr>
<td>(8) unigrams+position</td>
<td>22430</td>
<td>pres.</td>
<td>81.0</td>
<td>80.1</td>
<td>81.6</td>
</tr>
</tbody>
</table>
Support Vector Machines

- SVMs are a widely used ML technique for creating feature-vector-based classifiers
- Each instance to be classified is represented by a vector of real-numbered features
- Training data is used to generate a high-dimensional space that can be divided by a hyperplane between positive and negative instances
- New instances are classified by finding their position in the space with respect to the hyperplane
Support Vector Machines

- Very good at combining diverse information sources
- Does not assume feature independence; overlapping information sources OK
- Supervised learning; requires annotated training data
- Like statistical methods, sensitive to sparse and insufficient data
SA with diverse information sources

- Incorporate a variety of overlapping information sources based on Turney scores and Osgood values
- Primary motivation was to incorporate topic information
The data

- 100 record reviews from Pitchfork.com
- Author-assigned rank from 0.0 to 10.0
- 50 reviews selected from >8.0 score
- 50 reviews selected from <3.0 score
- Hand-annotated with `THIS_WORK` and `THIS_ARTIST` tags for all references (including co-references) to the title of the album and the artist, respectively.
Features (traditional)

- Word token unigrams
- Lemmatized unigrams
 - Lemmatized using Conexor FDG parser
Features (Turney-based)

- **Turney value**: Average value of all phrases' SO values
- **In sentence with THIS_WORK**: Average value of all SO scores for phrases in the same sentence as a reference to the work being reviewed
- **Following THIS_WORK**: Average value of SO scores for phrases which follow a reference to the work being reviewed directly or separated by the copula or a preposition
- **Preceding THIS_WORK**: Average value of SO scores for phrases which precede a reference to the work being reviewed directly or separated by the copula or a preposition
- **In sentence with THIS_ARTIST**: Similar to above, but for artist
- **Following THIS_ARTIST**: Similar to above, but for artist
- **Preceding THIS_ARTIST**: Similar to above, but for artist
Features (Osgood-based)

- **Text-wide EVA**: Average ETA of all adjectives in document
- **Text-wide POT**: Average POT of all adjectives in document
- **Text-wide ACT**: Average ACT of all adjectives in document
- **Topic-sentence EVA**: Average ETA of all adjectives that share a sentence with the topic (artist or work) of the review
- **Topic-sentence POT**: Average POT of all adjectives that share a sentence with the topic (artist or work) of the review
- **Topic-sentence ACT**: Average ACT of all adjectives that share a sentence with the topic (artist or work) of the review
Results (IMDB)

<table>
<thead>
<tr>
<th>Model</th>
<th>3 folds</th>
<th>10 folds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pang et al. 2002</td>
<td>82.9%</td>
<td>NA</td>
</tr>
<tr>
<td>Turney Values only</td>
<td>68.4%</td>
<td>68.3%</td>
</tr>
<tr>
<td>Osgood only</td>
<td>56.2%</td>
<td>56.4%</td>
</tr>
<tr>
<td>Turney Values and Osgood</td>
<td>69.0%</td>
<td>68.7%</td>
</tr>
<tr>
<td>Unigrams</td>
<td>82.8%</td>
<td>83.5%</td>
</tr>
<tr>
<td>Unigrams and Osgood</td>
<td>82.8%</td>
<td>83.5%</td>
</tr>
<tr>
<td>Unigrams and Turney</td>
<td>83.2%</td>
<td>85.1%</td>
</tr>
<tr>
<td>Unigrams, Turney, Osgood</td>
<td>82.8%</td>
<td>85.1%</td>
</tr>
<tr>
<td>Lemmas</td>
<td>84.1%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Lemmas and Osgood</td>
<td>83.1%</td>
<td>84.7%</td>
</tr>
<tr>
<td>Lemmas and Turney</td>
<td>84.2%</td>
<td>84.9%</td>
</tr>
<tr>
<td>Lemmas, Turney, Osgood</td>
<td>83.8%</td>
<td>84.5%</td>
</tr>
<tr>
<td>Hybrid SVM (Turney and Lemmas)</td>
<td>84.4%</td>
<td>86.0%</td>
</tr>
<tr>
<td>Hybrid SVM (Turney/Osgood and Lemmas)</td>
<td>84.6%</td>
<td>86.0%</td>
</tr>
</tbody>
</table>
Results (pitchfork)

<table>
<thead>
<tr>
<th>Model</th>
<th>5 folds</th>
<th>10 folds</th>
<th>20 folds</th>
<th>100 folds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turney Values only</td>
<td>72%</td>
<td>73%</td>
<td>72%</td>
<td>72%</td>
</tr>
<tr>
<td>All (THIS_WORK and THIS_ARTIST) PMI</td>
<td>70%</td>
<td>70%</td>
<td>68%</td>
<td>69%</td>
</tr>
<tr>
<td>THIS_WORK PMI</td>
<td>72%</td>
<td>69%</td>
<td>70%</td>
<td>71%</td>
</tr>
<tr>
<td>All Osgood</td>
<td>64%</td>
<td>64%</td>
<td>65%</td>
<td>64%</td>
</tr>
<tr>
<td>All PMI and Osgood</td>
<td>74%</td>
<td>71%</td>
<td>74%</td>
<td>72%</td>
</tr>
<tr>
<td>Unigrams</td>
<td>79%</td>
<td>80%</td>
<td>78%</td>
<td>82%</td>
</tr>
<tr>
<td>Unigrams, PMI, Osgood</td>
<td>81%</td>
<td>80%</td>
<td>82%</td>
<td>82%</td>
</tr>
<tr>
<td>Lemmas</td>
<td>83%</td>
<td>85%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Lemmas and Osgood</td>
<td>83%</td>
<td>84%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Lemmas and Turney</td>
<td>84%</td>
<td>85%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Lemmas, Turney, text-wide Osgood</td>
<td>84%</td>
<td>85%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Lemmas, PMI, Osgood</td>
<td>84%</td>
<td>85%</td>
<td>84%</td>
<td>86%</td>
</tr>
<tr>
<td>Lemmas and PMI</td>
<td>84%</td>
<td>85%</td>
<td>85%</td>
<td>86%</td>
</tr>
<tr>
<td>Hybrid SVM (PMI/Osgood and Lemmas)</td>
<td>86%</td>
<td>87%</td>
<td>84%</td>
<td>89%</td>
</tr>
</tbody>
</table>
Some conclusions

- Various good word and phrase classification methods exist.
- Topic information is very useful when known.
- SVM is good for bringing different information sources together.
- Using diverse overlapping word and phrase-based features with topic information can yield good results.
Sentiment Analysis of Political Content
Overview

• Definitions and varieties of political content
• Motivations and goals
• Some pertinent research
Political Sentiment Analysis

- Public opinion
 - Attitudes to policies, parties, government agencies, politicians

- Policy-making and government
 - Arguments and beliefs informing discussions between lawmakers or representatives

- Informal or formal environments
Analyzing political opinion

- Possible applications:
 - Analyzing political trends/Augmenting opinion polling data
 - Targeting advertising and communications such as notices, donation requests, or petitions
 - Identifying political bias, e.g. in news texts
 - Evaluating lawmakers positions, arguments, or biases
Sentiment Analysis of Informal Political Texts

- What is informal political discourse?
- Why try to analyze it?
- Successes and failures
What is informal political discourse?

- Informal political discourse can be found in:
 - Newsgroups
 - Blogs
 - Online publications reader feedback sections
 - Social Networking Services
- Generally organized as linear threads by topic
- Discourse is “informal”; written quickly, as thought
- Overall discourse not real-time, but individual exchanges often near real-time.
Idiosyncrasies of informal political discourse

- **Informal**
 - Rampant spelling errors
 - Casual usage (sentence fragments, etc.)

- **Political**
 - Jargon, names, non-dictionary terms

- **Informal and political**
 - Specific jargon, terms of abuse ("wingnuts", "moonbats")
 - Satirical re-spellings of known words ("Raygun", Repugnicans", "Dumbocrats")
Sentiment analysis of informal political discourse

- What is “political opinion?”
 - SA often considers a binary “thumbs up” vs “thumbs down” classification
 - This is too simple to represent political opinion.

- Political attitudes encompass a variety of favorability judgments

- Relations between judgments are not always clear; e.g., in the US political domain anti-abortion judgment often corresponds to pro-death penalty judgment.
Possible goals

• Aside from binary judgments about a specific issue, candidate, or proposal, we might want to:
 - Identify political party affiliation
 - Classify according to some more general taxonomy, e.g. right vs left
 - Gauge the “extremeness” or distance from a politically centrist position of the writer’s views
 - Evaluate the degree of confidence with which the writer expresses views
 - Evaluate the degree of agreeability/argumentativeness with which the writer communicates
 - Identify particular issues of special importance to the writer
Sentiment analysis of informal political discourse (Mullen & Malouf 2008)

- Goal: to automatically classify participants in an online political discussion forum according to political viewpoint
Classifying political attitudes

- As a preliminary task, we opted for the simplest classification scheme we could think of:
 - right
 - left
 - other

- Many viewpoints do not fit tidily on the left/right line, and “other” is so general as to be essentially noise
The data

- Data from the (now defunct) www.politics.com discussion site
- 77,854 posts organized by topic thread
- 408 individual posters
- Number of posts follows a Zipf-like distribution, with 19% of posters logging only a single post.
- Greatest number of posts by a single poster is 6885, second is 3801
Identifying quotes

- Each post broken into “chunks” based upon typographical cues such as new lines, quotes, boldface, and italics, to identify sections of the post which are quoted from previous posts.

- Chunks of three words or greater which are complete substrings of previous posts are considered quotes.

- The database is broken into 229,482 individual chunks, of which 22,391 are identified as quotes from other posts.
Supplementary data

- Additional data from the web was used to support spelling correction
 - 6481 politically oriented syndicated columns from right and left leaning websites, to provide professionally edited spellings of domain specific terms
 - A wordlist of email, chat, and text message slang, including such terms as “lol” meaning “laugh out loud”
Political affiliation in the data

- Posters have a self-described political affiliation.
- After some hand-editing, nine modified labels were identified:
 - Republican
 - Conservative
 - R-fringe
 - Democrat
 - Liberal
 - L-fringe
 - Centrist
 - Independent
 - Libertarian
<table>
<thead>
<tr>
<th>Classes to stated affiliation</th>
<th>Right</th>
<th>34%</th>
<th>Republican</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conservative</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R-fringe</td>
<td>5</td>
</tr>
<tr>
<td>Left</td>
<td>37%</td>
<td>Democrat</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-fringe</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>28%</td>
<td>Centrist</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Libertarian</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>
Naïve Bayes lexical model

- First, we used naïve Bayes to classify posts lexically as Left or Right
- “Other” users were disregarded
- Total number of users were 96 left, and 89 right, so the baseline was 51.9%
- Lexical model performed at 60.4%
Observations on the lexical model

- Unlike with topic identification, arguments from both sides of an issue use many of the same terms.
- Irregular spellings are harmful to lexical models, necessitating far more training data.
- Skewed distribution of posting frequency means that frequent posters are better modeled than infrequent posters.
Some adjustments

- Restricting experiments to frequent posters (500+ words)
 - Baseline 50%
 - Naïve Bayes: 61.38%
 - With spelling correction: 64.48%
- Human gold standard 87.5% for all users, 91% for frequent posters
Quote patterns

- Of 41,605 posts 4,583 contained quoted material
- Strong tendency to quote users from opposite end of political spectrum
 - Left quoted right: 62.2%
 - Right quoted left: 77.5%
Classification by quote

- For frequent posters:
 - For those who quote/are quoted: 83.53
 - Overall: 79.38
- However, this assumes that we know the class of the quoted poster
Using user citation graph information

- Created a graph with each user as a node and each quote an edge
- Singular value decomposition on graph’s adjacency matrix to compute a “citation space” in which distances between users could be measured
- Derived equivalence classes via alliance/agreement patterns
Equivalence classes
Using user citation graph information

- Graph-based clustering + NB yielded 68.48% accuracy for all users, 73% for frequent posters
Sentiment Analysis of Texts

- Assumptions
 - Political attitudes are (the same as | analogous to | composed of) the kind of opinions found in reviews
 - Political discussion is rhetorically similar in some significant respect to opinion/review writing
Simple PMI-IR inspired political classification

\[SO(\text{phrase}) = \text{PMI}(\text{phrase}, "\text{liberal}") - \text{PMI}(\text{phrase}, "\text{conservative}") \]

- Derived SO values from Reuters corpus
- Results considerably below baseline
Simple PMI-IR inspired political classification

- Possible reasons for poor performance
 - Wrong choice of contrast terms?
 - Inadequate training data?
 - Deeper assumptions mistaken?
Single-Issue PMI-IR feature vectors

- Assume that political attitudes are collections of positive/negative judgements on single, hot-button issues
- Draw up a list of politically contentious words/terms/names
- From each poster, select all sentences containing each of these terms
- Evaluate using PMI-IR to get an SO score for each concept
- SVM model with resulting feature vectors
Single-Issue PMI-IR feature vectors

- Created approximately 100 contentious concepts by hand, intuitively likely to distinguish right from left in American political discussion.
- Turney’s Waterloo Multitext system to derive SO values
- Used various sets of opposing keywords (for PMI-IR)
- No deviation from the baseline
What are the problems?

- As usual, data is sparse
- Political opinions expressed more obliquely than, e.g. movie reviews?
- Rhetorical goals different?
 - Reviews are written to express/describe/justify opinions
 - Political discussion posts treat underlying opinions as given and focus on convincing and/or attacking
Some conclusions

- Patterns of agreement/disagreement more salient than actual opinion content
- Political discussion more than just a description of opinions on various topics
- PMI-IR based methods not promising for informal political text analysis
Sentiment analysis and the policy-making process

- Determining support or opposition from Congressional floor-debate transcripts
- Thomas et al, 2006
- Evaluate a formal speech on policy to determine whether the speaker supports or opposes the policy
Sentiment and eRulemaking

- Electronic rulemaking, or eRulemaking initiatives seek to involve the public more closely in policy-making through “electronic collection, distribution, synthesis, and analysis of public commentary in the regulatory rulemaking process” (Shulman & Schlosberg, 2002)
- Analysis of NL policy discussion would benefit from SA
Why this is difficult

- Congressional debates contain very rich language and cover a wide variety of topics
- Subject to potentially wide digressions (e.g. “Why are we discussing this bill when the plight of my constituents regarding this other issue is being ignored?”)
- Speakers spend more time presenting evidence in support of their position than stating their opinions explicitly
The data

- Congressional floor debate data
- Speeches labeled by the speaker's eventual “yea” or “nay” vote on the proposed bill

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>train</th>
<th>test</th>
<th>development</th>
</tr>
</thead>
<tbody>
<tr>
<td>speech segments debates</td>
<td>3857</td>
<td>2740</td>
<td>860</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>38</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>average number of speech</td>
<td>72.8</td>
<td>72.1</td>
<td>86.0</td>
<td>51.4</td>
</tr>
<tr>
<td>segments per debate</td>
<td>32.1</td>
<td>30.9</td>
<td>41.1</td>
<td>22.6</td>
</tr>
<tr>
<td>average number of speakers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Models

- Unigram-based SVM for classifying individual segments as yea or nay
- Identify instances of inter-speaker agreement based on by-name reference and predetermined words and phrases indicating agreement
- An agreement threshold is adjusted to control precision vs accuracy of agreement
Results (Thomas, et al 2006)

<table>
<thead>
<tr>
<th>Support/oppose classifier ("speech segment⇒yea?")</th>
<th>Devel. set</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM [speaker]</td>
<td>71.60</td>
<td>70.00</td>
</tr>
<tr>
<td>SVM + agreement links . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with $\theta_{agr} = 0$</td>
<td>88.72</td>
<td>71.28</td>
</tr>
<tr>
<td>with $\theta_{agr} = \mu$</td>
<td>84.44</td>
<td>76.05</td>
</tr>
</tbody>
</table>
Some more conclusions

- Political sentiment analysis is difficult even when restricted to straight support vs opposition judgments in formal environments.
- If yea or nay accuracy is low, an SVM based on these features would have high levels of noise for each feature.
Some more conclusions

- Most political discussions do occur in some wider discourse context
- Agreement/disagreement/alliance information should be regarded as a crucial component for political sentiment analysis
- Traditional classification approaches may provide a starting point
To sum up

- Sentiment analysis is a difficult task
- The difficulty increases with the nuance and complexity of opinions expressed
- Product reviews, etc are relatively easy
- Books, movies, art, music are more difficult
- Policy discussions, indirect expressions of opinion more difficult still
- Non-binary sentiment (political leanings etc) is extremely difficult
- Patterns of alliance and opposition between individuals become central