
Exploiting Treebanking Decisions for Parse
Disambiguation

by
Md. Faisal Mahbub Chowdhury

M.Sc. Thesis
European Masters Program in Language and Communication Technologies (LCT)

Universität des Saarlandes
Free University of Bozen-Bolzano

Supervisors:

Dr. Yi Zhang
PD Dr. Valia Kordoni

Prof. Dr. Hans Uszkoreit

September 2009

c© Copyright by Md. Faisal Mahbub Chowdhury, 2009.
All Rights Reserved.

ii

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, September 2009

Md. Faisal Mahbub Chowdhury

iii

Abstract

Treebanks play an increasing role in computational linguistics for training parsers.
Some treebanking environments allow annotators to quickly navigate through the
parse forest and identify the correct or incorrect or preferred analysis in the current
context by selecting or rejecting discriminants. Although, these treebanking deci-
sions are recorded in log files or databases, but, to our best knowledge, until now
nobody has inspected potentiality of incorporating such fine-grained decisions made
by human annotators for automatic parse disambiguation. This thesis examines this
new potential research direction by developing a novel approach for extracting dis-
criminative features using treebanking decisions. The thesis presents comparative
analyses of the performance of discriminative disambiguation models built using
the treebanking decision features and the state-of-the-art features which indicate
features extracted using treebanking decisions are more efficient and informative
compared to their traditional counterparts.

We highlight how these different types of features scale when their corresponding
models are tested on out-of-domain data. The result suggests that, treebanking
decision features are more robust. Analyses from different perspectives such as
impact of different types of decisions on the disambiguation model, or using the
disambiguation model of the treebanking decisions feature as a re-ranker are also
included.

The study also develops a method to extract patterns of correlated discriminant
from human decisions and use them for parse forest reduction. The empirical results
indicate that, finding such patterns that yields substantial reduction of parse forest
preserving the preferred analyses is not an easy task.

The thesis argues that, the discriminative nature of the treebanking decisions
allows them to be highly effective features to contribute to an efficient disambigua-
tion model. This is demonstrated by a number of experiments that also reveal some
open research questions for future works.

iv

Acknowledgements

Two years ago, when I landed in Europe, I was confused whether I made the right
decision to come here for higher study. Looking back to the memories, many things
that I have learnt and the wonderful people that I have met, I am very happy that
I took that decision.

I would like to thank Dr. Yi Zhang for being such a wonderful supervisor. I
am indebted to him for patiently listening to me in numerous occasions and giving
his thoughtful opinions, and especially, for helping me when I was struggling at the
beginning with various setup related problems of the Logon system. Thanks to his
vast knowledge on this particular field of research, he introduced me to different
types of works which might not be directly related to my thesis but surely enriched
my knowledge.

I would also like to thank my other supervisor Dr. Valia Kordoni for her encour-
aging words and support throughout this thesis. Before starting the thesis I almost
knew nothing about parsing, and yet she agreed to supervise me. I also thank for
her nice emails when my father was seriously ill and I was very upset. I am also
grateful to her and Dr. Zhang for contributing in one of my papers. Above all, I
would like to thank her for being a very helpful coordinator in these two years.

I am thankful to Prof. Bernardo Magnini for asking me to come to FBK-Irst
for internship. I am glad that I took that opportunity. I enjoyed my time there.
Many thanks to Matteo Negri for his guidance in that period and also for letting me
know various important things regarding technical writing when we did a publication
together.

Thanks to Dr. Raffaella Bernardi for her caring and guidance during my stay
in Bolzano.

It could have been really tough for me to finish everything in time and properly
if there were no Ms. Jutta Springer, Ms. Bobbye Pernice and Ms. Federica Cumer.
Whether it was visa problem, course related issue, housing issue or any other prob-
lems, they were always there to help me get out of those situations. Thanks to them
for their incredible support.

Special thanks goes to my mom, dad and sisters, for supporting me during all
these years, for helping me and for always being there for me. I am blessed to have
such a wonderful family.

Thanks also to all of my friends (near and far, old and new) for being so helpful
and supportive.

v

Finally, thanks to VoipWise, Gmail and Yahoo! for their wonderful technologies
which allowed me always to be in touch with my family and friends, and also to
Bolzano and Saarbrücken for being such friendly places to live.

Thank you all very much.

— Faisal
Saarbrücken, September 2009

vi

Contents

Abstract iv

Acknowledgements v

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Motivation and research questions . 3
1.3 Contribution of this thesis . 4
1.4 Outline of the thesis . 5

2 Mathematical Preliminaries 7
2.1 Entropy . 7
2.2 Maximum entropy models . 8
2.3 Maximum likelihood estimation . 10

3 Previous Related Works 12
3.1 Statistical parse selection . 12
3.2 Discriminant-based treebanking environments 16
3.3 Domain adaptation, re-ranking and self-training 18

vii

4 Treebanking Decisions and Features 20
4.1 The Redwoods-style treebanks . 21
4.2 The state-of-the-art feature types . 22
4.3 Treebanking decisions . 23
4.4 Why treebanking decisions . 24
4.5 Feature extraction using treebanking decisions 25
4.6 How are TDF s different from the traditional features? 25

5 System Overview 28
5.1 Feature extractor . 29
5.2 Component for training maximum entropy models and testing 30
5.3 Performance analyser . 33
5.4 Re-ranker . 33
5.5 Component for parse forest reduction using ranked TDF s 34
5.6 LOGON System . 36

6 Experimentation Environment 37
6.1 Data . 37
6.2 Decisions taken by the human annotators and system 38
6.3 Feature sets . 39
6.4 Discriminative models used for the experiments 40
6.5 Evaluation measures . 40

7 Results and Analyses 42
7.1 Comparison of performances among the models of different feature

types . 43
7.2 Performance measurement on out-of-domain data 43
7.3 Active features . 44
7.4 Effect of human annotated decisions, contexts and different decision

combinations . 45
7.5 TDF model as re-ranker . 46
7.6 Parse forest reduction using individual top ranked features 47

viii

8 Extracting Correlated Discriminants from Human Decisions 48
8.1 Pattern extraction . 49
8.2 Reducing size of the parse forests using patterns 50
8.3 Experiments and observations . 51

9 Conclusion 55
9.1 Summary . 55
9.2 Comparison to the related works . 57
9.3 Open questions and future works . 58

Appendix A 61

ix

List of Tables

4.1 Example of the state-of-the-art features extracted from the derivation
tree in Figure 4.1. 23

4.2 Example of the TDF s extracted from the derivation tree in Figure
4.1 using the treebanking decision “D4 hspec the || dog" in Figure
4.2 . 25

7.1 Accuracies obtained on in-domain data using n-grams (n=4), local
configurations (with grandparenting level 3), active edges and TDFC. 42

7.2 Accuracies obtained on out-of-domain data. 43
7.3 FHC and FTHC calculated for in-domain data 44
7.4 Accuracies obtained using different combination of TDF. TDF1 is

the TDF s extracted using template T1 ; TDFC is extracted using
the combination of templates T1, T2 and T3 ; YTDFC is same as
TDFC except that the features are collected using only annotated
and inferred “Yes” decisions; and finally, ATDFC is the collection of
TDF s extracted using only human annotated decisions. 45

7.5 Accuracies obtained by using the disambiguation model of TDFC as
re-ranker. 46

7.6 Result of parse forest reduction using Z% of top ranked TDF s indi-
vidually. In the table, by “% of the size of forests reduced”, we mean
the percentage of the original number of total parse trees (of all the
reduced parse forests) that remain after reduction. 47

8.1 Parse forest reduction using CGP and FGP. 52
8.2 Impact of patterns with negative and lexical discriminants on parse

forest reduction. 53

x

List of Figures

3.1 The SRI Cambridge Treebanker GUI. 16
3.2 [incr tsdb()]treebank annotation GUI. 17

4.1 Example of HPSG derivation tree. Phrasal nodes are labeled with
identifiers of grammar rules, and (pre-terminal) lexical nodes with
class names for types of lexical entries. Although, the original deriva-
tion tree format has pre-terminals corresponding to lexical identifiers,
this figure shows a modified format where these identifiers are mapped
to one of the abstract lexical types of ERG. 22

4.2 Example forest and discriminants . 24

5.0 Steps of feature extraction: (a) sample parse trees and treebanking
decision, (b) corresponding parse trees for the decision (i.e. belonging
to the same sentence) is selected, (c) presence of the elements of
the treebanking decision is identified in one of tree, (d) features are
extracted using templates. 32

5.1 Work flow of the whole process of parse disambiguation with tree-
banking decisions. 34

5.2 Process of re-ranking. 35

xi

Chapter 1

Introduction

“....specifying the features of a stochastic unification-based grammar
(SUBG) is as much an empirical matter as specifying the grammar it-
self.” (Johnson et al., 1999)

1.1 Background

Parsing, or, more formally, syntactic analysis, is the process of analyzing a sequence
of tokens (e.g. sentence) to determine their grammatical structure with respect to a
given formal grammar. Parsing is usually considered as an intermediate stage and
used to uncover structures that are used by later stages of processing for many natu-
ral language processing (NLP) tasks. Early parsing initiatives based on probabilistic
models on CFG formalism demonstrate efficient processing but they could not sur-
pass a certain limit of accuracy. This is due to lack of deep linguistic knowledge
for CFG formalism (Abney, 1997). Alternative strategies based on deep grammar
formalisms such as Head-driven Phrase Structure Grammar (HPSG), Lexical Func-
tional Grammar (LFG), etc., face three main challenges — coverage, efficiency and
high ambiguity.

Until only a few years ago, time and memory requirements of unification-based
processing systems used to be prohibitive for many applications. Several hundred
megabytes of main memory were considered the absolute minimum for parsing
medium-complexity input with a large-scale grammar. Parsing times of one or
two minutes per sentence were not considered unusual. Over the past few years,
however, significant progress in efficient processing has been achieved. (Callmeier,
2001)

For some languages, such as English, German, etc., more and more corpus and

1

treebanks1 are becoming available.2 Large grammars are being built for years for
some languages (such as ERG (Flickinger, 2000), GG (Müller and Kasper, 2000),
etc.). So, coverage is also increasing.

However, ambiguity (in this thesis we are interested on syntactic ambiguity)
remains as one of the critical problem of NLP. Depending on the richness of the
grammar, a sentence can have multiple number (sometimes thousands) of syntactic
analyses. Parse disambiguation, or, parse selection is the task of selecting a pre-
ferred analysis given an input sentence. There are two possible approaches for parse
disambiguation. One approach is rule based where, the strategy is to encode knowl-
edge by define rules, hand-engineered grammars and patterns. But it requires much
effort and is not robust. The other widely adopted approach is to treat the prob-
lem of disambiguation as a classification task, learn classifiers from labeled training
data and build training models to be used on unseen data. While such models can
vary based on their underlying mathematical framework and the type of features
they use, all of them are basically statistical models. The latter approach is also
dependent on underlying grammars, but they are not restricted to the grammars.

While treebanks are mainly used in corpus linguistics for studying syntactic
phenomena, they play an increasing role in computational linguistics for training
parsers. Previous researches have adopted two approaches to use treebanks for
disambiguation models. One approach, known as generative, uses only the gold
or preferred parse trees (Ersan and Charniak, 1995; Charniak, 2000). The other
approach is to use discriminative models (will be discussed in detail in Chapters 2
and 3), which is created by training maximum entropy model or conditional log-
linear model on treebanks (Johnson et al., 1999; Toutanova et al., 2005). The
discriminative parse selection models are trained by maximizing the probability of all
the preferred analyses relative to all the alternative and non-preferred analyses. This
gives us a statistical model for the distribution of parses conditioned on a given input
string. In this latter approach, features such as local derivational configurations (i.e.
local sub-trees), grandparents, n-grams, etc., are extracted from all the trees and are
utilized to build the model. Neither of the approaches considers cognitive aspects of
treebanking, i.e. the fine-grained decision-making process of the human annotators.

Although, due to considerable amount of efforts in last 10 years, disambiguation
accuracies of the discriminative models have reached a certain point, yet a lot more
to do. Some of the treebanks are annotated semi-automatically where explicit deci-

1A treebank or parsed corpus is a text corpus in which each sentence has been parsed, i.e. annotated
with syntactic structure. Syntactic structure is commonly represented as a tree structure, hence the name
Treebank is used to refer to such corpus.

2See http://nlp.stanford.edu/links/statnlp.html#Corpora for a list of corpora including treebanks.

2

sions of annotation (we will refer to them as (annotated) treebanking decisions and
formally define the notion of treebanking decision in Chapter 4) are made by the
human annotators through graphical annotation tool are recorded in database or
log files (Oepen, 2001). This thesis analyzes the prospect of improvement in auto-
matic parse disambiguation if such decisions are exploited. To our best knowledge,
this is the first work which reports on exploiting treebanking decisions for parse
disambiguation.

1.2 Motivation and research questions

As mentioned before, in this thesis, we try to address the syntactic ambiguity prob-
lem of natural language analysis by utilizing treebanking decisions. The question
is whether there is more (or extra) information (in a given treebank) covered by
the treebanking decisions in comparison with the state-of-the-art feature types, and
if so then how that information can be extracted and exploited for addressing this
problem. It might be possible that there are hidden correlated patterns of decision
making (i.e. discriminant3 choosing) inside human decisions. So, we would like to
also know whether we can develop a method to learn such patterns, if there exists
any, and use them for the reduction of the number of non-preferred parse trees of
the parse forests (or simply, parse forest reduction).

Treebanking decisions are interesting for several reasons. These decisions record
the fine-grained human judgements in the manual disambiguation process. Apart
from these, these decisions allow to encode useful relationships between lexical words
and the grammar rules of their distant grandparents without considering nodes (and
hence, also grammar rules of those nodes) in the intermediate levels. State-of-the-art
feature templates4 such as local derivational configurations and active edges (will
be discussed in Chapter 4) require exhaustive search in every node of the parse
trees of the parse forests to generate their corresponding features. At one hand, this
is a very time consuming process; on the other hand, only a small portion of the
huge amount of these features are actually active and play informative role during
disambiguation of the new sentences. If features can be extracted using treebanking
decisions, then those features would be directly constrained by their corresponding
treebanking decisions which would reduce the search space and also the total number
of features significantly.

3Discriminants are the properties that hold for some analyses of a particular utterance but not for
others. They will covered more elaborately in later Chapters.

4By feature template, we mean a generic or abstract definition for a certain type of features that share
a common structure.

3

Another potential prospect is, if we can model human disambiguation process
accurately by focusing on the human annotated decisions, then such a model will not
only improve the performance of the parsing system, but can also be applied inter-
actively in treebanking projects to achieve better annotation speed (e.g. by ranking
the promising discriminants higher to help annotators make correct decisions).

In short, treebanking decisions have several potential characteristics which make
them worth to examine.

1.3 Contribution of this thesis

This thesis presents an empirical study on the potentiality of the treebanking de-
cisions as discriminative features for HPSG parse selection. Although, we mainly
compare the features extracted using treebanking decisions and the state-of-the-art
features, but the thesis also examines different types of decisions and their corre-
sponding extracted features from different points of view. The contribution of the
thesis can be summarised as following —

• We define feature templates specific to the treebanking decisions and show how
they can used to extract potential features from parse trees.

• We presents comparative analyses among the features extracted using treebank-
ing decisions and the state-of-the-art feature types. We show that, features
extracted using treebanking decisions (henceforth Treebanking Decision Fea-
ture or simply TDF) are more informative, despite the total number of these
features being much less than that of the traditional feature types.

• Our experimental results indicate TDFs are more robust than their traditional5

counterparts on the out-of-domain data.

• We present analyses of the results and show that TDFs have higher number of
active features which indicates that they are more efficient.

• We present analyses of the impact of different types of treebanking decisions
(yes/no, annotated/inferred) on disambiguation accuracy gain.

• We present analyses of the performance of TDFs if they are used in a two stage
re-ranker.

5We will use the trems traditional and state-of-the-art feature alternatively throughout this document.

4

• We develop a method to extract patterns of correlated discriminant from human
decisions and to use them for parse forest reduction.

• Finally, we discuss the open questions that are raised from our study and include
brief outline about further research on this topic.

1.4 Outline of the thesis

The remaining chapters of the thesis is organised as following —
Chapter 2 introduces the reader to the mathematical preliminaries of this thesis,

defining entropy, maximum entropy models and maximum likelihood estimation.
Chapter 3 discusses the previous related works. It starts with the background

on statistical parsing (especially for unification-based grammars). Then, it describes
some discriminant-based treebanking environments. Finally, some recent directions
in parsing research (such as parser adaptation, re-ranking) which we consider in
some of our experiments are discussed.

Chapter 4 presents the features that provide the empirical basis for our ex-
periments. We start with a brief discussion about the Redwoods-style treebanks
that is used in this thesis. Following this, the sate-of-the-art feature types used
are discussed. Then, we formally define treebanking decisions with examples and
then include some additional reasons for our interest on these decisions. Finally, we
present the feature templates, that we use for TDFs extraction, and draw distinc-
tions between TDFs and the traditional features.

Chapter 5 describes the system that we develop for our experiments. We explain
some of the main components of the system along with graphical presentation of
their work flows. We also discuss how disambiguation model is trained and later
used for testing.

Chapter 6 presents some of the key details related to the setup of our experi-
ments. We describe various aspects of the experimental data and features. We also
discuss the training models and evaluation measures.

Chapter 7 is dedicated to the description of the results of obtained from a series
of experiments that analyze TDFs from different perspectives and illustrate their
potentiality to be used for parse disambiguation.

Chapter 8 describes a method developed to extract patterns of correlated dis-
criminants from human decisions. The chapter also describes the results when these
patterns are used for parse forest reduction.

5

Finally, in Chapter 9 we summarize what we have learnt from this thesis. We
conclude by giving suggestions for directions of future research.

6

Chapter 2

Mathematical Preliminaries

In this chapter we will review the mathematical foundations of the statistical models,
called maximum entropy (MaxEnt) models, that are used for parse disambiguation
in this thesis. A feature of maximum entropy (ME) modeling that makes it very
attractive is that it is a general purpose technique that can be applied to a wide
variety of problems in natural language processing (Berger et al., 1996; Ratnaparkhi,
1998; Johnson et al., 1999; Miles, 2000). However, it is not the purpose of this
chapter to give a complete introduction, but rather to provide some background for
the uninitiated reader. So, this chapter takes a quite general view on the models and
only describes their mathematical foundations. Readers are advised to visit Zhang
Le’s maxent page 1 for more details.

We start with entropy, a key concept of information theory, in Section 2.1. This
concept has traditionally played an important role in relation to the evaluation
of language models, and also provides a natural transition to the framework of
maximum entropy models, which is the topic of Section 2.2. Finally, in Section 2.3,
we look into maximum likelihood estimation that is required to build conditional
models.

2.1 Entropy

One of the key quantities in information theory, pioneered by Claude E. Shannon
in the late 1940s, is entropy, which is a measure of the uncertainty associated with
a random variable. To put differently, entropy is a measure of the average infor-
mation content one is missing when one does not know the value of the random

1See http://homepages.inf.ed.ac.uk/lzhang10/maxent.html

7

variable (Shannon, 1948). For a random variable X, distributed according to a
probability mass function p(x), its entropy is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (1)

Consider tossing a coin with known, not necessarily fair, probabilities of coming
up heads or tails. The entropy of the unknown result of the next toss of the coin is
maximized if the coin is fair (that is, if heads and tails both have equal probability
1/2). This is the situation of maximum uncertainty as it is most difficult to predict
the outcome of the next toss; the result of each toss of the coin delivers a full 1
bit of information. However, if we know the coin is not fair, but comes up heads
or tails with probabilities p and q, then there is less uncertainty. Every time it is
tossed, one side is more likely to come up than the other. The reduced uncertainty
is quantified in a lower entropy: on average each toss of the coin delivers less than a
full 1 bit of information. The extreme case is that of a double-headed coin for which
a tail never comes up. Then there is no uncertainty. The entropy is zero: each toss
of the coin delivers no information.

So, the entropy is highest under the uniform distribution, i.e. when all outcomes
are equally probable. One of the main concerns of information theory is how to best
encode information. The entropy of a random variable provides a lower bound on
the average number of bits needed to represent that variable (Cover and Thomas,
1991). With a non-uniform distribution, the coding scheme can take advantage of
the fact that some events are more likely than others, and assign labels that require
a smaller number of bits to encode these events, thereby reducing the average code
length.

2.2 Maximum entropy models

Maximum entropy models offer a clean way to combine diverse pieces of contextual
evidence in order to estimate the probability of a certain linguistic class occurring
with a certain linguistic context. Contexts in NLP tasks usually include words, and
the exact context depends on the nature of the task. For some tasks, a context
consists of just a single word, while for others, it consists of several words and their
associated syntactic labels and, sometimes, the grammatical rules used to assign
those syntactic labels.

The principle of the maximum entropy models is: model all that is known and
assume nothing about that which is unknown. In other words, given a collection

8

of facts, choose a model consistent with all the facts, but otherwise as uniform as
possible (Berger et al., 1996; Ratnaparkhi, 1997). The MaxEnt principle is typically
explained as an Occam’s Razor argument for model selection, in the sense that we
should never choose a model that is more complicated than necessary for explaining
the empirical data.

MaxEnt models have been widely used for a range of tasks in NLP, including
parse selection (Johnson et al., 1999; Miyao and Tsujii, 2002; Malouf and Van Noord,
2004). These models sometimes also go under other guises such as log-linear models,
exponential models, Random Fields and Gibbs distributions. In many cases the
differences between these models only pertain to the theoretical motivation rather
than their practical implementation (Velldal, 2008). In this section, however, we
focus on conditional maximum entropy models.

A MaxEnt model is given by a set of feature functions and corresponding weights.
The specified feature functions describe properties of the data points, and the associ-
ated set of learned weights determines the contribution or importance of each feature.
The real-valued features can describe arbitrary properties of the data points. For
our purpose, we need to construct a probability distribution p over a set of parses X
which are characterized by features fi(x) which may encode arbitrary characteristics
of the parses. If we have a set of sentences W and a function Y(w) that partitions
X into the set of parses whose yield is w ∈ W, the conditional probability of parse
x for sentence w is:

p(x|w; θ) =
exp(

∑
i
θifi(x))∑

y∈Y (w) exp(
∑

i
θifi(y))

(2)

The value of fi(x) reflects the frequency of the i -th feature in a given parse x. The
parameters θi, which is the weight of the corresponding i -th feature, can be estimated
efficiently by maximizing the pseudo-likelihood of a training corpus (Johnson et al.,
1999; Malouf, 2002):

L(θ) =
∑

w

p̃(w)
∑

x∈Y (w)

p̃(x|w) log p(x|w; θ) (3)

The empirical probabilities p̃(w) and p̃(x|w) are derived from the training data.
However, to minimize over-fitting, a more effective approach is to use a penalized

likelihood function for parameter estimation (Chen and Rosenfeld, 1999; Johnson
et al., 1999). That means, rather than maximizing the likelihood (Equation (3)) to
estimate the parameters θi, we instead maximize a penalized likelihood:

9

L′(θ) = L(θ)− 1

2σ2

∑
i

θi
2 (4)

This has the effect of imposing a Gaussian prior distribution on the parameter
values with a mean of zero and a variance of σ2, which in turn penalizes extreme
feature values and tends to reduce over-fitting. The variance σ2 is a smoothing
parameter which sets the relative influence of the likelihood and prior: larger values
of σ2 results in less smoothing of the parameters θi.

An attractive property of the maximum entropy models is that, it is possible to
integrate distinct but potentially overlapping sources of information, and features
can be defined to take into account whatever aspects of the parse trees are considered
important.

A potential drawback of the maximum entropy models is that Equation (2)
requires access to all parses of a given corpus sentence, which is inefficient because
a sentence can have an exponential number of parses. Two types of solution for
this problem have been proposed. Geman and Johnson (2002), and Miyao and
Tsujii (2002) present approaches where training data consists of parse forests (or
feature forests), rather than sets of parses. Such approaches enforce strong locality
requirements on features. Another type of solution (Miles, 2000) shows that it
suffices to provide training with a representative sample of Y(w).

2.3 Maximum likelihood estimation

Learning a MaxEnt model amounts to finding the values for the parameters θi that
satisfy the constraints on expected feature values, and also uniquely determine the
model with the highest entropy. It turns out that solving the constrained optimiza-
tion problem of finding the model with the greatest entropy, is equivalent to solving
the unconstrained optimization problem of finding the values of the parameters θi

that maximizes the log-likelihood L(θ) of the training data X:

θ̂ = arg max θL(θ) (4)

Thus, two different approaches – maximum likelihood and maximum entropy
lead to the same solution. (Velldal, 2008)

10

Before we leave this chapter, for our purpose, we integrate a tool called the
Toolkit for Advanced Discriminative Modeling (TADM) 2, which is based on the
open-source estimate package by Malouf (2002), with our system (will be discussed
in Chapter 5) for MaxEnt estimation. TADM is the implementation of the theories
that we have discussed so far in this chapter.

2See http://tadm.sourceforge.net.

11

Chapter 3

Previous Related Works

Parsing have drawn a huge attention of both linguist and computer scientist com-
munity since the late 80’s. The result in a massive number of scientific literatures
that ranges from various grammatical frameworks to the variation of mathematical
and statistical models. As mentioned before, the experiments done in this thesis
examine a variety of approaches (such as log-linear models, re-ranking, parser adap-
tation, discriminant pattern extraction from human decisions, etc.) using features
extracted from treebanking decisions. We review some of the notable previous stud-
ies done on those approaches which are closely related to our work. We begin in
Section 3.1 with the recent developments of statistical parsing for unification-based
grammars, especially using log-linear models. This is followed by some history on
discriminant-based treebanking environments in Section 3.2. Finally, we briefly dis-
cuss in Section 3.3 about few of the works done on domain adaptation, re-ranking
and self-training.

3.1 Statistical parse selection

As Velldal (2008) noted, stochastic elements are effective in parsing for two reasons:
robustness and dealing with ambiguity. In many real-world applications, the input to
a natural language analyzer can be expected to be noisy and erroneous. Moreover,
there will always be cases where the grammar will fail to cover, no matter how
broad-coverage the grammar has. A strict grammatical requirement will leave the
parser brittle in the face of such input. Furthermore, often ungrammatical strings
are comprehensible, and certain statistical parsers can assign an interpretation to
such inputs.

The other issue is with ambiguity. The more the grammar has a rich and deep

12

coverage, the more is the chance that it may introduce greater number of syntac-
tic analyses for structurally ambiguous sentences. A statistically guided parser can
disambiguate such sentences by ranking the competing structures and selecting a
single preferred analysis. There have been plenty of works on statistical parsing in
last two decades, and historically, a major portion of them are focused on prob-
abilistic context-free grammar (PCFG). So, in this section we will rather restrict
ourselves only some of those works that are closely related to this thesis.

Abney (1997) show that, the methods used for defining weights of the features
for a context-free grammar cannot be transferred to the more powerful family of
unification-based grammars (UBGs) (such as HPSG and LFG, that can encode
much richer syntactic and semantic constraints). The non-local dependencies created
by the unification constraints, break the simple tree structures that are induced
by the productions of a PCFG (Johnson et al., 1999). Also, simply computing
relative frequencies does not generally result in a maximum likelihood estimate in
the case of SUBGs. In order to account for the context-sensitive dependencies of
UBGs, Abney (1997) show how a maximum likelihood distribution can be computed
using log-linear models (see Section 2.2), with parameters estimated using a Monte
Carlo-based gradient ascent procedure. The estimation procedure finds the optimal
parameters of the weights that maximize the log-likelihood of the training corpus
according to the model.

Abney (1997)’s concept was further refined by Johnson et al. (1999) to make pa-
rameter estimation more efficient to be practically feasible for grammars of realistic
size. They suggest to use a so-called pseudo-likelihood estimator that finds param-
eters that maximize the conditional probabilities of the annotated parses given the
strings in the training data. This approach also takes advantage of negative ex-
amples in the sense that the weights are chosen to maximize the probability of the
preferred parses relative to the non-preferred ones for each string in the training
corpus.

In recent years, several approaches have been developed using log-linear models
for SUBGs, which are basically variants of the approaches of Abney (1997) and John-
son et al. (1999). With regard to this thesis, the most relevant one among them is
the work of Toutanova et al. (2005) on training and comparing different conditional
log-linear models for parse selection. Toutanova et al. (2005) describe experiments
on HPSG parse disambiguation using the 1st growth of LinGO Redwoods HPSG
treebank 1 which provides much richer representation than Penn Treebank that has

1A Redwoods-style treebank is different from other treebanks in that the treebank itself changes as the
ERG is improved.

13

been the focus in parsing research for many years. The LinGO Redwoods HPSG
treebank (see Section 4.1 for more details) is annotated with the HPSG analysis
licensed by the LinGO English Resource Grammar (ERG; (Flickinger, 2000)). The
HPSG signs are typed feature structures that encode fine-grained syntactic infor-
mation, and also include a logical-form meaning representation based on Minimal
Recursion Semantics (MRS; (Copestake et al., 2006)). The authors compare perfor-
mance of generative and discriminative models on disambiguation task using anal-
ogous features over derivation trees. The first generative model is a PCFG model
with production features defined for the rule schemata in the derivation trees of the
HPSG analyses in the treebank. The second model is also a PCFG model in which
production features are extended to include ancestor information for up to a maxi-
mum of four dominating nodes. The authors also train similar PCFG models using
more conventional phrase structure trees derived from the derivation trees. They ob-
serve that the disambiguation accuracy for these models (based on phrase structure
trees) is lower than that for the models trained on derivation tree representations
of the Redwoods. Another PCFG-style model is trained on semantic dependency
trees that are extracted from these MRS representations. They also implement a
conventional trigram HMM tagger that defines a joint probability distribution over
pre-terminal tag sequences and yields of the derivation trees. Finally, several of the
generative models are combined in a single model by linear interpolation. After that,
the authors train corresponding discriminative models that are defined using exactly
the same feature sets, but are trained to maximize the conditional log-likelihood of
the treebank data. For all the different model configurations, the discriminative
variants substantially outperform their generative counterparts, resulting in relative
reductions in error rate of up to 28%. The best model among them reach up to
82.5% exact match accuracy.

The study of Toutanova et al. (2005) resulted in some important observation.
They show that production features defined over derivation trees give better results
than with standard phrase structure trees. They also show extending the feature
set to include ancestor information provides much better accuracy. However, the
authors observe that, the information in the semantic dependency trees do not seem
to contribute significantly to disambiguation. (Velldal, 2008)

Osborne and Baldridge (2004) propose ensemble-based active learning for parse
selection. The authors experiment on 3rd growth of Redwood treebank. Three
distinct feature sets – configurational, n-gram, and conglomerate are used to train
log-linear models. The authors argue that these feature sets incorporate different
aspects of the parse selection task and have different properties. The configurational

14

feature set is the derivation tree features, also known as local configuration features
(see Section 4.2), described by Toutanova et al. (2003) that take into account an-
cestor relationships among the nodes of the trees. The n-gram set, described by
Osborne and Baldridge (2004), also uses derivation trees; however, it uses a lin-
earized representation of trees to create n-grams over the tree nodes. According to
the authors, this feature creation strategy encodes many (but not all) of the rela-
tionships in the configurational set, and also captures some additional long-distance
relationships. The conglomerate feature set uses a mixture of features gleaned from
phrase structures, MRS structures, and elementary dependency graphs. Each of
these representations contains less information than that provided by derivation
trees, but together they provide a different and comprehensive view on the ERG
semantic analyses. The features contributed by phrase structures are simply n-
grams of the kind described above for derivation trees. The features drawn from
the MRS structures and elementary dependency graphs capture various dominance
and co-occurrence relationships between nodes in the structures, as well as some
global characteristics such as how many predictions and nodes they contain. The
authors report that an ensemble of the three parse selection models (based on the
different feature sets) achieves a 10.8% reduction in error rate over the best single
model. Their best result achieves a 73% reduction in annotation cost compared with
single-model random sampling and a 77% exact match accuracy. 2

Crysmann (2008)’s experiments are conducted on German subset of Verbmobil
corpus. The author uses GG, a large-scale HPSG grammar for German and report
81.49% exact match accuracy. The results indicate that, for German (which has a
less rigid word order than English), when grand parenting is used, n-gram does not
contribute any significant improvement in accuracy. The results also indicate active
edges deteriorate accuracy if grandparenting is already available.

Some of the other related works include estimating contribution of language
model in comparison with conditional models in parse selection and realization by
Velldal (2008), partial parse selection by Zhang et al. (2007), log-linear model used
for Dutch by Malouf and Van Noord (2004), etc. Various results are report in
CoNLL 2007 shared task on dependency parsing where the best system obtained
score of 89.61 on the WSJ section of Penn treebank (Nivre et al., 2007). Riezler et
al. (2002) report parsing WSJ treebank using LFG and discriminative estimation
techniques and their result reached 79% F-score.

2It should be noted, growth 1 of Redwood (upon which Toutanova et al. (2002) result is reported) has
considerably less ambiguity than growth 3.

15

3.2 Discriminant-based treebanking environments

Figure 3.1: The SRI Cambridge Treebanker GUI.

Carter (1997) present a graphical tool for treebanking named as the SRI Cam-
bridge Treebanker (or simply, the Treebanker). Primarily, the tool was developed
as a component for a spoken language translator system. It presents a user, who
need not be a system expert, with a range of properties that distinguish competing
analyses for an utterance and that are relatively easy to judge. This allows training
on a corpus to be completed in far less time, and with far less expertise, than would
be needed if analyses are inspected directly.

Given an input string, zero or more quasi-logical form (QLF; (Alshawi, 1990))
analyses of it is created by applying unification-based syntactic rules and their
corresponding semantic rules. Then, various properties are extracted from those
QLFs and presented to non-expert users in a form that they can easily understand.
Carter (1997) name the properties that hold for some analyses of a particular ut-
terance but not for others as discriminants. The tool is developed based on the as-
sumption that, discriminants that fairly consistently hold for correct but not (some)
incorrect analyses, or vice versa, are likely to be useful in distinguishing correct from
incorrect analyses at run time. Thus for training on an utterance to be effective, one
needs to provide enough “user-friendly” discriminants to allow the user to select the
correct analyses, and as many as possible “system-friendly” discriminants that, over
the corpus as a whole, distinguish reliably between correct and incorrect analyses.
The data collected from the training the system by the user is then used by the

16

speech recognizer. Figure 3.1 shows the graphical form for the sentence “Show me
the flights to Boston serving meal on Wednesday” that is presented to the user.

Figure 3.2: [incr tsdb()]treebank annotation GUI.

While the SRI Cambridge Treebanker is basically one of the earliest (if not the
first) discrimination based treebanking environments, it operates with much simpler
grammar than deep grammars, and hence, does not deal with huge number analyses
that a rich deep grammar can produce. [incr tsdb()] serves this purpose (Oepen,
2001). [incr tsdb()] competence and performance profiler, a tool for grammar and
system profiling and treebanking, have been developed, maintained and enhanced by
Stephan Oepen and other contributors for more than a decade. The term grammar
profiling refers to a methodology that builds on structured and annotated collections
of test and reference data (traditionally known as test suits) (Oepen and Flickinger,
1998). A competence and performance profile gives a rich, precise, and structured
snapshot of the system behaviour at a given development point. These profiles are
stored in a relational database that accumulates a precise record of system evolution
that later serves the basis for various report generation and data analysis via descrip-
tive statistical measures. To create test suits, [incr tsdb()] provides a graphical
user interface (GUI) to facilitate treebanking annotation. [incr tsdb()] supports
the Redwoods-style treebanking (will be discussed later in Section 4.1). The anno-
tator selects the correct analysis (or, occasionally, rejects all analyses). Selection
is done through the choices of discriminants. Like the SRI Treebanker, the system
selects features that distinguish between different parses, and the annotator selects
or rejects the features until only one parse remains. The number of decisions for

17

each sentence is normally around log2 (x) of the number of parses, although some-
times a single decision can reduce the number of remaining parses by more or less
than half. For each action (selection or rejection of discriminant) taken by the an-
notator, the system accumulates the state of the discriminants, in all the analyses
of the corresponding sentence, which either agree or conflict with the action of the
annotator, and automatically marks them as postive (selected/not conflicting) and
negative (rejected/conflicting) discriminants accordingly. All the actions taken by
both the annotator and system are saved in log/database file.

A key aspect of the Redwoods approach to treebanking is all linguistic infor-
mation in the annotations is grounded in the external HPSG grammar (Oepen et
al., 2002). This can be contrasted with approaches where the treebank annota-
tions are themselves taken to implicitly define a grammar. By instead anchoring
the annotations to an external grammar, the internal consistency of the treebank
is guaranteed, It also makes the resource more dynamic, in that annotations can
easily be updated to reflect revisions in the grammar as it develops and improves
over time comparing with the pre-recorded previous actions of the annotators (Vell-
dal, 2008). The implementation of the all the procedures that go into developing
treebanks (such as the procedures for synchronizing a treebank with a given gram-
mar version, the generation of paraphrases when symmetrizing a parse treebank, the
labeling procedures, and so forth), is based on the tight integration between [incr
tsdb()] and the open-source grammar engineering system Linguistic Knowledge
Builder 3 (LKB; (Copestake, 2002)). Figure 3.2 shows the treebank annotation GUI
of [incr tsdb()].

3.3 Domain adaptation, re-ranking and self-training

Parse re-ranking is a recent direction in parsing research. Parse re-ranking can be
viewed as a two-stage process (Charniak and Johnson, 2005). In the first stage
a parser is asked to create an initial list of possible parses for a given utterance.
Usually, this list consists of the k-best parse trees. In the second stage, a re-ranker
is applied to the list of parse suggestions, in order to select a single most likely tree.
Another recent research direction, known as parser self-training, is to take an existing
parser, parse extra data and then create a second parser by treating the extra data as
further training data (McClosky et al., 2006). McClosky and Charniak (2008) apply
this technique to parser adaptation4. The authors self-train the Charniak/Johnson

3See http://wiki.delph-in.net/moin/LkbTop for details about LKB.
4Parser adaptation attempts to leverage existing labeled data from one domain and create a parser

capable of parsing a different domain. (McClosky et al., 2006)

18

Penn-Treebank parser (Charniak and Johnson, 2005) using unlabeled biomedical
abstracts. They weight the original WSJ hand annotated sentences equally with
self-trained Medline data before testing on a corpus of hand-parsed sentences from
the Genia Treebank (Tateisi et al., 2005).

One of the first attempt for parser adaptation based on unification-based gram-
mars was by Hara et al. (2005) (also see Hara and Tsujii (2007)). The authors
develope a log-linear model with additional features on GENIA treebank (Kim et
al., 2003) and use it with original model of HPSG parser built on Penn treebank.
After re-training the combined model, the achieved F-score on the biomedical do-
main (86.87) by the parser is close to that of the original parser on Penn Treebank
(87.16). The original parser, Enju (Miyao and Tsujii, 2005), represents disambigua-
tion model in a packed forest structure. Hara et al. (2005)‘s parser exploits that
packed structure to add additional features on conjunctive nodes.

19

Chapter 4

Treebanking Decisions and
Features

In this chapter we will be taking a detail look at the features that provide the em-
pirical basis for our experiments. Generally speaking, a treebank is a data resource
where strings have been annotated with grammatical structure, typically in the form
of parse trees. With regard to Redwoods-style treebank, annotation does not con-
sist of drawing parse trees; instead involves picking the correct parse tree out those
produced by the parser. In doing so, human annotators make judgements about
the discriminative grammar rules that differentiate the parse trees from each other.
We call these judgements (annotated) Treebanking Decisions. We will see how we
can extract relevant features from the derivation trees using these treebanking de-
cisions and also how to take on account other aspects (such as context) which are
not directly observed in the treebanking decisions despite those aspects would have
played vital role on decision-making process of the human annotators. However, we
will postpone the presentation of discriminative model building using these features
until Section 6, and reserve the current chapter to explain how these features are
different from the state-of-the-art features. We start this chapter with a brief dis-
cussion about the Redwoods-style treebanks and the resources they rely on. After
this, the sate-of-the-art feature types used for these treebanks is discussed in Sec-
tion 4.2. In Section 4.3, we formally define treebanking decisions with examples.
Following this in Section 4.4, we express more motivations for our interest on these
decisions. Section 4.5 describes the feature templates that we use for extracting
features. Finally, Section 4.6 concludes the chapter by drawing distinctions between
treebanking decision features and traditional features.

20

4.1 The Redwoods-style treebanks

The Redwoods-style treebanks1 is a family of treebanks that share the same basic
methodology and the same underlying grammar (Oepen et al., 2002; Velldal, 2008).
They have been annotated in accordance with an existing hand-crafted grammar.
More concretely, each string in the Redwoods corpora is annotated with an HPSG
analysis assigned by the LinGO English Resource Grammar (ERG; (Flickinger,
2000)). All linguistic information in the annotations is grounded in the external
grammar, and this is a key aspect of the Redwoods approach to treebanking (Oepen
et al., 2002). This can be contrasted with approaches where the treebank annota-
tions are themselves taken to implicitly define a grammar. By instead anchoring
the annotations to an external grammar, the internal consistency of the treebank is
guaranteed. It also makes the resource more dynamic, in that annotations can eas-
ily be updated to reflect revisions in the grammar as it develops and improves over
time (Velldal, 2008). Oepen et al. (2002) describe a method for semi-automatically
updating and maintaining treebanks with respect to the changes in the grammar,
based on the notion of elementary discriminants (Carter, 1997). These discrimi-
nants correspond to the basic, differentiating properties of local ambiguities in the
parse forest. By toggling the activation of these markers, the annotator can usu-
ally disambiguate a parsed string in very few steps (we have already discussed this
in Section 3.2). The implementation of all the procedures that go into developing
treebanks (such as the procedures for synchronizing a treebank with a given gram-
mar version, the generation of paraphrases when symmetrizing a parse treebank,
the labelling procedures, and so forth), is based on the tight integration of [incr
tsdb()] (Oepen, 2001) and the LKB system (Copestake, 2002). The LKB system
is a grammar and lexicon development environment for use with unification-based
linguistic formalisms; while the [incr tsdb()] environment is a tool for grammar
and system profiling and treebanking.2 Together these systems provide an extensive
software suite for grammar engineering and profiling.

The fundamental data type of the Redwoods treebanks is the derivation tree.
The internal nodes of these trees correspond to identifiers of rules in the underlying
grammar, such as the head-complement or head-adjunct schema, while the pre-
terminal yields correspond to identifiers of the lexical entries. These derivation tree
representations form the basis for the extraction of the state-of-the-art features to

1See http://redwoods.stanford.edu/ for further information.
2It is out of the scope of this thesis to describe these systems in details, although we mention briefly

relevant properties of the systems whenever it is required for better understanding (e.g. Section 3.2
contains some discussion on [incr tsdb()]). Readers are advised to refer to the corresponding references
for details.

21

build discriminative models. Figure 4.1 shows an example of derivation tree, where
the pre-terminal nodes have been mapped to the corresponding abstract lexical
types. One thing to notice from the example is, the tree is maximally binary. This
is because, the HPSG rules inside ERG do not allow the trees to have more than
two branches.

Figure 4.1: Example of HPSG derivation tree. Phrasal nodes are labeled with iden-
tifiers of grammar rules, and (pre-terminal) lexical nodes with class names for types
of lexical entries. Although, the original derivation tree format has pre-terminals
corresponding to lexical identifiers, this figure shows a modified format where these
identifiers are mapped to one of the abstract lexical types of ERG.

4.2 The state-of-the-art feature types

The main three state-of-the-art feature types defined over HPSG derivation trees are
— local configurations, active edges and n-grams. Local configurations are the local
sub-trees. While they encode the full sequence of daughters in the local sub-trees,
active edges record only one of the daughters in turn which allows to reduce the
effects of data sparseness. Both of these feature types are extended using various
degrees of grandparenting (i.e. ancestor information). Feature type n-grams record
n-grams of lexical types, extracted from the pre-terminal of the derivation trees.
Features extracted using this feature type are sometimes extended using lexicaliza-
tion (i.e. addition of surface tokens). The optimal feature set size for all of these
feature types are determined empirically based on some parameters such as optimal
level of grandparenting, various frequency cut-offs, etc. (Velldal, 2008)

22

Table 4.1 shows some sample features extracted from the tree in Figure 4.1 using
these feature types.

Feature type Extension Sample feature
local configuration – subjh hspec third_sg_fin_verb
local configuration – hspec det_the_le sing_noun
local configuration grandparenting level = 1 subjh hspec det_the_le sing_noun

n-gram n = 1 n_intr_le
n-gram n = 2 det_the_le n_intr_le
n-gram n = 1, lexicalized = Yes n_intr_le dog

active edges – subjh third_sg_fin_verb
active edges – subjh hspec

Table 4.1: Example of the state-of-the-art features extracted from the derivation
tree in Figure 4.1.

4.3 Treebanking decisions

One of the defining characteristics of Redwoods-style treebanks is, treebank anno-
tation does not consist of drawing parse trees. Instead, the candidate trees are
constructed automatically by the grammar, and then manually disambiguated by
human annotators. In doing so, linguistically rich annotation is built efficiently with
minimum manual labor. In order to further improve the manual disambiguation ef-
ficiency, systems like [incr tsdb()] computes the difference between candidate
analyses. Instead of looking at the huge parse forest, the treebank annotators se-
lects or rejects the features that distinguish between different parses, until only one
parse remains. The number of decisions for each sentence is normally around log2(n)
where n is the total number of candidate trees. As discussed in Chapter 3, a similar
method is also proposed in (Carter, 1997).

Formally, a feature that distinguishes between different parses is called a dis-
criminant. For Redwoods-style treebanks, this is usually extracted from the syn-
tactic derivation tree of the HPSG analyses. Figure 4.2 shows a set of example
discriminants based on the two candidate trees.

A choice (acceptance or rejection, either manually annotated or inferred by the
system) made on a discriminant is called a decision. In the above example, suppose
the annotator decide to accept the binary structure the dog || barks as a subject-head
construction and assign value yes to discriminant D1, the remaining discriminants

23

the

DET

dog

N

barks

N

N

N

NP

XP

the

DET

dog

N

N

NP

barks

V

VP

S

D1 subjh the dog || barks
D2 hspec the || dog barks
D3 frag_np the dog barks
D4 hspec the || dog
D5 noun_n_cmpnd dog || barks

.
D6 plur_noun_orule barks
D7 v_-_le barks
D8 n_-_mc_le barks

Figure 4.2: Example forest and discriminants

will also receive inferred values by deduction (no for D2, no for D3, yes for D4,
etc.). These decisions are stored and used for dynamic evoluion of the treebank
along with the grammar development.

4.4 Why treebanking decisions

We have already mentioned some key characterisitcs of treebanking decisions in
Section 1.2. This section provides additional reasons for our interest on treebanking
decisions.

As we pointed out before, treebanking decisions record fine-grained human
judgements in the manual disambiguation process. This is different from the tran-
ditional use of treebanks to build parse selection models, where a marked gold tree
is picked from the parse forest without concerning detailed selection steps. Recent
study on double annotated treebanks (Kordoni and Zhang, 2009) shows that an-
notators tend to start with the decisions with the most certainty, and delay the
“hard” decisions as much as possible. As the decision process goes, many of the
“hard” discriminants will receive inferred value from the certain decisions. This

24

greedy approach helps to guarantee high inter-annotator agreement. Concerning
the statistical parse selection models, the discriminative nature of these treebanking
decisions suggests that they are highly effective features, and if properly used, they
will contribute to a efficient disambiguation model.

4.5 Feature extraction using treebanking decisions

We use three feature templates for the treebanking decisions for feature extraction.
We refer to the features extracted using these templates as TDF (Treebanking
Decision Feature). The feature templates are —

• T1: discriminant + the abstract lexical types of the lexical words that it covers ;

• T2: discriminant + rule(immediate left child)3 + rule(immediate right child);
and

• T3: instances of T2 + rule(parent) + rule(sibling).

T1 re-presents the original decision; while T2 and T3 encode the context where type
1 is observed. TDF s of T1, T2 and T3 are combinedly referred as TDFC or TDFs
with context. Table 4.2 shows some examples of TDF s extracted using the above
mentioned templates. In Section 6.2, some more detail about the use of treebanking
decisions for feature extraction is explained.

Feature template Treebanking Decision Sample TDF
T1 D4 hspec the || dog hspec + det_the_le + n_intr_le
T2 D4 hspec the || dog hspec + det_the_le + sing_noun
T3 D4 hspec the || dog hspec + det_the_le + sing_noun

+ subjh + third_sg_fin_verb

Table 4.2: Example of the TDF s extracted from the derivation tree in Figure 4.1
using the treebanking decision “D4 hspec the || dog" in Figure 4.2 .

4.6 How are TDFs different from the traditional features?

There are basically two ways TDF s that differ from traditional features — the
way they are structured and the way they are extracted. Consider the tree in

3 rule(X) represents the HPSG rule, applied on X, extracted from the corresponding derivation tree.

25

Figure 4.1. None of the feature types mentioned in Section 4.2 can relate two
(or more) internal nodes in a single feature excluding other nodes which appear
in between them. So, for example, the traditional features cannot put subjh and
lexical entry types (i.e. det_the_le, n_intr_le and v_unerg_le) in one feature
without considering intermediate nodes such as hspec (see Figure 4.1). But if we
use decision D1 in Figure 4.2 and feature template T1 (described in Section 4.5), it
is possible to record such TDF. In other words, TDF allows to omit certain details
inside the features by encoding useful relationships between lexical types of the
words and their distant grandparents without considering nodes in the intermediate
levels. This provides somewhat underspecification for the arbitrary HPSG rules
applied in the intermediate nodes. This encoding is consistent with the original
decision taken by the human annotators, because human annotators also do not see
the details of internal nodes in the GUI of [incr tsdb()]. Instead they see the
discriminants and the words on which those discriminants are applied as certain
construction structures. However, human annotators do consider contexts of the
discriminants before accepting/rejecting, and these contexts include both ancestor
and siblings. These kind of information is recorded in TDF s by templates T2 and
T3. Though, state-of-the-art feature types encode ancestor information (through
grandparenting), they do not consider siblings of the distant grandparents (in our
case, discriminants) of the lexical entries that form their contexts. Thus, in these
two ways TDF s structurally differ from the state-of-the-art features.

The other distinction among them is how they are extracted. In case of the
state-of-the-art feature types, the search space is all the possible matches (which is
huge) for the respective feature types. Among these matches, ‘relevant’ features are
finally kept for later processing. A feature is ‘relevant’ for a particular sentence,
if there are (at least) two readings of that sentence and inside the derivation trees
of those readings the frequencies (i.e. number of times observed) of this feature
are not equal. With regard to the TDF s, there are no notion of ‘relevance’. All
the TDF s extracted are valid. In stead of generating all possible matches and
then pruning, the selections of the TDF s are directly restricted by the treebanking
decisions themselves. That means, for a particular treebanking decisions and a
derivation tree, the original sentence of that derivation tree must contain the words
covered by the decision, and also the discriminant of the decision must be present
in that derivation tree before searching and selecting appropriate TDF s for that
decision.

It should be noted that, we do not use treebanking decisions made for the parse
trees of one sentence to extract features from the parse trees of another sentence.

26

To put differently, each set of treebanking decisions per sentence is only used for
the parse trees of that particular sentences. Hence, the TDF s are highly correlated
to the corresponding constructions and corresponding sentence from where they are
extracted. The state-of-the-art are not exclusive to certain types of sentences, rather
they are in general features for the whole dataset.

27

Chapter 5

System Overview

In this chapter, we will discuss the system1 that we develop to carry out the experi-
ments. However, we will avoid inclusion of finer implementation details, and rather
focus on describing some of the main components of the system from abstract level.
We use the system, mainly, for the disambiguation experiments using treebanking
decisions. Nonetheless, the system is also capable of analysing the results from dif-
ferent perspectives and giving statistics that allow to observe different characteristics
of the disambiguation model which cannot be expressed with only the percentage of
accuracy.

We start first describing the feature extractor component in Section 5.1. Read-
ers are recommended to look at the graphical explanation (Figure 5.0) for better
understanding of the process. In Section 5.2, we discuss how disambiguation model
is trained and later used for testing. For the theoretical background of the dis-
ambiguation model, we encourage readers to refer to the Chapter 2. Section 5.3 is
dedicated to some performance analysis tasks, other than accuracy calculation, done
by the system. Following this, in Section 5.4 and 5.5, we talk about the components
used for re-ranking and parse forest reduction experiments. For calculating disam-
biguation accuracy for the models built using the state-of-the-art features, we use
a system called LOGON (Oepen et al., 2004). We conclude the chapter by briefly
describing how this system is used.

There is a component of our system for extracting patterns of correlated discrim-
inants from human annotated decisions. We will discuss it separately in Chapter
8.

1The system has been developed using Java and it is integrated with a third-party component called
TADM (more in Section 5.2) built using C++.

28

5.1 Feature extractor

The process of feature extraction is described by the Algorithm 5.1. As shown in
Line 3, only those decisions are used for a certain experiment whose types (‘anno-
tated Yes’/‘annotated No’/‘inferred Yes’/‘inferred No’) are under consideration for
that experiment. The system consider the parse trees of a sentence if the current
decision corresponds to the same sentence (Line 4). To put differently, decisions
taken for one sentence is not used for feature extraction for derivation trees of an-
other sentence. Features are extracted (using templates T1, T2 and T3 described in
Section 4.5) for a decision from a sub-tree of a parse tree only if the corresponding
discriminant (of that decision) matches with the label (i.e. HPSG rule) of a node of
that sub-tree and the terminal nodes of the branches from that node have exactly
the same words (in same order) like the words inside the decision (Line 6–8). Figure
5.0 shows graphically how this is done.

Algorithm 5.1: Feature extraction

1: featureSet := ∅
2: for each deci ∈ treebankingdecisions do
3: if deci → type ∈ decisionTypesToConsiderForFeatureExtraction then
4: derivationTreesList := List of the parse trees of the sentence having same

ID as deci→sentenceID
5: for each dTree ∈ derivationTreesList do
6: dNodesList := List of all the nodes of dTree whose labels are identical

as deci→discriminant
7: for each node ∈ dNodesList do
8: if node→leftBranch→allLexicalStrings ≡ deci→left→allLexicalStrings

AND node→rightBranch→allLexicalStrings ≡
deci→right→allLexicalStrings then

9: Create features for deci→discriminant using the templates T1, T2
and T3.

10: Add the features in featureSet if they do not already exists.
11: end if
12: end for
13: end for
14: end if

29

15: end for
16: return featureSet

5.2 Component for training maximum entropy models and testing

Our system is integrated with the Toolkit for Advanced Discriminative Modeling
(TADM) 2, which is based on the open-source estimate package by Rob Malouf
(Malouf, 2002), for MaxEnt esitmation. TADM, in turn, uses open-source soft-
ware libraries such as the Portable Extensible Toolkit for Scientific Computation
(PETSc)3 and the Toolkit for Advanced Optimization (TAO)4 for numerical opti-
mization.

TADM accepts event files as input and returns the discriminative model in the
form of real-valued weights of the features after training. Example of an event file
is as following:

2
1.0 2 0 1 1 2
0.0 2 0 3 2 1
3
1.0 1 3 1
0.0 2 0 2 2 2
0.0 1 2 1

The first part of a event file is a header (not shown in the above example),
bracketed by lines containing “&header” and “/”. The header is optional and, if
present, is ignored. The remaining of the file consists of one or more blocks. The
first line of each block is the number of events (i.e. parse trees) for the corresponding
context (i.e. sentence). The lines containing 2 and 3 in the above example denote
the number of events for their corresponding context. The next lines contain events
(i.e parse trees). Each event line has a so-called event frequency which is either 1.0
(preferred) or 0.0 (dis-preferred) for parse selection model. The event frequency is
followed by the number of feature-value pairs, and then the corresponding pairs of
feature IDs and values (i.e. number of times a particular feature has been observed
inside the corresponding parse tree). Feature IDs are numbered starting with zero.

2See http://tadm.sourceforge.net.
3See http://www.mcs.anl.gov/petsc.
4See http://www.mcs.anl.gov/tao.

30

(a)

31

(b)

(c)
Feature extracted using template T1 : hspec + det_the_le + n_intr_le
Feature extracted using template T2 : hspec + det_the_le + sing_noun
Feature extracted using template T3 : hspec + det_the_le + sing_noun

+ subjh + third_sg_fin_verb
(d)

Figure 5.0: Steps of feature extraction: (a) sample parse trees and treebanking
decision, (b) corresponding parse trees for the decision (i.e. belonging to the same
sentence) is selected, (c) presence of the elements of the treebanking decision is
identified in one of tree, (d) features are extracted using templates.

32

Each feature ID can appear only once in an event line, and must have a value greater
than zero. Event lines with a zero event frequency are ignored for computing the
entropy. Any feature with an expected value of zero is ignored (i.e. the corresponding
parameter is set to 0.0).

Our system traverses the parse trees of those sentences for whom there is at
least one preferred analyses selected by the human annotators, and write entries for
them in the event file. For the other input parameters of TADM, we use the default
values.

Like the training items, the system also encodes the test sentences as event file
before passing to TADM. The returned output is the ranking of the parse trees of
the sentences along with their scores. This scoring is done based on the weights of
the features. Once the ranked parse trees are available, the outcomes are matched
with the gold trees (i.e. preferred by human annotators) of the sentences and the
exact-match accuracy and 5-best accuracy is computed (see Section 6.5).

5.3 Performance analyser

The system analyzes the performance of the disambiguation model of a particu-
lar feature set (see Section 6.3) not only using the accuracy but also based some
other aspects of the results. These analyses are done by the performance analyser
component of the system. The component performs the following tasks —

• Calculate Active Features, Feature Type Hit Count (FTHC) and Feature Hit
Count (see details in Section 6.5).

• Track accuracy variation with respect to the sentence length.

• Provide various statistics regarding feature extraction (such as which type of
decisions yield how many features and so on).

5.4 Re-ranker

The re-ranker component of the system takes as input top n ranked parse trees
per sentence. The initial ranking is done using the disambiguation model of local
configuration feature set (see Section 6.3). The re-ranker uses the disambiguation
model of TDFC feature set (see Section 6.3) and provide as output the new ranking
of these n parse trees as output. After that, accuracy based on these new ranked
items are calculated. Figure 5.2 shows the re-ranking process.

33

Figure 5.1: Work flow of the whole process of parse disambiguation with treebanking
decisions.

5.5 Component for parse forest reduction using ranked TDFs

This particular component takes as input the weights of the TDFs calculated by the
TADM and rank them according to their weights. For the items which have more
than M readings, the ranked TDFs are used (in the order of their ranking) to split
the parse forest into relevant and irrelevant parts. Then, the relevant part is again
taken on consideration and splitted into two parts. The process continues until ei-
ther there is no more such split is possible, or the number of times a particular parse
forest is reduced exceedes log of the original size of that parse forest. Algorithm 5.5
shows the pseudo-code of the algorithm of this process.

34

Figure 5.2: Process of re-ranking.

Algorithm 5.5: Parse forest reduction using ranked TDFs

1: zTDFList := List of top Z% of the ranked TDF s
2: for each sentence having ≥M number of syntactic analyses do
3: treeList := List of derivation trees of the parse trees of the current sentence
4: sizeOfParseForest := Total number of parse trees of the current sentence
5: for each f ∈ zTDFList where f is the next top-ranked element of the list do
6: if f is observed in at least L trees of treeList then
7: treeList := List of all those trees of treeList where f is observed
8: end if
9: if number of iteration of the current loop ≥ log2(sizeOfParseForest)

OR sizeOf(treeList) ≤ L then
10: exit from the current loop
11: end if
12: end for
13: Set treeList as the (reduced) parse forest for the current sentence and

continue.
14: end for

35

5.6 LOGON System

The LOGON infrastructure is a collection of software, grammars, and other linguis-
tic resources (such as LKB, PET, [incr tsdb()], ERG, TADM, etc.)5 to facilitate
experimentation with transfer-based machine translation (MT). The central organiz-
ing facility for evaluation and testing within the system is [incr tsdb()] profiling
environment (Oepen, 2001). It provides several specialized tools for regression test-
ing and performance profiling of constraint-based grammars. [incr tsdb()] has
built-in modules to extract and build discriminative models for the state-of-the-art
features (such as local configurations, n-grams, active edges) from the derivation
trees. We take advantage of it and do the experiments related to the state-of-the-
art features using LOGON. The work flow of these experiments is almost same as
Figure 5.1 except that there is no use of treebanking decisions.

5See http://wiki.delph-in.net/moin/LogonTop for all of these resources.

36

Chapter 6

Experimentation Environment

In this chapter we will present some of the key details related to the setup of our ex-
periments of what we broadly refer to as our experimentation environment. Roughly
speaking, the first few sections of the current chapter will be concerned with aspects
of data and features of the experiments. The latter sections will be concerned with
aspects of training models and evaluation. We start with the description of both
in-domain and out-of-domain data in Section 6.1. Different types of statistics are
presented to give a clear picture. Section 6.2 and 6.3 are continuation of more infor-
mation about treebanking decisions and various feature types from Chapter 4. In
these sections, we provide statistical insights about them which are complemented
with some additional implementation specific information. Section 6.4 is a continua-
tion of Chapter 2 and 5. While in those chapters we have laid out the mathematical
foundations and the detail description about the implementation, this particular sec-
tion provides information about the specific disambiguation models that are used
for the experiments. The chapter concludes in Section 6.5, as we turn to look at
some of the various scoring metrics that we incorporate in the system for evaluating
performance of the disambiguation models built using different feature sets. These
metrics are the key properties that will be used in Chapter 7 to infer the general
outcomes of the experiments.

6.1 Data

The data we use for our experiment is a collection of English sentences from the LO-
GON parallel tourist corpus (Oepen et al., 2002) provided by Text Laboratory1 at
the University of Oslo. This data set is also known as JHPSTG, an acronym which

1See http://www.hf.uio.no/tekstlab/ for more information.

37

indicates that it is actually built out of three smaller treebanks called Jotunheimen
(JH), Prekestolen (PS), and Turglede (TG). The JH and PS sub-corpora respec-
tively contain approximately 27,000 and 3,700 words in Norwegian, and come with
two commissioned translations into English, in addition to the one original English
version. The TG sub-corpus contains 13,000 words in the Norwegian version, but
only comes with two commissioned English translations (i.e. there is no original
English version) (Velldal, 2008). JHPSTG contains in total 9,410 sentences. We
use 8,593 of these sentences for which the parser is able to generate at least one
preferred parse tree in the first 500 syntactic analyses. We do not consider any anal-
ysis outside of this range in our experiments. 874 of these sentences are held-out as
test items and they belong to the PS sub-corpus. The remaining 7,719 items of JH
and TG are used for training. The sentences of JHPSTG have an average length of
14.68 and average number of 203.26 readings per sentence. We use ERG grammar
version LinGO (26-Jan-08).

The out-of-domain data are a set of English Wikipedia sentences from WeScience
corpus (Ytrestøl et al., 2009). The corpus comprises a selection of Wikipedia2 arti-
cles in the domain of Natural Language Processing, pre-processed to strip irrelevant
markup and segmented into sentence-like units.3 We use 531 human annotated sen-
tences from the revision 0.1 of the corpus. The sentences have an average length of
19.38 and average number of 268.69 readings per sentence.

6.2 Decisions taken by the human annotators and system

There are total 30,989 annotated decisions (including duplicates, i.e. multiple oc-
currences) for all the training items (i.e. JH and TG sub-corpus) taken by human
annotators. The [incr tsdb()] system has taken 421,834 inferred decisions (in-
cluding duplicates) that complement the annotated decisions of the human anno-
tators (refer to Section 4.3 for how these decisions are related). So, the annotated
decisions comprise only 6.84% of the total decisions. In fact, many of the annotated
decisions have also appeared multiple times inside the inferred decisions.

We don’t create set of distinct/unique decisions to use later for feature extrac-
tion. Recall from Section 4.6 that, each set of treebanking decisions per sentence is
only used for the parse trees of that particular sentence, which enable the TDF s to
be highly correlated to the corresponding constructions and corresponding sentence
from where they are extracted.

2http://www.wikipedia.com
3See http://wiki.delph-in.net/moin/WeScience for details.

38

One important observation for our training data is, almost 99.24% of the an-
notated decisions (30,755 out of 30,989) are of type ‘Yes’. As we noted in Section
4.4, annotators tend to start with the decisions with the most certainty (Kordoni
and Zhang, 2009), so, we can infer from this — annotators prefer more to selecting
discriminants than rejecting.

6.3 Feature sets

We build the following feature sets from the training dataset for our experiments —

• ATDFC: TDF s with context extracted using only annotated decisions ; total
features 27,440.

• TDFC: TDF s with context (refer to the Section 4.5 for details); total features
53,362.

• YTDFC: TDF s with context extracted using only ‘Yes’ decisions (both an-
notated and inferred); total features 31,120.

• TDF1: TDF s extracted using only template T1, in other words, TDF s without
context; total features 29,081.

• n-grams: all ‘relevant’ (refer to the Section 4.6) n-grams with n = 4 ; total
features 438,844.

• local configurations: all ‘relevant’ local configurations with gp = 3 (grand-
parenting level); total features 2,735,486.

• active edges: all ‘relevant’ active edges ; total features 89,807.

Notice that, the sizes of all the individual above mentioned TDF s feature set are
smaller than any of the state-of-the-art feature sets. The value of ‘n’ for n-grams
and ‘gp’ of local configurations are chosen empirically from the highest accuracy
obtained for different values of those parameters in their corresponding feature set’s
models. Regardless of the types of the features, during the construction of feature
set, only unique features are considered. We do not create any feature set for only
‘no’ decisions as they have few number of occurrences(see the Section 6.2).

39

6.4 Discriminative models used for the experiments

The main goal of this thesis is to compare various types of features (both the state-of-
the-art features and the TDF s), and to learn whether treebanking discriminants are
potential enough to be used in parse disambiguation model. So, we build separate
log-linear training models for ATDFC, YTDFC, TDFC, TDF1, local configurations,
n-grams and active edges. Recall from Chapter 2 that, log-linear models (John-
son et al., 1999) are considered standard for parse selection for unification-based
grammars. Also, recall from Chapter 5 that, event files (which contains features
and their occurrence frequency for each reading per sentence) are created before
training disambiguation models.

These models serve different purpose for different experiments. Models of ATDFC
and TDFC compare human annotated decisions with all the decisions (i.e. human
annotated + system inferred decisions). Models of YTDFC and TDFC compare
preferred decisions with all the decisions (i.e. preferred + non-preferred decisions).
Models of TDF1 and TDFC indicate how important the contexts of these decisions
are. We previously described the major differences between the TDF s and state-
of-the-art features. Models of the state-of-the-art features and TDF s shed some
light on how these differences make distinction among them in terms of efficiency,
robustness and informativeness.

We also use model of TDFC as re-ranker on top of the ranking done by the
model of local configurations. Local configurations allow to obtain highest accuracy
among the models of state-of-the-art features (see the Chapter 7). This particular
experiment gives us some idea whether model of TDF s can perform better as re-
ranker.

6.5 Evaluation measures

For each of the discriminative models, we calculate following evaluation metrics from
the test data —

• Exact (match) accuracy : the exact match measure is simply the percentage of
times that the top-ranked analysis, by a training model, for each of the sentences
in the test data (i.e. the selected analysis) is identical with the reference or gold
analysis of the same sentence.

• 5-best (match) accuracy : this measure is the percentage of times that the five
top-ranked analyses for each of the sentences contain the reference or gold
analysis.

40

• Feature Hit Count (FHC): FHC is the total number of occurrences of the fea-
tures (of a particular feature type) inside all the syntactic analyses for all the
test sentences. So, for example, if a feature (of a particular feature type) is
observed 100 times, then these 100 occurrences are added to total FHC.

• Feature Type Hit Count (FTHC): FTHC is the total number of distinct features
(of the corresponding feature type) observed inside the syntactic analyses of all
the test sentences.

• Active Features : Active features are the percentage of the total number of
distinct features that have been observed inside the test data. In other words,

active features = FTHC
Total number of features

∗ 100 %

While exact and 5-best match measures reveal the relative informativeness and
robustness of the feature types; active features, FHC and FTHC provide a more
comprehensive picture that depicts the relative efficiencies.

41

Chapter 7

Results and Analyses

Empirical study is indispensable for the evaluation of techniques. To obtain mean-
ingful results, empirical study requires controlled experiments on a considerable
amount of data. This chapter presents the results of a series of such experiments
using our system which has been introduced in Chapter 5. The collection of ex-
periments as reported here is chosen in order to analyze features extracted using
Treebanking Decisions from different points of view, and to illustrate their poten-
tiality to be used for parse disambiguation.

Section 7.1 presents the experiments done to compare performance of disam-
biguation models of different feature types. Section 7.2 describes scalability of these
models on out-of-domain data. Section 7.3 analyzes efficiencies of the feature types.
Then, Section 7.4 compares the features extracted using different combination of
Treebanking Decisions. Section 7.5 illustrates the experiments of using model of
TDFC for re-ranking previously ranked parse trees. Finally, Section 7.6 presents
the experiments of parse forest reduction using individual top ranked TDF s.

Feature templates Total features 5-best match Exact match
accuracy accuracy

n-gram 438,844 68.19% 41.30%
local configuration 2,735,486 75.51% 50.69%

active edges 89,807 68.99% 41.88%
TDFC 53,362 70.94% 43.59%

Table 7.1: Accuracies obtained on in-domain data using n-grams (n=4), local con-
figurations (with grandparenting level 3), active edges and TDFC.

42

7.1 Comparison of performances among the models of different feature
types

In Section 4.6, we have discussed how TDF s differ from the state-of-the-art fea-
tures. We use disambiguation models of all of these different feature types for the
parse selection task to find out whether their differences can make any distinction
in their performance. From the experiments on in-domain test data (see Table 7.1),
it appears that local configurations achieve highest accuracy among the traditional
feature types. But they also use quite a higher number of features (almost 2.7 mil-
lions). Note that, features of all the traditional types are tuned using frequency
cut-off to obtain a relatively smaller but still reasonable models. For TDFC such
tuning is not required (refer to Section 4.6). TDFC does better than both n-grams
and active edges, even with a much lower number of features. Though, local con-
figurations gain more accuracy than TDFC, but they do so at a cost of 50 times
higher number of features. This indicates that, features extracted using treebanking
decisions are more informative. From our analyses on the results, we observe that,
TDFC and local configurations perform almost similarly for sentence length <= 10,
which is quite interesting. This means that, for larger sentences TDFC is missing
considerable portion of the structural information of the context which are beyond
the words covered by the discriminants of the corresponding decisions (ideally, a
discriminant cover only those words which are part of a syntactically ambiguous
portion of a sentence). As local configuration features cover all the words (by in-
cluding all the branches of the derivation trees), they contain all the syntactic labels
and grammatical rules applied at a cost of huge number of features.

Feature templates 5-best match accuracy Exact match accuracy
n-gram 62.71% 42.37%

local configuration 64.22% 44.44%
active edges 61.77% 39.92%

TDFC 62.71% 41.05%

Table 7.2: Accuracies obtained on out-of-domain data.

7.2 Performance measurement on out-of-domain data

McClosky et al. (2006) noted,

“Modern statistical parsers require treebanks to train their parameters,

43

but their performance declines when one parses genres more distant from
the training data’s domain.”

So, we use all the disambiguation models to test on the out-of-domain data (see
Table 7.1) to observe the change in their performance. It turns out that, there is
a big drop in accuracy for local configurations. Active edges and TDFC also have
some accuracy drop. Surprisingly, n-grams do better with the out-of-domain data
than in-domain, but still that accuracy is close to that of TDFC. To be precise,
n-grams and TDFC achieve equal 5-best match accuracies. It should be noted that,
n-grams have 8 times higher number of features than TDFC. Hence, according to
these results, we opine that TDFC are more robust, for out-of-domain data, than
local configurations and active edges, and almost as good as n-grams.

Feature template FHC FTHC Active features
n-gram 18,245,558 32,425 7.39%

local configuration 62,060,610 357,150 13.06%
active edges 22,902,404 27,540 30.67%

TDFC 21,719,698 17,818 33.39%

Table 7.3: FHC and FTHC calculated for in-domain data

7.3 Active features

While we observe that different feature types have big differences among their num-
ber of features, it is predictable that not all of these features are in effect during
parse selection. Otherwise, there would have been a big margin among the accura-
cies obtained by the models. So, we have analysed status of the features of different
feature types during parse selection of in-domain data. The outcome of this anal-
ysis reveals that, the most important aspect of TDFC is its higher efficiency over
its traditional counterparts (Table 7.3). The features of TDFC have much higher
number of active features than n-grams and local configurations. Recall from Sec-
tion 6.5, active features are the percentage of the total number of distinct features
that have been observed (as being used during parse selection) inside the test data.
These statistics (Table 7.3) indicates that TDFC features have more coverage (as
they are comparatively more generic than the traditional features; that is why they
have relatively more hits). Despite there is no tuning done on for the features of
TDFC using frequency cut-off, unlike traditional features, the treebanking decisions

44

are themselves restrictive enough to allow to encode comparatively higher active
features (refer to Section 4.6).

7.4 Effect of human annotated decisions, contexts and different
decision combinations

As mentioned in Chapter 4, we incorporated siblings apart from ancestor informa-
tion for TDFC. So, we do experiments to find out how much difference contextual
information make if they are included in TDF s. We also do experiments to eval-
uate effects of human annotated decisions and positive (i.e. “Yes”) decisions. We
use features (they will be referred as TDF1 in the remaining of this document) ex-
tracted using only template T1 (see Section 4.5) to build a disambiguation model
and compare its performance with that of TDFC. We also build a separate model
using only human annotated decisions (corresponding features will be referred as
ATDFC), and only positive (i.e. annotated and inferred “Yes” decisions) decisions
(corresponding features will be referred as YTDFC).

Results indicate that, features extracted from positive decisions have major im-
pact on the accuracy gain. Although, around 60% of the total features extracted
using all annotated and inferred decisions combined are from “Yes” decisions, they
reach 40.85% exact match accuracy which is near to the accuracy obtained using
all decisions. There is a big drop in accuracy (32.15%) if contexts are not taken
in consideration. Interestingly, though human annotated decisions comprise only
6.84% of the total decisions, they produce almost 50% of the total features and
their accuracy difference with that of the total decisions is not big.

Feature template Total features 5-best match Exact match
accuracy accuracy

TDF1 29,081 57.55% 32.15%
TDFC 53,362 70.94% 43.59%

YTDFC 31,120 66.93% 40.85%
ATDFC 27,440 65.22% 38.79%

Table 7.4: Accuracies obtained using different combination of TDF. TDF1 is the
TDF s extracted using template T1 ; TDFC is extracted using the combination of
templates T1, T2 and T3 ; YTDFC is same as TDFC except that the features are
collected using only annotated and inferred “Yes” decisions; and finally, ATDFC is
the collection of TDF s extracted using only human annotated decisions.

45

7.5 TDF model as re-ranker

We do experiments to see whether the model of TDF s can perform better as a
re-ranker. The idea is to do parse disambiguation in two stages. The best model
of the state-of-the-art features is used to rank the parse trees of test items in first
stage; while in second stage, model of TDFC is used to re-rank top n parse trees
per sentence retrieved from the output of first stage ranking. Finally, the best parse
tree per sentence is chosen from the output of the second stage re-ranker.

We use the model of local configurations for the first stage as the previous re-
sults show local configurations allow to obtain highest accuracy among the models
of state-of-the-art features. Recall from Figure 7.1 that, model of local configuration
and TDFC achieved accuracy of 50.69% and 43.59% respectively and their 5 -best
match accuracies are 75.51% and 70.94% correspondingly. Figure 7.5 shows the
outcome of the re-ranking experiments for top 25, 10 and 5 parse trees per item
obtained from first stage ranker. While the results of re-ranking are better in com-
parison with that of using TDFC model alone, they could not surpass the accuracies
of local configuration model. We observe that, correct parse trees of around 22%
of the test items are missing in the top 25 (when n = 25) ranked parse trees by
local configuration model; so, they are already out of scope to be considered by the
second stage model. For the remaining sentences, we find that, larger sentences are
still problematic for the TDFC model despite the parse forest size is considerably
reduced by the first stage ranker. This is the primary reason because of which,
though there is some improvement in accuracy in comparison the accuracy achieved
by stand alone TDFC model, the second stage ranker is not outperforming the local
configurations model. Hence, we conclude that, standalone TDFC model might not
be useful as re-ranker.

n Exact match accuracy 5-best match accuracy
25 43.71% 73.99%
10 44.62% 73.46%
5 45.31% 74.26%

Table 7.5: Accuracies obtained by using the disambiguation model of TDFC as
re-ranker.

46

7.6 Parse forest reduction using individual top ranked features

We sort the TDF s according to their weights computed by MaxEnt modelling.
Interestingly, when we check the top 20 features to see which feature templates (see
Section 4.5) they belong to, we find that all of them are extracted using feature
template T3 (i.e. with contextual information of parent and sibling). We do some
experiments to see whether it is possible to reduce the parse forest effectively using
top ranked TDF s, one at a time, maintaining some constraints (refer to Section 5.5).
We vary the percentage of top ranked TDF s to be used and the amount of syntactic
analyses (i.e. the value of M) that a test sentence must have to be considered
for the experiments. As shown in Table 7.6, the results of parse forest reduction
are not optimistic. But there are two important observation found in the results –
firstly, the features in the top of the rankings become less effective when the depth
of these features increased (see the results of 5% and 10% top ranked features); and
secondly, parse forests of the sentences with lesser number of syntactic analyses are
more likely to be correctly reduced (see the results for M ’s value 100 and 200). The
second finding is consistent with our earlier observations where we mentioned that
TDF s are more effective to shorter sentences (usually, shorter sentences have less
number of syntactic analyses than that of the larger sentences).

% of top ranked L M Total parse Correctly % of the size of
features used forest reduced reduced forests reduced

10 25 100 356 72 (20.22%) 8.15%
5 25 100 355 79 (22.25%) 9.25%
10 25 200 309 57 (18.45%) 7.40%
5 25 200 308 64 (20.78%) 8.46%

Table 7.6: Result of parse forest reduction using Z% of top ranked TDF s individ-
ually. In the table, by “% of the size of forests reduced”, we mean the percentage of
the original number of total parse trees (of all the reduced parse forests) that remain
after reduction.

We will discuss the results of the patterns extraction for correlated discriminants
from human decisions in next chapter.

47

Chapter 8

Extracting Correlated
Discriminants from Human
Decisions

In the previous chapters, we have focused, more or less, on the potentiality of the
discriminative models built using treebanking decisions. While the results of the
experiments, presented so far, indicate a good prospect for utilizing treebanking de-
cisions, the types of feature templates that we are using for them are not yet fully
conveying cognitive knowledge of the annotators, which we are specifically inter-
ested in. This particular chapter is dedicated for this purpose. Our goal is to learn
the patterns of decision making process by extracting correlated discriminants from
human decisions, if there exists any. Although during annotation, an annotator con-
tinues by choosing the discriminants on which he is more confident, there might be a
tendency of preferring to choose a certain categories of discriminants (e.g. lexical en-
try types) before other specific types of discriminants (e.g. head-adjunct schema or
head-complement schema). Obviously, such tendency (i.e. choosing specific types of
discriminants first) varies from one annotator to the other. [incr tsdb()] records
the order of discriminant selection of the annotators using timestamp information.
However, usually, annotators often make unnecessary choices (i.e. additional dis-
criminants selection) which have no effect on preferred parse tree selection, other
than lengthening the decision making process. We assume that, the core decisions
(i.e. excluding the additional discriminant selections), required to disambiguate
a particular parse forest, have some kind correlation among themselves. So, for
example, it may be possible that whenever a human annotator choose a ‘hcomp’
discriminant to reduce parse forest, it may be most likely that he may also need

48

to choose a ‘subjh’ discriminant in one of the next steps to single out the preferred
parse tree. The order of discriminant choosing affects the size of the decisions set1.
If a particular decision is more effective to reduce the parse forest than others, it
is likely that if it is chooses prior, then in the later steps fewer decisions will be
required to make. For example, choosing ‘subjh’ right after ‘hcomp’ may reduce
the forest more and require less number of decisions in later steps; while choosing
‘subjh’ after 2/3 decisions later of ‘hcomp’ may take more steps. But ultimately,
the correlation among these two discriminants will remain the same regardless of
their ordering, if both of them are mandatory decisions to be made. We call such
correlated discriminants as pattern inside human decision making process. Our ob-
jective is to extract such patterns. The timestamp information might help us to
trace the ordering of the discriminant selection, but the ordering among the corre-
lated discriminant themselves (e.g. ‘hcomp’ first, then ‘hadj’ OR ‘hadj’ first, then
‘hcomp’) is actually not important for our purpose. So, we have ignored timestamp
information for the pattern extraction process. We describe in Section 8.1, how we
can extract patterns where we do not consider the ordering of the discriminants
inside the corresponding patterns. Following this, we explain how these patterns
are used for parse forest reduction in Section 8.2. Finally, we present the results and
mention some general observations from these experiments in Section 8.3.

8.1 Pattern extraction

Before we proceed, we would like to define our patterns formally. Let x be such a
discriminant that whenever x is observed inside any decision set (which we collect
from the training data), that decision set also contains a set of discriminants Z
(where Z 6= ∅), although it might happen that, in some decision set Z is observed
despite that decision set does not contain x. We call the set only consisting of
x and all the elements of Z as relative unique subset. We recognize such relative
unique subsets as patterns, as the occurrence of x is correlated with the elements
(i.e. discriminants) of Z. It is implicit in the above definition that, such patterns
must contain at least two discriminants.

Here is an example of the relative unique subset (i.e. pattern). Let us consider
we have the following decision sets –

For the parse forest of sentence 1: {hadj, hcomp, subjh, hspec}

For the parse forest of sentence 2: {hcomp, hadj, subjh, trans_v}
1A decision set for a particular parse forest is the collection of decisions that have been taken to discard

all but the preferred parse tree of that forest.

49

For the parse forest of sentence 3: {subjh, hadj, hmark}

For the parse forest of sentence 4: {hadj, hspec}

As we can see in the above sets, if a decision set contains hcomp, then it also
contain {hadj, subjh}. Hence, the set {hcomp, hadj, subjh} is a relative unique
subset, i.e. a pattern.

We collect all distict patterns (according to the above definition) from the collec-
tion of all decision sets. We obtain total 6151 patterns (i.e. relative unique subset)
in this way. We call this list of patterns as coarse grained patterns (CGP).

8.2 Reducing size of the parse forests using patterns

Before using the patterns, we order them based on some criteria. Let allPatterns []
be the list of patterns, and pattern1 and pattern2 are any two elements of the list.
Then, pattern1 will be placed before pattern2 inside the list if any of the following
holds –

(1) total discriminants of pattern1 > total discriminants of pattern2, OR

(2) pattern1 contains more HPSG lexical rules2 than pattern2, OR

(3) pattern1 contains less negative discriminants (i.e. those discriminants which
the human annotators identified as wrong) than pattern2.

(1) ensures that we use those patterns first which are more restrictive (the more
discriminants inside a pattern, the more constrains to meet for a parse tree to be
satisfied as the preferred one). If some discriminants are correlated with a lexical
discriminant, then they are likely to be more interrelated (and more specific) than
the discriminants of those patterns where all of them are non-lexical discriminant.
(2) is used to ensure that we give such patterns more priority. Finally, (3) is used
to give priority to the patterns with less negative discriminants.

Once the patterns are sorted, we use them according to their order of appearance
(inside the list of all patterns). Algorithm 8.2 shows how reduction of parse forest
is done using these patterns.

2It should be noted that, all discriminants are basically HPSG rules.

50

Algorithm 8.2: Parse forest reduction by pattern matching

1: Let allPatternList [] be the sorted list of all patterns
2: Let parseForest [] be the collection of all derivation trees of the parse trees of a

particular sentence
3: Let discriminantSet [] be the distinct set of discriminants in all trees of

parseForest
4: for patterni∈ allPatternList , where 0 ≤ i < sizeOf(allPatternList) do
5: if patterni ⊂ discriminantSet then
6: tempForest := List of trees of parseForest which contains positive

discriminants of patterni but do not contain the negative discriminants
7: if tempForest 6= ∅ then
8: parseForest := tempForest
9: if sizeOf(parseForest) = 1 then

10: return parseForest
11: end if
12: Re-populate discriminantSet with the distinct set of discriminants from

the trees of parseForest
13: end if
14: end if
15: end for
16: return parseForest

8.3 Experiments and observations

Basically, we construct list of patterns in two ways. The first way is described in
Section 8.1. The second way of pattern construction is a little bit different. After
collecting the CGP from the whole training set, we apply them to each parse forest
of training set separately to refine the patterns list further. The idea of refining is —
for all the parse forests in training data, if there exists any pattern which reduces3

the size of a parse forest initially but in doing so discard the preferred parse tree,
then this particular pattern should not be part of the pattern list. In other words,
we keep only those patterns which do not discard the preferred parse tree of any
parse forest when the pattern is applied to the parse forest for the first time at its

3If a parse forest becomes empty after using a pattern, then this is not considered as a valid reduction.

51

initial size (i.e. no reduction is done prior). We call this refined list as fine grained
patterns (FGP). The FGP contains total 1614 patterns.

CGP CGP FGP FGP
(1 iteration) (All iterations) (1 iteration) (All iterations)

Total parse forest 786 786 786 786
Reduced parse forest 758 758 26 26

Unaffected parse forests 28 28 760 760
Incorrectly reduced parse forest 410 596 9 9
Correctly reduced parse forest 348 162 17 17
Percentage of correctly reduced

parse forest 45.91% 21.37% 65.38% 65.38%
Total parse tress of the reduced

parse forest before reduction 156490 156490 8467 8467
Total parse tress of the reduced

parse forest after reduction 39248 3399 4034 4034

Table 8.1: Parse forest reduction using CGP and FGP.

Table 8.1 shows how CGP and FGP perform when they are used for parse
forest reduction. They are applied on 786 items (which have at least two different
syntactic analysis) of the test data set. We try to differentiate the effect of reduction
after both one iteration (only one pattern is used for reduction) and all iterations
(i.e. continue reduction as long as possible according to Algorithm 8.2).

As we can see from the result, FGP reduces only limited number of parse forest
(26 out of 786). There is no difference between the outputs of one iteration and all
iterations. That means, FGP is two much restrictive to certain types of construction
and there is no mutual relation among the patterns of FGP list to do more reduction
in those constructions. To put differently, if the pattern set is tuned too finely, there
is a high probability that the coverage (i.e. the number of different parse forests to
be affected) will be very limited.

For CGP, although a large portion of the parse forests are reduced, but most
of them are reduced incorrectly. There is a further large drop in correct reduction
if more than one pattern are applied on a particular parse forest (though the size
of the corresponding forest also shrink considerably). So, it underlines that, it is
prudent to reduce forests only once if strong mutual relation between the already
applied pattern and next pattern to be applied can not be determined appropriately.

52

CGP CGP CGP CGP
(1 iteration (1 iteration (1 iteration (1 iteration

including negative & without lexcial without negative without negative &

lexcial discriminants) discriminants) discriminants) lexcial discriminants)

Total parse forest 786 786 786 786
Reduced parse forest 758 746 690 607

Unaffected parse forests 28 40 96 179
Incorrectly reduced 410 398 409 412
Correctly reduced 348 348 281 195

Percentage of correctly
reduced parse forest 45.91% 46.65% 40.72% 32.13%
Total parse tress of
the reduced parse

forest before reduction 156490 156416 155491 147513
Total parse tress of
the reduced parse

forest after reduction 39248 40378 37402 27358

Table 8.2: Impact of patterns with negative and lexical discriminants on parse
forest reduction.

Table 8.2 shows the impact of lexical discriminants (i.e. ERG grammar rules
ending with “_le”) and negative discriminants (i.e. those discriminants of a pattern
which if exist inside a parse tree, the corresponding tree is discarded) on the patterns.
As the result indicates, excluding patterns with lexical discriminants do not have any
effect on the correctly reduced parse forests, but this ultimately helps to drop the
number of incorrectly reduced forests. There is a drastic drop in correct reduction,
according to the results, if patterns having negative discriminants are not considered.
Recall that, negative decisions comprise a very small portion of the total decisions
(see Section 6.2), and yet we see here that they have strong impact.

To conclude, it is obvious from the above results that negative discriminants are
quite helpful, though the impact of lexical discriminants is not up to our expectation.
The ordering of the patterns is vital (i.e. which pattern should be used prior others).
We have tried with parameters such as size of the patterns, existence of the negative
discriminants, etc., to sort the pattern list and generalize the ordering for all parse
forests. It would be interesting to see if it is possible to make the ordering sensitive

53

to the construction of the respective sentence (instead of having a fixed order of
patterns for all test sentences) whose parse forest is to be reduced.

54

Chapter 9

Conclusion

9.1 Summary

In this thesis, we examine potentiality of treebanking decisions for the parse disam-
biguation task. We pose ourselves two questions – (i) whether there is any extra
(or more) information (in a given treebank) covered by the treebanking decisions
which is out of reach of the state-of-the-art feature types, and if so then how that
information can be extracted and exploited for addressing the parse disambiguation
problem, and (ii) whether it is possible to extract hidden correlated patterns of
discriminants (if there exists any) from human decisions and to use them for parse
forest reduction.

In order to approach the first question, we define three feature templates which
captures some key characteristics of treebanking decisions by – relating the lexical
words with the discriminants (which are often distant grandparents) without con-
cerning about the intermediate nodes, incorporating siblings of the discriminants
which are not recorded in the database but play a vital role for human annotators
while making decisions, avoiding exhaustive search (unlike state-of-the-art feature
types) by searching only on the sub-trees where the root nodes are discriminants of
corresponding decisions, and using both preferred and non-preferred analyses which
allows to make use of both positive and negative treebanking decisions. These
feature templates do not use treebanking decisions made for the parse forest of one
sentence to extract features from the parse forest of another sentence. Consequently,
the resulting number of TDF s is much smaller than their traditional counterparts.
This approach also ensures that TDF s remain highly correlated to the corresponding
constructions of the corresponding sentences from where they are extracted.

To compare TDF s with the traditional feature types. we build their corre-

55

sponding log-linear models for each of them and test disambiguation performance
on both in-domain and out-of-domain data. Results suggest that features extracted
using treebanking decisions are more efficient, informative and robust, despite the
total number of these features being much less than that of the traditional fea-
ture types. We analyze impact of different types of treebanking decisions (yes/no,
annotated/inferred). Our findings indicate that, features extracted from positive
decisions have major impact on the accuracy gain. We also observe that although
human annotated decisions comprise only about one fifteenth of the total decisions,
they produce almost half of the total features and their accuracy difference with
that of the total decisions is also not so big. Further analyses indicate that, context
is an important factor for the TDF s, and for larger sentences TDF s are missing
considerable portion of the structural information of the context that are beyond
the words covered by the discriminants of the corresponding decisions.

Some experiments have been done to see whether the model of TDF s can per-
form better as a re-ranker. Results suggest that, as many preferred analyses are
already out of consideration due to the failure of the first stage ranker based on tra-
ditional features and also as larger sentence are problematic for the TDF s, despite
the parse forest size is considerably reduced by the first stage ranker, the second
stage ranker based on TDF s cannot outperform the stand alone best traditional
model. Hence, we think disambiguation model built using only TDF s might not be
useful as a re-ranker.

We also present some experiments which examine whether it is possible to reduce
the parse forest effectively using top ranked TDF s, one at a time, maintaining some
constraints. We vary the percentage of top ranked TDF s to be used and the amount
of syntactic analyses (i.e. the value of M) that a test sentence must have to be
considered for the experiments. We observe that the more is the depth of the list of
the top ranked features is used, the less they become effective. Also, results indicate
parse forests of the sentences with lesser number of syntactic analyses are more likely
to be correctly reduced with top ranked features. The second finding is consistent
with our earlier observation that TDF s are more effective to shorter sentences (and
usually, shorter sentences have less number of syntactic analyses than that of the
larger sentences).

To approach the second question, we extract relative unique subsets from the
training dataset. We consider such subsets as coarse grained patterns and generate
a more refined list of fine grained patterns. We sort both the lists of patterns based
on some criteria. Experimental results indicate that, if the pattern set is tuned too
finely, there is a high probability that the coverage will be very limited. The results

56

suggest that, correct reduction accuracy drops if multiple number of patterns are
applied on a particular parse forest, though the size of the corresponding forest also
shrink considerably. It underlines that, it is prudent to reduce forests only once if
strong mutual relation between the already applied pattern and next pattern to be
applied can not be determined appropriately.

To summarize, the different types of experiments and their outcomes suggest
that, treebanking decisions are indeed capable of contributing in parse disambigua-
tion. However, as the number of treebanking decisions are usually not so big (which
limits the number of features to be generated using them) and also they are subject
to only some specific parts of the sentence constructions, disambiguation models
built using them alone often cannot distinguish analyses of the large sentences prop-
erly.

9.2 Comparison to the related works

To our best knowledge, there has been no work reported until now on using the
treebanking decisions for the task of parse disambiguation. Hence, we are unable to
compare our study directly to other works. Nevertheless, we compare our extract
treebanking decisions features with the state-o-the-art feature types that have been
used by other researchers (Toutanova et al., 2002; Baldridge and Osborne, 2003;
Osborne and Baldridge, 2004; Toutanova et al., 2005; Crysmann, 2008). We use
the same settings of log-linear models that they use. The data that we use are also
from the same Redwoods-style treebanks. We demonstrate that our features are are
more efficient, informative and robust. Those previous researches did experiments
using combined or ensembled-based models which we have not done in this thesis
and leave as a future work.

These previous studies have reported relatively high exact match accuracies with
earlier versions of ERG (Flickinger, 2000) on datasets with very short sentences.
With much higher structural ambiguities in LOGON parallel tourist corpus (Oepen
et al., 2002) and WeScience corpus (Ytrestøl et al., 2009) sentences and the more
enriched recent version of ERG, the overall disambiguation accuracy will drop sig-
nificantly.

To be more precise, Toutanova et. al. (2002) did experiments over 5312 sen-
tences (having average length 7.0 and structural ambiguity 8.3) of the 1st growth of
the Redwoods treebank. They obtained as much as 82.65% exact match accuracy
for parse selection using a combined model of several discriminative models. They
did similar type of experiments over 5266 sentences of 3rd growth of the Redwoods.

57

The highest accuracy they could reach was 76.7% (Toutanova et al., 2005). So,
there is a big drop in accuracy. This is due to increased ambiguity of those 3rd

growth sentences which have average length of 9.1 and structural ambiguity of 57.8.
As mentioned in Chapter 3, Osborne and Baldridge (2004) adopted ensemble based
active learning for parse selection. They experimented on 5302 sentences (with avg.
length 9.3 and avg. no. of parses 58.0) of 3rd growth of Redwood treebank, and
reported 77% exact match accuracy. All of these works used ERG but much earlier
version. We use ERG grammar version LinGO (26-Jan-08). Our in-domain sen-
tences have an average length of 14.68 and average number of 203.26 readings per
sentence (and the out-of-domain sentences have an average length of 19.38 and av-
erage number of 268.69 readings per sentence). Using only the treebanking decision
features, we obtain 43.59% accuracy (refer to Section 7.1) for the in-domain data.

Related works on parser adaptation and re-ranking, briefly introduced in Section
3.3, do not consider cognitive aspects of the fine-grained decision-making process of
the human annotators. So, we cannot compare with them, too. We show that
decisions taken during treebank annotation can produce good candidate features to
be used for parser adaptation, though they might be needed to be combined with
other traditional features.

9.3 Open questions and future works

The results of the experiments described in this paper indicate a very good prospect
for utilizing treebanking decisions, although, we think that the types of feature tem-
plates that we are using for them are not yet fully conveying cognitive knowledge
of the annotators, in which we are specifically interested in. For instance, we ex-
pect to model human disambiguation process more accurately by focusing only on
human annotators’ decisions (excluding inferred decisions). Such a model will not
only improve the performance of the parsing system at hand, but can also be ap-
plied interactively in treebanking projects to achieve better annotation speed (e.g.,
by ranking the promising discriminants higher to help annotators make correct de-
cisions).

We have several open questions after this study. Firstly, what types of other
decisions/consideration does an annotator make which is not recorded inside the log
files but can be recovered using the accepted and discarded discriminants through
introspection? 1

Secondly, how can we include the coverage of the parts of sentence constructions
1An example of such considerations is the siblings of discriminants which we already use in this thesis.

58

that are not covered by the discriminants? To put differently, we want to know
whether there is any way to increase the locality of the features. Surely, increasing
the locality will boost disambiguation accuracy, at least for the larger sentences.

The third question is, as we have discussed in Chapter 8, is it possible to make
the ordering of the patterns sensitive to the construction of the respective sentence
(instead of having a fixed order of patterns for all test sentences) whose parse forest
is to be reduced? A related question would be, whether we could refine the list of
coarse grained patterns which would produce a list of patterns somewhere in the
middle (i.e. not too finely tuned) between the list of coarse grained patterns and
the list of fine grained patterns.

The fourth question is, does there exist any better modelling technique, which re-
sembles the process of treebanking, other than maximum entropy modelling? From a
high level point of view, the working process of Redwoods-style treebanking is almost
similar as Decision Tree (DT) modelling. In DT modelling, each internal node rep-
resents a particular attribute. For different possible values, each of these attributes
split the event space2 into separate disjoint branches (Mitchell, 1997). Attributes in
different levels of the sub-trees of DT are selected based on the information gain3

computed, for the remaining attributes, over the events which are covered by the
corresponding sub-tree. The terminal nodes of DT are labeled with various possi-
ble outcomes; in case of binary DT (i.e. each feature with maximum two possible
values) for binary classification, some nodes are classified as ‘Yes’/‘Accepted’ and
the others ‘No’/‘Rejected’. In Redwoods-style treebanking, the treebanking deci-
sions resembles the attributes of the DT. For choosing the appropriate discriminant
(which is later saved as annotated decision), human annotators rely on their cogni-
tive rather than calculating information gain. But there are two major differences
between these two approaches, which differentiate them from each other, yet indi-
cates the opportunity where one can take the advantages of the other. The signature
characteristic of Redwoods-style treebanking is, it is a greedy search. Each time a
decision is made, only those parse trees are kept for consideration (for the next
decision) which are accepted by that decision. Because, the assumption is – only
one (in some special cases multiple) of the parse trees is correct. But the limita-
tion of the human annotators is, it is not guaranteed that the decision taken in a
particular step is the optimal decision, i.e. which rejects the maximum number of
non-preferred parse trees. Hence, the total number of decisions could be more than

2In case of parse selection, the events represent different syntactic realization of a particular sentence.
3The expected value of the information gain is the mutual information I(X;A) of X and A – i.e. the

reduction in the entropy of X achieved by learning the state of the random variable A.

59

the size of the optimal decision set, and the depth of the tree could be more than
optimal depth. This is where DT has an upper hand. The information gain calcu-
lated for the features at a particular step helps to choose the best attribute of that
step which ultimately limits the whole DT in minimal length. We think, this is a
potential area of future research. If it is possible for the system to take (or at least
suggest) optimal decisions (using information gain or some other measures) during
treebank annotation, the whole annotation process will be faster and efficient.

The final and perhaps the most important question is, how will the treebanking
decisions features perform if they are combined with the traditional features to build a
single disambiguation model? 4 But we believe such model will perform better than
the existing models. Because, A treebanking decisions feature represents partial
information about the right parse tree (as most usual features). But in some way, it
also indicates that it is a point of a decision (point of ambiguity with respect to the
underlying pre-processing grammar), hence carrying some extra bit of information.

To conclude, this thesis has introduced the novel notion of utilizing cognitive
aspects of treebanking. The positive outcome of this thesis regarding using tree-
banking discriminants as parse disambiguation features leaves many places open to
extend, improve or refine various parts of the specific instantiation adopted in this
work. With this last statement, we would like to end up our exploration for this
thesis work.

4We have left it as a future work rather than doing in this thesis as this would require to convert the
huge amount of Lisp codes of the LOGON system to Java before integrating in our system.

60

Appendix A

Usage of the System developed in this Thesis
Download link

The implementation of the thesis can be downloaded from
http://fmchowdhury.googlepages.com/downloads under GNU General Public License.

Prerequisites

To run the system, the following prerequisites must be installed beforehand —

• Java Runtime Environment (JRE) 1.6 or higher, available in http://www.java.com/en/.

• The Toolkit for Advanced Discriminative Modeling (TADM),
available in http://tadm.sourceforge.net/.

Installation steps

The following steps are independent of the operating system types. We assume
the user is using command prompt or shell or terminal. We further assume the
user is familiar with the basic commands of the command prompt or shell that are
necessary to complete the steps below.

• Retrieve and save the lexicon for the desired version of the HPSG grammar that
has been used for the annotation of the Redwoods-style treebank data that is
going to be used for the experiments. The file must be in written in according to
the specification of the Type Description Language (TDL; (Krieger and Schäfer,
1994)). For ERG grammar, the equivalent file lexicon.tdl is available inside the
donwloadable zipped file in http://www.delph-in.net/erg/.

• Download the Tedot.tar.gz file from the above mentioned link.

61

• Unzip the file.

• Access into the directory Tedot

• Open the file Settings.txt

• Set the full path of the training profile according to the example given inside
Settings.txt.

• Set the full path of the test profile.

• Set the full path of the lexicon file.

• Set the full path of the TADM installation directory.

• Save the file Settings.txt and close it.

• Run the command javac TedotMain.java (assuming JRE is already installed
and JAVAPATH is set). This will create all the compiled .class files.

• To run the system, just run the command java -Xms32m -Xmx2000m Tedot-
Main.

How to use the system

It should be noted that, this implementation only considers the Redwoods-style
treebank profiles. Both training and test profiles (and sub-profiles) must have at
least the following files — parse, result, decision, item, relations and preference. The
usage of the system is fairly easy. After running the system, it will show various
options, e.g. “3. Extract features” or “9. Count feature hit (FHC) and feature type
hit (FTHC)”. Each option is followed by the message about the basic purpose of
that particular option. Type the number (in case of the previous examples – 3 or
9) on the left side of the options and press Enter button. There will be a full set
of instructions on the screen how to proceed further. All the results and analyses
are written inside files. The system will automatically ask for the name of the file
to write from the user. There will be also some general comments about how to
interpret the results written inside the file.

How to enhance/modify the Source Code

All the classed, methods and variables inside the source files (i.e. .java files) are
documented. However, for any kind of further clarification, the user is encouraged
to send enquiries in fmchowdhury@gmail.com.

62

References

Steven Abney. 1997. Stochastic attribute-value grammars. Computational Linguistics, 23:597–618.

Hiyan Alshawi. 1990. Resolving quasi logical forms. Computational Linguistics, 16(3):133–144.

Jason Baldridge and Miles Osborne. 2003. Active learning for HPSG parse selection. In Proceedings
of the 7th Conference on Natural language learning at HLT-NAACL 2003, pages 17–24.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71.

Ulrich Callmeier. 2001. Efficient parsing with large-scale unification grammars. Master’s thesis,
Universität des Saarlandes, Saarbrücken, Germany.

David Carter. 1997. The TreeBanker: A tool for supervised training of parsed corpora. In
Proceedings of the Workshop on Computational Environments for Grammar Development and
Linguistic Engineering, Madrid, Spain.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL 2005), Michigan, USA.

Eugene Charniak. 2000. A maximum entropy-based parser. In Proceedings of the 1st Annual
Meeting of the North American Chapter of Association for Computational Linguistics (NAACL
2000), pages 132–139, Seattle, USA.

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy
models. Technical Report Technical Report Number CMUCS-CS-99-108, Carnegie Mellon
University.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2006. Minimal Recursion Seman-
tics: an introduction. Research on Language and Computation, 3(4):281–332.

Ann Copestake. 2002. Implementing typed feature structure grammars. In CSLI Publications,
Stanford, CA, USA.

Thomas M. Cover and Joy A. Thomas. 1991. Elements of information theory. Wiley-Interscience,
NY, USA.

Berthold Crysmann. 2008. Parse selection with a German HPSG grammar. In Proceedings of the
Workshop on Parsing German, pages 9–15, Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Murat Ersan and Eugene Charniak. 1995. A statistical syntactic disambiguation program and
what it learns. Learning for Natural Language Processing, 1040:146–159.

Dan Flickinger. 2000. On building a more efficient grammar by exploiting types. Natural Language
Engineering, 6 (1) (Special Issue on Efficient Processing with HPSG):15–28.

63

Stuart Geman and Mark Johnson. 2002. Dynamic programming for parsing and estimation of
stochastic unification-based grammars. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL 2002), pages 279–286, Philadelphia, USA.

Yusuke Miyao Hara, Tadayoshi and Jun’ichi Tsujii. 2007. Evaluating impact of re-training a lexical
disambiguation model on domain adaptation of an HPSG parser. In Proceedings of IWPT
2007, Prague, Czech Republic, June.

Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii. 2005. Adapting a probabilistic disambiguation
model of an HPSG parser to a new domain. In Proceedings of the 2nd International Joint Con-
ference on Natural Language Processing (ĲCNLP 2005), pages 199–210, Jeju Island, Korea,
October.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. 1999. Estimators
for stochastic unifcation-based grammars. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL 1999), pages 535–541, Maryland, USA.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. 2003. GENIA corpus - a seman-
tically annotated corpus for bio-textmining. Bioinformatics, 19(1):180–182.

Valia Kordoni and Yi Zhang. 2009. Annotating wall street journal texts using a hand-crafted deep
linguistic grammar. In Proceedings of the 3rd Linguistic Annotation Workshop (LAW III),
Singapore.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL: A type description language for constraint-
based grammars. In Proceedings of the 15th conference on Computational linguistics (COLING
1994), pages 893–899.

Robert Malouf and Gertjan Van Noord. 2004. Wide coverage parsing with stochastic attribute
value grammars. In Proceedings of the 1st International Joint Conference on Natural Language
Processing (ĲCNLP 2004) Workshop: Beyond shallow analyses – formalisms and statistical
modeling for deep analyses, Sanya City, Hainan Island, China.

Robert Malouf. 2002. A comparison of algorithms for maximum entropy parameter estimation. In
Proceedings of the 6th Workshop on Computational Language Learning (CoNLL 2002), Taipei,
Taiwan. Association for Computational Linguistics.

David McClosky and Eugene Charniak. 2008. Self-training for biomedical parsing. In Proceed-
ings of the 46th Annual Meeting of the Association for Computational Linguistics on Human
Language Technologies (HLT-ACL 2008), pages 101–104.

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Reranking and self-training for
parser adaptation. In Proceedings of the 21st International Conference on Computational
Linguistics, pages 337–344, Sydney, Australia.

Osborne Miles. 2000. Estimation of stochastic attribute-value grammars using an informative
sample. In Proceedings of the 18th International Conference on Computational Linguistics
(COLING 2000), pages 586–592, Saarbrücken, Germany.

Thomas M. Mitchell. 1997. Machine Learning. McGraw-Hill, Inc., New York, NY, USA.

64

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum entropy estimation for feature forests. In
Proceedings of the 2nd International Conference on Human Language Technology Research,
pages 292–297, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilistic disambiguation models for wide-coverage
HPSG parsing. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics (ACL 2005), pages 83–90.

Stefan Müller and Walter Kasper. 2000. HPSG analysis of German. In Wolfgang Wahlster, editor,
Verbmobil: Foundations of Speech-to-Speech Translation, pages 238–253. Springer, Berlin.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007. The CoNLL 2007 shared task on Dependency parsing. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915–932, Prague, Czech
Republic, June 28-30.

Stephan Oepen and Dan Flickinger. 1998. Towards systematic grammar profiling test suite tech-
nology ten years after. Computer Speech and Language, 12(4):411–436.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christopher Manning, Dan Flickinger, and
Thorsten Brants. 2002. The LinGO Redwoods treebank: motivation and preliminary appli-
cations. In Proceedings of the 19th International Conference on Computational Linguistics
(COLING 2002), pages 1–5, Taipei, Taiwan.

Stephan Oepen, Helge Dyvik, Jan Tore Lønning, Erik Velldal, Dorothee Beermann, John Carroll,
Dan Flickinger, Lars Hellan, Janne Bondi Johannessen, Paul Meurer, Torbjørn Nordgård, and
Victoria Rosén. 2004. Som å kapp-ete med trollet? Towards MRS-based Norwegian-English
machine translation. In Proceedings of the 10th International Conference on Theoretical and
Methodological Issues in Machine Translation, pages 11–20, Baltimore, MD, USA.

Stephan Oepen. 2001. [incr tsdb()] — competence and performance laboratory. User manual.
Technical report, Computational Linguistics, Saarland University, Saarbrücken, Germany.

Miles Osborne and Jason Baldridge. 2004. Ensemble-based active learning for parse selection. In
Proceedings of the Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-NAACL 2004): Main Proceedings, pages
89–96, Boston, Massachusetts, USA.

Adwait Ratnaparkhi. 1997. A simple introduction to maximum entropy models for natural lan-
guage processing. Technical report, Institute for Research in Cognitive Science, University of
Pennsylvania.

Adwait Ratnaparkhi. 1998. Maximum entropy models for natural language ambiguity resolution.
Ph.D. thesis, University of Pennsylvania, PA, USA.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell, III, and
Mark Johnson. 2002. Parsing the wall street journal using a Lexical-Functional Grammar
and discriminative estimation techniques. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL 2002), pages 279–286, Philadelphia, USA.

65

Claude E. Shannon. 1948. A mathematical theory of communication. The Bell System Technical
Journal, 27, pages (pt.1) and 623 – 656 (pt.2).

Yuka Tateisi, Akane Yakushĳi, Tomoko Ohta, and Jun’ichi Tsujii. 2005. Syntax annotation for the
GENIA corpus. In Proceedings of the 2nd International Joint Conference on Natural Language
Processing (ĲCNLP 2005), pages 222–227, Jeju Island, Korea, October.

Kristina Toutanova, Christoper D. Manning, Stuart M. Shieber, Dan Flickinger, and Stephan
Oepen. 2002. Parse ranking for a rich HPSG grammar. In Proceedings of the 1st Workshop
on Treebanks and Linguistic Theories (TLT 2002), pages 253–263, Sozopol, Bulgaria.

Kristina Toutanova, Mark Mitchell, and Christopher D. Manning. 2003. Optimizing local prob-
ability models for statistical parsing. In Proceedings of the 14th European Conference on
Machine Learning(ECML 2003), Cavtat-Dubrovnik, Croatia, September.

Kristina Toutanova, Christoper D. Manning, Dan Flickinger, and Stephan Oepen. 2005. Stochastic
HPSG parse selection using the Redwoods corpus. Journal of Research on Language and
Computation, 3(1):83–105.

Erik Velldal. 2008. Empirical Realization Ranking. Ph.D. thesis, University of Oslo, Oslo, Norway.

Gisle Ytrestøl, Stephan Oepen, and Dan Flickinger. 2009. Extracting and annotating wikipedia
sub-domains. In Proceedings of the 7th International Workshop on Treebanks and Linguistic
Theories, pages 185–197, Groningen, the Netherlands.

Yi Zhang, Valia Kordoni, and Erin Fitzgerald. 2007. Partial parse selection for robust deep
processing. In Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages
128–135, Prague, Czech Republic, June.

66

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	Motivation and research questions
	Contribution of this thesis
	Outline of the thesis

	Mathematical Preliminaries
	Entropy
	Maximum entropy models
	Maximum likelihood estimation

	Previous Related Works
	Statistical parse selection
	Discriminant-based treebanking environments
	Domain adaptation, re-ranking and self-training

	Treebanking Decisions and Features
	The Redwoods-style treebanks
	The state-of-the-art feature types
	Treebanking decisions
	Why treebanking decisions
	Feature extraction using treebanking decisions
	How are TDFs different from the traditional features?

	System Overview
	Feature extractor
	Component for training maximum entropy models and testing
	Performance analyser
	Re-ranker
	Component for parse forest reduction using ranked TDFs
	LOGON System

	Experimentation Environment
	Data
	Decisions taken by the human annotators and system
	Feature sets
	Discriminative models used for the experiments
	Evaluation measures

	Results and Analyses
	Comparison of performances among the models of different feature types
	Performance measurement on out-of-domain data
	Active features
	Effect of human annotated decisions, contexts and different decision combinations
	TDF model as re-ranker
	Parse forest reduction using individual top ranked features

	Extracting Correlated Discriminants from Human Decisions
	Pattern extraction
	Reducing size of the parse forests using patterns
	Experiments and observations

	Conclusion
	Summary
	Comparison to the related works
	Open questions and future works

	Appendix A

