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Abstract

We present a systematic approach to the generation of natural language de-
scriptions of logical facts from ontologies. We design and discuss our Natural
Language Generation (NLG) architecture in terms of implementing a factoid
question answering platform upon ontologies; we identify what questions can be
asked upon the knowledge base, determine relevant contents from the knowl-
edge base that best serve in generating response to the questions and process
those contents confirming to the popular patterns of expression, as identified
from a survey, in order to generate answers in natural language (English); all
of this while justifying the rationale of the approach and the possible benefits
such systems can offer.
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Chapter 1

Introduction

With the advent of the “Semantic Web Vision”, ontologies have become the
formalism of choice for knowledge representation and reasoning. Usually, on-
tologies are authored to represent real world knowledge in terms of concepts,
individuals and relations in some variety of Description Logic.

While ontologies are well suited for computational reasoning, it may also be
equally less intuitive and less insightful for a human user to grasp all the con-
cepts and relationships that exist in the given ontology, at a glance. This can
be true for experts who are working on a broad scale ontology and need to
analyze a fairly large chunk of already present logical statements in order to
add/modify newer axioms to the knowledge base and also for beginners trying
to get acquainted with the ontology formalism. Thus, in the course of design,
maintenance and description of ontologies, a human user would perhaps like
to seek necessary information from a given ontology in some natural language
(like English). In such cases, it would be desirable to have access to a natural
language description of the knowledge present within the ontology.

Since ontologies are used to describe real world knowledge in a formally pre-
scribed structure, one can consider an ontology to be an organized knowledge
source repository, which under suitable interpretation, could also serve as an
input to a class of systems – referred to as Natural Language Generation(NLG)
systems in the literature – to generate textual descriptions of data in some
natural language like English.

In this Master thesis, we work in developing a system that can help general users
in retrieving natural language description (in English) of information present
within an ontology as answers to a set of questions posed upon the ontology
knowledge base. We discuss and present our NLG architecture; encompassing
generic approaches for retrieving, processing and expressing contents from on-
tologies so as to express them as answers in natural language to the questions
posed.
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Chapter 2

Ontology, Question
Answering and Natural
Language Generation

2.1 Ontology

The term “ontology” has its roots in philosophy and was borrowed into the Ar-
tificial Intelligence domain as early as the 1980s. Hobbs & Moore [19] regarded
it as a theory of a modeled world (a theory which could provide a systematic
way for mapping axioms/facts to some representative element in the universe of
discourse) while Gruber [18] defined it as an explicit specification of a conceptu-
alization (meaning that an ontology could serve as a formal model for expressing
facts and relationships between facts).

Over the years, research on ontologies has been influenced by several other
relevant formalisms like Conceptual Graphs [40] and Frames [29]. The focus
has been on identifying how expressively and efficiently an ontology can model
real world knowledge and how such knowledge bases can be used suitably and
productively for computer based processing. The notion of having a formalism
expressive enough to meet real world knowledge representation requirements and
tractable enough to provide a decidable representation of a knowledge base for
logical inferencing has led to several evolutions of ontology formalism. Recent
standards for modeling knowledge in an ontology formalism have mainly adopted
the OWL family1 of description logics for expressing facts.

1http://www.w3.org/TR/owl-features/
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Current ontologies are authored in one of several varieties of OWL based rep-
resentation, namely OWL FULL, OWL DL and OWL Lite. The choice among
these varieties for representing a knowledge base will eventually affect the ex-
pressiveness of the ontology and whether or not reasoning algorithms will be
able to guarantee completeness and/or decidability. A comprehensive study
of OWL language constructs, its varying representation schemes and flavors is
presented in the W3C OWL guide [6].

For the sake of explaining formal computational model of a ontology, O, in
simple terms, we reproduce the following definition provided by Ehrig & Sure
in [12]:

O := (C,HC , RC , HR, I, RI , A)

“An ontology O consists of the following. The concepts C of the schema are
arranged in a subsumption hierarchy HC . Relations RC exist between concepts.
Relations (Properties) can also be arranged in a hierarchy HR. Instances I of a
specific concept are interconnected by property instances RI . Additionally, one
can define axioms A which can be used to infer knowledge from already existing
one.” [12]

With a formal Description Logic based knowledge representation scheme and
support of complex reasoners that can perform inference on the knowledge spec-
ified within an ontology, the uses of ontologies have broadened from the purely
theoretical inquiry initially carried out within the area of Artificial Intelligence to
encompass practical applications by domain experts across heterogeneous fields.
Ontologies have been integrated into fields like biomedicine (for example, the
OBO Foundry ontologies2), biology (for example, the Gene Ontology3), business
modeling (for example, the Customer Complaint Ontology4) etc. for knowledge
representation and reasoning tasks. Osterwalder & Pigneur discuss and present
a generic ontology model for representing e-business issues and their interdepen-
dencies in a company’s business model [31]. The Gene Ontology Consortium
has been involved in building a structured, controlled vocabulary and classifi-
cation of gene and gene product attributes across several domains of molecular
and cellular biology [16]. Likewise, the TOVE project aims to represent the
shared semantics of enterprises into an ontology [13]. All such attempts of us-
ing ontologies for representation and reasoning over domain data have proved
beneficial. For example, Aroyo et al. [4] discuss how ontology based approaches
could benefit user adaptive systems in terms of enhancing personalized access
to multimedia content presentation while Kuo et al. [22] assert that ontology
driven data mining in finding the association rules in a medical domain yields
more meaningful results than naive mining techniques.

2www.obofoundry.org
3http://anil.cchmc.org/Bio-Ontologies.html
4http://www.jarrar.info/CContology/
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In general, Mizoguchi et al. [30] identified some of the applications of ontologies.
These include:

• As a common vocabulary for communication among distributed agents

• As a conceptual schema underlying relational data bases

• As a repository of information for a user of a certain knowledge base

• As a tool to standardize terminologies, concept meanings, target objects
and tasks

• As a tool for semantic transformation of databases across heterogeneous
conceptual schemas

• As a tool for reusing knowledge from a knowledge base

• As a tool for reorganizing knowledge in a knowledge base

An interesting aspect of ontology engineering in recent years has been in the
field of computational linguistics. Here, as with other fields mentioned ear-
lier, the usual approach is to use ontologies for domain modeling. In doing
so, the objective is to model known linguistic phenomena (under the scope of
study) as concepts and the possible associations between the phenomena as
relations between those concepts. Those concepts and relations are then orga-
nized into suitable hierarchies of inheritance, yielding an ontology that captures
and encodes the linguistic knowledge under study. Some examples of such do-
main ontologies in linguistics include PAPEL5(which is a lexical ontology for
Portuguese language), GOLD6(which aims at building standard ontology for
descriptive linguistics) and SENSUS7(which is an ontology designed to repre-
sent linguistic taxonomy). Such domain ontologies are intended to eventually
facilitate in knowledge sharing of linguistic data and in developing expert sys-
tems capable of linguistic analysis [43]. Körner & Brumm [21] discuss how an
ontology based dialogue system could help a requirement analysts (in his job
of ascertaining the exact needs of a software customer) in checking linguistic
defects (ambiguous, faulty or inaccurate statements) in the textual specification
of requirements and Knoth et al. [20] present the use of multilingual domain
ontologies to support cross-language retrieval & machine translation.

A less conventional approach of utilizing ontologies in the computational lin-
guistics field is in the area of Natural Language Generation (NLG). In this
approach, an ontology is considered as a formal knowledge repository which can
be utilized as a resource for NLG tasks. The objective, then, is to generate
a linguistically interesting and relevant descriptive text summarizing parts or
all of the concisely encoded knowledge within the given ontology. It has been

5http://www.linguateca.pt/papel/
6http://linguistics-ontology.org/
7http://www.isi.edu/natural-language/projects/ONTOLOGIES.html
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argued that ontologies contain linguistically interesting patterns in choice of the
words they use for representing knowledge and this in itself makes the task of
mapping from ontologies to natural language easier [28]. It is along this line of
thought that this thesis builds upon. We aim at utilizing ontologies for the sake
of NLG and seek to justify the motive and rationale for doing so. Further, we
will identify a set of generic questions that are suitable to be asked concerning
an input ontology. The logically structured manner of knowledge organization
within an ontology enables to perform reasoning tasks like Consistency check-
ing, Concept Satisfiability, Concept Subsumption and Instance Checking. These
types of logical inferencing actions will motivate us in proposing a set of Natural
Language based questions which can be asked. NLG, in turn, will be applied to
derive descriptive texts as answers to such queries. This will eventually help us
in implementing a simple natural language based Question Answering system
guided by robust NLG techniques that act upon ontologies.

In our work, ontologies written in OWL DL is taken into account because of
the reasoning completeness they ensure. The reasoning capability, in turn, will
help in deciding the nature/pattern of NLG activity in our research (explained
in detail in chapter 4 and 5).

2.2 Question Answering

As noted in the previous section, the present work views the task of generating a
description of some fragment of an ontology as a task of generating an answer to
respond to a question. Hence, although the present work differs from standard
question-answering research, it is useful to give an overview of the rationale
behind Question Answering (QA), to identify the points of connection with
the present work. Question Answering is the task of automatically deriving an
answer to a question posed in natural language. A good definition of a QA
system is given by Denicia-Carral, as follows: “A Question Answering system is
an information retrieval application whose aim is to provide inexperienced users
with flexible access to information, allowing them to write a query in natural
language and obtaining not a set of documents that contain the answer, but the
concise answer itself.” [10]

Question Answering has been a long researched field in computational linguis-
tics. Early QA techniques relied on a small structured database to retrieve facts
and possibly rephrased parts or all of the syntactic structure in the query to
produce answer sentences with a placeholder to fit in the retrieved fact. How-
ever, significant progress has been made in QA techniques and now we have
better systems that are able to act upon a huge and heterogeneous range of
corpus data, including the World Wide Web. We have observed some suc-
cessful commercial implementations of QA techniques like START8, Watson9,

8http://start.csail.mit.edu/
9http://www-03.ibm.com/innovation/us/watson/
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Wolfram|Alpha10 etc.

Question Answering is in itself a broad area of research and involves a multitude
of activities in Information Retrieval (IR) techniques, linguistic analysis, Natu-
ral Language Understanding (NLU) and NLG or even speech processing. Some
or all of these activities may become relevant to a given QA system, depending
upon the scope and application context of such systems. Complex QA systems
that try to learn both the set of possible questions and their respective answers
from the given text corpora, incorporate IR, NLU and NLG techniques on a
large scale. IR would be required for retrieving facts from the corpus, NLU
would be required for semantic interpretation of those facts in order to create
relevant queries and NLG would be required for generation of natural language
texts as answers to those queries. On the other hand, for some other QA systems
which don’t need much linguistic/semantic knowledge to understand a question
(because the system designer implemented a known set of predetermined ques-
tions beforehand), it may suffice to restrict the NLU activities to simple tasks
of keyword spotting or skip them altogether. This strategy is similar to that
adopted in the present work, whose focus is on processing domain knowledge in
the ontology for generating answers to a predetermined set of queries.

A specific set of questions, referred to as factoid questions in the Question
Answering domain, is concentrated on querying very specific information from
the available data. This set includes the usual Wh-Questions like What, How,
When, Who etc. Answers to such questions tend to seek simple facts on named
entities and should ideally be concise and immediately address the query. As
Martin and Jurafsky put: “The task of a factoid question answering system
is thus to answer questions by finding, either from the Web or some other
collection of documents, short text segments that are likely to contain answers
to questions, reformatting them, and presenting them to the user.” [25]

Most QA systems compute upon loosely connected data sources from a wide set
of documents such as the HTML documents in the World Wide Web or some
other corpus. In contrast, the purpose of this thesis is to identify methods and
algorithms that can yield natural language texts from structured and tightly
coupled knowledge base in ontologies as answers to a selectively chosen set of
predetermined factoid questions. The concentration of this research is, thus, on
NLG to produce descriptive text while trying to associate some predetermined
factoid questions which can better serve as a query context for the descriptive
text so generated.

10http://www.wolframalpha.com/
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2.3 Natural Language Generation

Natural Language Generation is the task of generating natural language text
suitable for human consumption from machine representation of facts which
can be pre-structured in some linguistically amenable fashion, or completely
unstructured. The facts may be available in terms of an unstructured collection
of raw data or in terms of some structured data repository (such as a rela-
tional database or a knowledge base). A class of NLG systems that build upon
unstructured collections of data are known as “data-to-text” systems [35]. Ex-
amples of such systems include SUMTIME [38] (a weather report system) and
BabyTalk [1] (a medical decision support system). As these systems take un-
structured data source rather than a structured data repository as their input,
they actually put an extra effort in structuring the raw data themselves as a
precursory step to NLG.

Contrary to the “data-to-text” systems where the input is merely a collection
of “flat” data, input to NLG systems can also come from more structured and
organized repositories of logical expressions. Ontologies, for example, have a
logically organized arrangement of facts and statements of relationships pre-
vailing among those facts. Inherent to the relationships specified in logical for-
malisms (such as an ontology) are the semantics characterizing the associations
among those facts. NLG developers can, in turn, have the privilege of relying
on the interpretation of those associations to convey messages while generating
natural language texts. Additionally, with logical expressions, formal models
for computing inferences (from existing knowledge) usually exist and thus it is
often quite possible to expect additional/better “content” arising from such in-
ferencing tasks to augment the otherwise flat NLG output. Both these aspects
of targeting NLG activities around systems which consume logical expressions
make it an interesting avenue of research.

The motivation behind NLG is guided by several objectives. Adorni & Zock, in
[2] listed the following applications areas of NLG technology:

• Story Generation/Narration

• Explanation Generation

• Reports & Paraphrases

• Intelligent help & tutoring systems

• Intelligent interfaces for Expert Systems and Databases

• Machine Translation

• Multi-party Discourse

NLG systems evolved from template based text generation systems in restricted
domains. Template based systems are NLG systems in which text generation is



2.3. NATURAL LANGUAGE GENERATION 9

achieved by filling in the empty gaps within the predetermined linguistic surface
structures with suitable information computed from the input data source. Well
formed output results when all such gaps have been filled in [42]. A simple
yet popular example of purely template based NLG systems is the mail-merge
feature available with emailing applications.

A widespread and alternative approach to purely template based text gener-
ation has been in terms of organizing the generation task into several phases
of linguistically motivated processing modules; each module in turn helping to
shape the non-linguistic input to some intermediary representation of linguistic
structure until a desired natural language text is output. Each of the modules
is usually backed up by some formal models of grammar rules that carry out a
specific task of linguistic computation such as lexicalisation, morphology gener-
ation, syntactic arrangement etc. It is this modular aspect of processing which
makes such systems contrast with the template based systems that use a direct
and predefined mapping between input and output.

In the past, template based systems have been criticized for being too restrictive
to the application domain, inflexible to changes and incapable of expressing
linguistically complex phenomena (like aggregation, discourse planning etc.)
and thus being an inferior NLG practice compared to the modular one. However,
Van Deemter et al. [42] argue that modern template systems, in fact, can
implement complex recursive templates (and not just the simpler templates
like that mentioned earlier for mail-merge task) which allow for fitting other
template structures within them and hence are arguably as good as modular
approaches in the generation of quality natural language text.

Early examples of successful NLG systems include some commercial applica-
tions like FOG (Goldberg et al. [17]) which produced textual descriptions of
weather forecast and SPOTLIGHT (Anand & Kahn [3]) which produced a tex-
tual description of market analysis based on retail sales data. Over the past
couple of decades, NLG systems have become steadily more robust and sophis-
ticated, various stages in the NLG development architecture have been better
understood and better results have been obtained. More recent NLG systems
include applications like PERSONAGE (Mairesse & Walker [23]), which pro-
duces natural language text describing personality traits of humans based on
facts obtained from psychology experiments and the ARNS system (Bethem et
al. [7]) which produces automated textual narratives about water levels, coastal
currents and other meteorological and oceanographic data at US ports from the
real-time data obtained in graphical or tabular form etc.

Reiter & Dale [37] present a reference architecture for NLG systems. The ar-
chitecture has been a common standard for contemporary NLG systems. It is
reproduced here in figure 2.1.
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Figure 2.1: NLG system architecture as proposed by Reiter & Dale [37]
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As depicted in figure 2.1, a NLG system consists of a pipeline of the following
3 processing units:

• Document Planner : The Document Planner takes the input data source
and performs following two tasks:

– Content Determination: Here, the contents from the input that are
relevant and make a suitable response to the specified communicative
goal of the NLG system are identified. Content Determination is a
crucial task in any NLG system because it limits the scope of the
NLG system in terms of what it can express. Importantly, content
determination must be carried out in relation to the communicative
goals which the particular NLG system has to meet. For instance, in
our case, the communicative goals are, effectively, the ones expressed
by the factoid questions we have identified – when we ask the question
“Describe (What is) X ?”, we want the description of the concept and
when we ask the question “What are the varieties of X ?”, we want to
state the varieties of X etc.

– Document Structuring: Once all such relevant contents are deter-
mined, the next step is to organize them into groups. The idea
behind classifying the contents into different groups is to plan an
initial order of the contents in the way that they would eventually be
arranged while producing the final output of the NLG system.

Since the nature of input and communicative goals of each NLG system
is different from the other, the task of Content Determination and Docu-
ment Structuring becomes specific to the NLG system under development.
Hence, there is little or no general guideline that a developer can follow to
accomplish these steps in his/her system. For the Document Structuring
task, however, there some theories such as the Rhetorical Structure The-
ory [24] proposed by Mann and Thompson which discuss approaches in
making relationships between different segments of the document struc-
ture explicit, even though their application differs widely from one domain
to another. Usually, one has to rely on the domain specific knowledge of
the input data and expert’s help, as well as psycholinguistic modeling
patterns to describe the domain in order to come up with a successful
implementation of the Document Planner.

The output from the Document Planner is a document plan; usually a tree
representation of the content. Each node of the tree represents a group of
the contents and the leaves under each node represent the contents that
were classified to be under that group.
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• Microplanner : The MicroPlanner takes the document plan and carries
out the following tasks:

– Lexicalisation: This involves deciding how specific elements of the
non-linguistic content will help in forming a particular syntactic struc-
ture for the output text to be generated. In simpler terms, it is the
task of determining what parts of the content will map to noun, verb
, adjective etc. and how those words could serve as subject, verb,
object, prepositional phrase or other complex syntactic structure for
the output text to be generated.

– Generating Referring Expressions (GRE): The task of generating re-
ferring expression has been a widely studied field of NLG. GRE in-
volves in generating referring expressions (noun phrases) which can
serve as a surrogate to identify an entity being described in the text.
GRE is an important issue to NLG because NLG deals with pro-
ducing descriptive text describing entities in a discourse. A common
feature of natural languages is that they use referring expressions to
uniquely identify an entity – both when the entity is first mentioned
in the discourse (Initial Reference) or when the entity is subsequently
referred to after it has been introduced once in the discourse (Sub-
sequent Reference). This feature is highly desirable with any NLG
system.

– Aggregation: Aggregation is the task of identifying the contents that
could be grouped together while producing a sentence or a paragraph.
From the document plan, under each group, a set of contents that
can communicate several pieces of information at once are identified
and aggregated.
The nature of the contents present within the document plan will
guide a developer in performing the tasks of Lexicalisation and Ag-
gregation. Apart from quite a few general rules available (such as
the rule of conjunction reduction for aggregation which states that
any two sentences with the same subject, say “X VP1” and “X VP2”
always produce an aggregated sentence, say “X VP1 and VP2”), there
are some aspects of these tasks which are highly domain dependent
and the developer may therefore acquire active participation of ex-
perts or may seek to model the system based on some empirical stud-
ies of how people use natural language in the particular domain being
studied. GRE, on the other hand, has been a widely studied area and
there are now a variety of general algorithms that a developer can
implement in order to generate referring expressions.

The output from the MicroPlanner is a textual specification of the con-
tents. Usually, it means that the nodes and leaves of the tree obtained in
the document plan are now deep syntactic structures of sentences. Each
of the processing units in the MicroPlanner – Lexicalisation, GRE and
Aggregation – model the contents in the document plan in terms of their



2.3. NATURAL LANGUAGE GENERATION 13

linguistic functions and properties and thus leaves in the textual specifica-
tion are now a representation of the partially complete sentence structure.

• Surface Realiser: The job of the Surface Realiser is to accept the text
specification produced by the MicroPlanner as it’s input and then utilize
the syntactic structures present within it to generate actual text in natural
language. Surface Realisation has been the most well understood aspect of
NLG [36] and there are now, several software packages which can take care
of the task of Surface Realisation for a developer. An example of such a
package, which we shall also use during our work, is the simpleNLG system
[15].

2.3.1 NLG with Ontologies

With reference to the issue of generating natural language text from ontology,
which is the concern of this thesis, several related works have been carried out
in the NLG community. Pan and Mellish [32] discuss the work behind answer-
ing questions like What is X? and How is X different from Y? based on the
subsumption hierarchy information present in the ontology. Mellish & Pan fur-
ther extend their work in [27] by taking into account non-standard inference in
description logic, which they refer to as Natural Language Directed Inference
(NLDI) for Content Determination. The NLDI is their attempt at organizing
a sequence of logical formulas so as to best fit a computational interpretation
of the Gricean Maxims of Quality, Quantity, Relevance and Manner in gen-
erating texts from ontologies; they consider linguistically motivated functions
like aggregation, disaggregation, elimination of disjunctions, average number of
sentences in a description etc. Bontcheva [8] presents the ONTOSUM system
which models its ontology to text generation in accordance with the device pro-
file being used by the user (such as mobile phone, the usual Web browser etc.)
to view the text. Galanis & Androutsopoulos [14] present the NaturalOWL
system, a multilingual ontology to text generation system, which produces nat-
ural language text from linguistically annotated ontologies. The authors argue
that annotating ontologies with linguistic information helps in generating high
quality multilingual text; accordingly, they design templates, one for each of the
natural languages targeted by the system, which are eventually filled up with
annotated information (domain-dependent linguistic information corresponding
to the concept and relation names in the ontology) to generate multilingual
descriptions.

Other relevant activities have been on building ontologies using NLG based
authoring tools, as in [33]; utilizing ontologies to store facts about a domain (for
example, a neonatal baby care unit) and later deploying reasoning over the facts
in order to produce descriptive texts as in [1]; generation of multilingual text
from ontologies using discourse strategies mapping them to the Grammatical
Framework (GF) [34] based abstract grammar representations as in [9] etc.
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2.4 Contributions of present work

Our work shall focus on deploying the NLG architecture in order to generate
natural language text as answers to a set of predetermined factoid questions
that can be asked upon the knowledge base in the ontology. We seek to inno-
vate in this art from the existing systems in several ways. First, we proceed to
obtain descriptions of concepts in the ontology rather than individuals, which
is common with existing systems like ONTOSUM. Second, we identify a set of
heuristics based on OWL constructs that are intended to be general enough to
be of use in the Content Determination module of any ontology-to-text NLG
system. Identifying such a generic set of heuristics which serve to provide “con-
tent”, beforehand, is in contrast to and perhaps more modular and flexible than
the approach adopted by Mellish & Sun [26], where they address the Content
Determination problem by implementing a best first search strategy for axioms
in the graph based representation of ontology. Further, we associate the results
of reasoning in order to yield up a description of a concept in an ontology – that
is we use both the explicitly stated knowledge and implicitly inferred knowl-
edge about a concept to generate a descriptive text about it. This provides
greater scope for content selection than with the NaturalOWL system, which
only conveys definitions that is explicit in a concept. Additionally, we identify
a generic set of factoid questions that can be posed upon ontologies and target
our NLG endeavors towards generating answers to those questions. These ques-
tions implicitly serve to specify the communicative goal(s) of our NLG system.
Finally, we model our Micro Planning and Realisation tasks to suit the results of
empirical surveys carried out with English-speaking experimental participants
who are non-experts when ontologies are concerned, on how they would like to
put logical statements, similar to those present within an ontology, into natural
language text.



Chapter 3

Retrieving Answers to Factoid
Questions via Ontologies

3.1 Domain and Scope of work

Our task of generating text from ontologies will be motivated by the context of
generating descriptive text as answer to a predetermined set of factoid questions
about the ontology. As mentioned in section 2.4, we shall aim to produce
descriptive text for concepts present in the ontology.

Predetermining a set of questions to be asked enables us to restrict our scope of
work to Natural Language generation. As the nature of questions is previously
known, there is no need for our system to work in terms of understanding the
query itself and this enables us to focus on the task of appropriately modeling
our NLG architecture to generate appropriate answers to each question type.
We put an initial effort on identifying a set of suitable factoid questions which
are relevant to be asked upon the ontology and then focus on implementing a
full NLG system that can yield answers to such queries.

Our NLG approach to generating answers based on ontologies is guided by two
motivations:

1. How could a general architecture be developed to identify and retrieve a
suitable set of facts from any input ontology that can serve to build up
textual answers (in English) to our set of factoid questions posed upon
the concepts in the input ontology?

2. How could the set of facts so retrieved be linguistically processed in order
to form natural language text (in English) that accurately expresses the
same idea as presented in a logical fashion within the given ontology?

15
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3.2 Choice of Ontology

We chose to base our work on the well-known Pizza ontology1. The pizza
ontology is “an example ontology that contains all constructs required for the
various versions of the Pizza Tutorial run by Manchester University” [11]. The
decision to choose the pizza ontology for our task is based on various benefits
that the Pizza ontology has to offer. First, the ontology is modeled after a
commonplace and well-known class of entity, the Pizza. This will helps us in
presenting our output describing Pizzas in an intuitive way to experts and non-
experts alike. For such a commonplace object, our users could immediately
consume the complex ideas of logical structure within an ontology, such as
open world reasoning, boolean operations between concepts, restrictions and
quantifications etc., once we present them in natural language text. Also, users
could rely on their general knowledge about Pizza in order to provide feedback
on whether or not our system had arrived at a valid conclusion2. Second, since
the Pizza tutorial was designed to be a comprehensive summary on building
ontologies for beginners, it includes most of the constructs and features of the
OWL DL language. Hence, it will help us in ensuring that our NLG system
has wide coverage in the terms of the types and nature of OWL DL axioms it
can interpret. Third, the ontology is nicely modeled around defining concepts
and subconcepts, arranging them in suitable hierarchy of multiple inheritance
and enriching concepts by relating them to other concepts via OWL properties.
This is an excellent opportunity for us to work with since we want to produce
descriptive text describing concepts in a given ontology rather than individuals.
Additionally, the ontology is written in OWL DL – a popular flavor of the OWL
language which ensures reasoning completeness (meaning that all entailments
are guaranteed to be computed by a reasoner) and decidability (meaning that
all such entailment computations will finish within a finite amount of time) –
and this will facilitate us in extracting implicit knowledge from the ontology in
order to augment our output text.

The Pizza ontology serves only as a reference ontology for the sake of our work.
Thus, our NLG system is not restricted just to the Pizza ontology itself. Instead,
we utilize the Pizza ontology as an opportunity to come up with a generalized
set of techniques that could be deployed over a broad examples of ontologies
written in OWL DL.

1The latest version of Pizza ontology is available at http://www.co-ode.org/ontologies/
pizza/2007/02/12/pizza.owl

2This would be true if the ontology was modeled to describe the domain it represents,
accurately in terms of real world knowledge, which in case of the Pizza ontology is true.
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3.3 Choice of Factoid Questions

We determined the following set of factoid questions to be asked upon the con-
cepts present within an ontology:

1. Describe (What is) X ?

2. How to identify a X ?

3. What are the varieties of X ?

where X refers to any concept in the ontology except the top (owl:Thing) and
the bottom (owl:Nothing) concept.

The above mentioned set of questions was determined based on the premise that
ontologies are used to model domain vocabularies [5] and the aim in building
our system is to produce a textual description of the concepts expressing that
vocabulary. As we shall describe in Chapter 4, the question "What is X" was
taken to be the most generic of the three questions type, which encompasses the
other two, since the definition of a concept involves both ways – techniques of
identifying it as well as determining its varieties. Hence, our NLG architecture
was developed primarily with the “Describe (What is) X ?” question in mind;
answers to the other two were obtained by a relatively simple modification of
the content selection and Micro Planning procedures.

3.4 Determination of Answer Pattern

We conducted a survey in order to find out how people would like to organize a
known set of facts about some concept while describing concepts in natural lan-
guage (English). The survey was based on presenting a set of facts representing
a concept– resembling the set of facts describing concepts in an ontology – and
asking people to come up with a description of that concept in English. We
observe the pattern in which users put the facts while describing the concept
and use similar pattern to structure our output. We shall discuss the nature of
survey and observations made from it, in detail, in chapter 5.
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Chapter 4

NLG in Answer Preparation

4.1 NLG Architecture – Overview

We follow the generic NLG architecture, presented in figure 2.1 above, for our
task of generating answers to factoid questions. The pipeline structure guides
us in organizing our work into sequential processing phases. Figure 4.1 below
outlines the various processing steps we carry out under each phase of the NLG
pipeline and we shall discuss our activities in detail throughout this chapter.

4.2 Retrieving data from Ontology

As with any NLG system, we begin with the task of identifying input to be fed
to the NLG architecture. Our input comes from the contents of the “pizza.owl”
file. In the file, facts pertaining to concepts are organized as statements (ax-
ioms) authored in RDF syntax (RDF, for sake of simplicity, can be understood
as a variant of XML). We wrote a java program utilizing the open source OWL
API1 to retrieve all such axioms present within the ontology. The OWL API
implements a RDF/XML parser that can read the contents of the file and out-
put OWL Abstract Syntax based statements representing the axioms. Further,
it provides a java based programming interface to reasoners (reasoners are soft-
ware that can infer implicit facts from a set of explicitly stated facts available
for a given ontology), such as Hermit2, which enables us to access the implicit
knowledge base from within our programming environment. The OWL Abstract
Syntax based statements are more neatly formatted than that of the native RDF
syntax of the ontology and thus will facilitate the processing of the axioms. For
example, the RDF/XML based representation of the axiom stating that Pizza

1The OWL API is available at http://owlapi.sourceforge.net/
2The Hermit Reasoner is available at http://hermit-reasoner.com/
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is a subclass of Food looks like:

<owl:Class rdf:about="#Pizza">
<rdfs:label xml:lang="en">Pizza</rdfs:label>
<rdfs:subClassOf>

<owl:Class rdf:about="#Food"/>
</rdfs:subClassOf>

</owl:Class>

while the OWL Abstract Syntax retrieved for the same axiom looks like:

SubClassOf(<Pizza> <Food>)

which is more intuitive, cleaner and easier for further processing.

We classify the available set of axioms in the ontology into the following cate-
gories and retrieve all of the axioms corresponding to each category.

1. Subsumers

(a) Stated Subsumers with Named Concept

(b) Stated Subsumers with Property Restriction

(c) Implied Subsumers with Named Concept

2. Equivalents

(a) Stated Equivalents with Property Restriction

(b) Stated Equivalents with Enumeration

(c) Stated Equivalents with Cardinality Restriction

(d) Stated Equivalents with Set Operator

(e) Implied Equivalents with Named Concept

3. Disjoints

4. Siblings

Subsumer axioms are the axioms which state that a concept (child concept)
inherits properties from some other concept (parent concept) in the ontology.
Typically, such axioms begin with the word “SubClassOf”. For a given concept,
its subsumer can either be a named concept in the ontology or an anonymous
concept (an anonymous concept is an unnamed concept which represents a new
set of individuals that can be obtained after the specified property restrictions
are exercised over the specified named concept in the ontology). Further, in
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addition to the explicitly stated subsumers (both named and anonymous type)
for a given concept in the ontology, we use the reasoner to infer its additional
named subsumers. An example of each category of subsumer axioms is shown
below.

• Stated Subsumers with Named Concept :

SubClassOf(<Margherita> <NamedPizza>︸ ︷︷ ︸
Named Concept

)

• Stated Subsumers with Property Restriction :

SubClassOf(<Margherita> ObjectSomeValuesFrom(<hasTopping> <TomatoTopping>)︸ ︷︷ ︸
Property Restriction

)

• Implied Subsumers with Named Concept :

SubClassOf(<Margherita> <CheeseyPizza>︸ ︷︷ ︸
Named Concept

)

Equivalent axioms are the axioms which state that the concepts involved de-
scribe exactly the same set of individuals. Typically, such axioms begin with
the word “EquivalentClasses”. For a given concept, its equivalent concept can
either be a named concept in the ontology or an anonymous concept. Here, the
anonymous concepts can be defined in terms of property restrictions, cardinal-
ity restrictions, enumeration or set operations over some named concepts in the
ontology. An example of each category of equivalent axioms is shown below.

• Stated Equivalents with Property Restriction :

EquivalentClasses(<SpicyTopping> ObjectIntersectionOf(<PizzaTopping>

ObjectSomeValuesFrom(<hasSpiciness> <Hot>)︸ ︷︷ ︸
Property Restriction

))

• Stated Equivalents with Enumeration :

EquivalentClasses(<Country> ObjectIntersectionOf(<DomainConcept>

ObjectOneOf(<America> <England> <France>)︸ ︷︷ ︸
Enumeration

))

• Stated Equivalents with Set Operator :

EquivalentClasses(<VegetarianTopping> ObjectIntersectionOf(<PizzaTopping>

ObjectUnionOf(<Cheese> <Nut> <Fruit>)︸ ︷︷ ︸
Set Operator

))
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• Implied Equivalents with Named Concept :

EquivalentClasses(<SpicyPizzaEquivalent> <SpicyPizza>︸ ︷︷ ︸
Named Concept

)

Disjoint axioms are the axioms which state that the concepts involved have no
individuals in common. Typically, such axioms begin with the word “Disjoint-
Classes”. An example of such an axiom is shown below:

• Disjoints:

DisjointClasses( <Napoletana> <Parmense>︸ ︷︷ ︸
Disjoint Concepts

)

There is no standard category of OWL axioms for Siblings. Hence, such con-
struct is not directly available as an axiom in the ontology itself. We refer to
concepts as being sibling of each other when they are classified as subconcepts
under the same parent concept, i.e., if a concept X has children Y and Z, then
Y is a sibling of Z and vice versa (also Y and Z are siblings of themselves).
Further, since a concept can be classified as subconcept of various concepts in
the ontology (due to multiple inheritance; either stated by the author or im-
plied via reasoning), we identify the siblings of a given concept under its various
superconcepts. Accordingly, we use the reasoner to infer the siblings of a given
concept and structure a custom-defined syntax for representing the information,
as shown below.

• Siblings:

SiblingsOf(<SloppyGiuseppe> <MeatyPizza>︸ ︷︷ ︸
Context

<Parmense,AmericanHot,LaReine,SloppyGiuseppe,PolloAdAstra,American>︸ ︷︷ ︸
Sibling Concepts

)

As just described, the siblings of a concept can vary depending upon its su-
perconcept; so we can have multiple statements describing the siblings for the
same concept but under its various superconcepts. We have accordingly iden-
tified siblings of each concept under its various superconcepts, referred to as
context in the above example.
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4.3 Document Planning

Our Document Planning task comprises of following 2 processing units.

4.3.1 Content Determination

The task of Content Determination is an issue of open discussion for many NLG
systems. Because each NLG system differs from the others in terms of its goal
and implementation model, there are no general guidelines to follow, although
some theories of the rhetorical structure of text have achieved widespread recog-
nition (for example, Mann and Thompson [24]). Mellish and Sun [26] distinguish
two broad categories of content determination problems – the “top-down prob-
lems” and the “bottom-up” problems. The “top-down problems” need to identify
specific contents that can address a specific goal while the “bottom-up problems”
have a more diffuse goal of identifying contents that can produce a general ex-
pository or descriptive text. In our case, the set of factoid questions that we
have determined are themselves the specifications of the communicative goal (as
we argued earlier when discussing Content Determination in section 2.3) of our
system; thus conforming to the “top-down” approach and since we aim to gen-
erate descriptive text about concepts in the ontology, our system also adheres
to the “bottom-up” model of content determination problems. Addressing the
problem, the categories of axioms we retrieved in section 4.2 will serve as “con-
tent” for our NLG system. In particular, we identify the categories of axioms
that will provide the “content” for generation of sentences to serve as answers
for each of the factoid questions we discussed in section 3.3.

• For the factoid question, “Describe (What is) X ?”, all the categories of
axioms we described in section 4.2 will serve as “content” for the generation
of answers. As such, the answer to this type of factoid question, for a given
concept X, will provide users with the most detailed description of various
facts pertaining to that concept in the given ontology.

• For the factoid question, “How to identify a X ?”, the category of equivalent
axioms, both stated and implied, when present will serve as “content”
for the generation of answers. The equivalent axioms associated with a
concept express logical conditions (also referred to as sufficient conditions
in the literature), which when fulfilled, are sufficient to distinguish the
concept from the others. Our system interprets the semantics behind
those logical conditions into natural language text so as to come up with
an answer to this type of factoid question.

• For the factoid question, “What are the varieties of X ?”, we view the
varieties of a given concept X as essentially its subconcepts (both stated
and implied). Accordingly, we use the subconcepts information available
for the concept to generate answer to this factoid question.
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4.3.2 Document Structuring

Here, we work on organizing the axioms so as to facilitate a coherent and effi-
cient future processing. As is common with contemporary NLG techniques, we
adopt the tree data structure for our representation scheme. The set of axioms
retrieved is organized into hierarchical fashion as depicted in figure 4.2. The
tree represents our initial plan of organizing the axiom categories into suitable
representation scheme for processing. With subsequent processing phases on
the NLG architecture pipeline, the nodes of the tree will shrink and grow and
their contents will get modified; we shall discuss the corresponding operations
which will effect such changes.
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Figure 4.2: Document Structure



26 CHAPTER 4. NLG IN ANSWER PREPARATION

As shown in figure 4.2, the root node of the tree (presented in green box)
represents the concept for which the NLG architecture is being modeled to
yield answers to the set of factoid questions mentioned in section 3.3. Each of
the subterminal nodes (presented in blue box) of the tree stands for one of the
categories of axioms mentioned in section 4.2 and under such node, are zero or
more leaves (presented in red box); each one representing an axiom (in OWL
Abstract Syntax, as discussed in section 4.2) falling under that category for
that concept in the ontology. It is possible that a concept doesn’t have any
leaves under certain subterminal nodes – for example, a concept may not have
any Stated Equivalent axioms in the ontology. All other intermediate nodes
(presented in black box) in the tree serve to represent the organization of the
terminal nodes into hierarchical divisions of the tree branching; conforming to
our classification of the category of axioms.

At this phase of NLG architecture, we represent both the concept name at the
root and the axioms at the leaves simply as strings.

4.4 Micro Planning

Our Micro Planning activity comprises the following 3 processing units.

4.4.1 PreLexicalisation

In NLG, Lexicalisation is the task of identifying lexical items (words of natural
language) that will serve to build up natural language sentences. The lexical
items are vocabulary for the sentence. During the Lexicalisation phase, we work
on identifying lexical items that will help us in mapping the factual knowledge
within each category of OWL axioms to natural language text.

We divide our Lexicalisation task into 2 sub stages: Pre-Lexicalisation phase
followed by Lexicalisation Proper. In the Pre-Lexicalisation stage, we come
up with an initial plan of sentence structure and preliminary choice of lexical
items for each category of the statements presented in section 4.2. As we shall
discuss below, it is better to postpone part or whole of the lexicalisation task
for some category of the statements until after a subsequent processing module
in the Micro Planning activity – the Aggregation phase. We use the term
Lexicalisation Proper to refer to this postponed activity of lexicalisation and
shall discuss it subsequently in section 4.4.3. In this section, we discuss the
activities carried out during the Pre-Lexicalisation stage.

It is easy to notice that the statements retrieved in section 4.2 are semi linguis-
tic in nature. In each example, we have statements which contain concepts and
relations that are either legitimate words of English (eg: Pizza, Food, Coun-
try etc.) or are concatenations of legitimate words of English (eg: hasBase,
MeatyPizza, PizzaTopping etc.). Based on similar observations, Sun & Mellish
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[41] argued that it is feasible to derive lexical items from the semi linguistic
concept and relation names in the ontology itself. We follow this idea and im-
plement strategies, which are discussed below, in generating lexical items for
our task. Further, the semantics of the predicates being used in the statements
guide us on identifying what linguistic roles such lexical items play in the output
sentence to be generated. Let us consider the following statement, for example:

SubClassOf(<Margherita> ObjectSomeValuesFrom(<hasTopping>
<TomatoTopping>))

The concept name “Margherita” is a legitimate word of English and the con-
cept name “TomatoTopping” is formed by concatenation of two English words
“Tomato” & “Topping”. Likewise, the relation “hasTopping” is also formed
by concatenation of two legitimate words – “has” & “Topping”. Additionally,
the semantics of the predicate “SubClassOf” guides us in mapping the concept
“Margherita” to the subject and the concept “TomatoTopping” to the object of
the sentence that we intend to verbalize from the axiom. Similarly, the relation
“hasTopping” is a good candidate for the verb in the sentence to be generated;
since relationships in OWL act as binders between concepts, they can serve to
identify the linguistic roles of subject and object in the output sentence to be
generated. We exploit such semantic information to plan the output sentence
structure for each category of the statements presented in section 4.2.

We plan the output sentence structures as feature structure based represen-
tations. We design the feature structure to be a matrix based representation
whereby we identify a set of features (usually motivated by linguistic roles such
as Subject, Verb and Object) and associate the extracted lexical items as val-
ues for those features in the feature structure. We generate distinct feature
structures for each of the categories of statements presented in section 4.2,
respectively. Each feature structure depicts our initial plan for framing out-
put sentences under that category of axioms and is internally maintained as a
HashMap data structure.

With regards to the task of identifying lexical items to represent concepts, the
concept names that are legitimate words of English are directly approved as
lexical items for our task; we shall refer to such concept names as “Simplified
Concept Name”. For other concept names which are formed by concatenation
of two or more English words, we work to derive their possible breakdown into
Simplified Concept Names, which will then serve as lexical items.

The strategy that we apply in deriving Simplified Concept Name from complex
concept name and which is widely used during our PreLexicalisation phase is
to identify the superconcept of the given concept whose name is present as the
terminally concatenated string in the given concept name. Since there can be
multiple superconcepts for a concept in the ontology (either stated or inferred
via reasoning), it is possible to check for such a possibility among a number of
superconcepts. The superconcept that satisfies such requirements is then chosen
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and designated as “Best Parent”. This strategy is based on our observation
of the pattern in which the classes and subclasses are usually organized in a
hierarchy within the ontology. A sample hierarchical arrangement of classes
within the ontology is depicted in figure 4.3.

In figure 4.3, we can see that the concept “CheeseyPizza” has multiple supercon-
cepts (either stated or implied) – “Pizza”, “Food” & “DomainConcept”. The con-
cept name “CheeseyPizza” is made up of a concatenation of the words “Cheesey”
and “Pizza”, of which the terminally concatenating word “Pizza” is also the name
of one of its superconcepts – the “Pizza” concept. As per our discussion above,
we then designate the concept “Pizza” as the “Best Parent” for the concept
“CheeseyPizza”.

Once we identify the “BestParent” for a given concept, we generate its “Simpli-
fied Concept Name” by creating a new string which is essentially a substring
of its name whereby the name of the “Best Parent” concept that was termi-
nally present is removed. For the example of “CheeseyPizza” concept discussed
above, the resulting value for “Simplified Concept Name” is “Cheesey”; ob-
tained by removing its terminally concatenated word “Pizza” – the name of its
“Best Parent” concept.

Since any ontology hierarchy is usually designed to arrange concepts in such a
fashion that subconcepts specialize their superconcept, it is logical to assume
that the “Simplified Concept Name” retrieved after processing the concept
against its “Best Parent” name serves as a lexical item modifying (specializing)
that “Best Parent” name. This allows us to model the features describing a
concept (in our feature structure representation) in terms of base form and its
modifier. The base form is set to the value of the “Best Parent” name and the
modifier is set to the value of the “Simplified Concept Name” . For example,
for the concept “CheeseyPizza” , we have its base form set to “Pizza” and its
modifier set to “Cheesey”. We will refer this strategy of generating the base form
and modifier for a given concept as “Concept Lexicalisation Algorithm” in
the rest of this chapter.

In case the “Best Parent” can’t be computed for a given concept, its base
form is set to the concept name itself and the modifier feature is removed.
For example, the superconcepts (stated or implied) available for the concept
“CheeseTopping” in the pizza ontology are “PizzaTopping”, “VegetarianTopping”,
“Food” & “DomainConcept”; none of which make its “Best Parent” . Thus, for
the concept “CheeseTopping”, we have its base form set to “CheeseTopping” and
there is no modifier.

Below, we present the feature structures that we design for each category of
axioms. The feature structure for each category displays a list of features with
their corresponding values.
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Figure 4.3: An Example Ontology Concept Hierarchy
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Feature Structure for Stated Subsumers with Named Concept

For this category of axioms, we designate feature structures consisting of fea-
tures “Subject”, “Object” & “ObjectModifier”. From the statement expressing
the axiom, we identify the concepts that will serve the linguistic roles of Sub-
ject and Object in the output sentence to be generated. Once such Subject and
Object concepts are determined, we carry out the “Concept Lexicalisation
Algorithm” over the Object concept to generate values for the “Object” and
“ObjectModifier” features in the feature structure. The value for the “Sub-
ject” feature is simply set to the name of the concept representing the Subject.
We present an example feature structure below.

Stated Subsumers with Named Concept

Statement Prototype SubClassOf(<Concept_X> <Concept_Y>)

Feature Structure Prototype

 Subject : Concept_X
Object : BestParent of Concept_Y
ObjectModifier : Simplified Concept_Y


Example Statement SubClassOf(<Cajun> <NamedPizza>)

Example Feature Structure

 Subject : CajunObject : Pizza
ObjectModifier : Named


Table 4.1: F.S. for Stated Subsumers with Named Concept, Case:I

However, there can be Object concepts (like “Pizza” in the example presented in
table 4.2 below), whose “Best Parent” can’t be computed (the superconcepts
for the concept “Pizza” are “Food” & “DomainConcept”; none of which make
it’s “Best Parent”). In such cases, we only have the “Object” feature in the
feature structure whose value is simply set to the name of the concept.

Stated Subsumers with Named Concept

Statement Prototype SubClassOf(<Concept_X> <Concept_Y>)

Feature Structure Prototype
[
Subject : Concept_X
Object : Concept_Y

]
Example Statement SubClassOf(<VegetarianPizza> <Pizza>)

Example Feature Structure
[
Subject : VegetarianPizza
Object : Pizza

]
Table 4.2: F.S. for Stated Subsumers with Named Concept, Case:II
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Feature Structure for Stated Subsumers with Property Restriction

For this category of axioms, we simply seek to correspond the concepts and
relation present within the axiom statement to a set of features – Subject,
Verb and Object. Also, this category of axioms can be further specialized into
3 sub categories. They are:

• Universal Restrictions

A universal restriction axiom restricts a concept (Subject) participating
in a relation (Verb) over a concept (Object) or over a set of concepts (Ob-
jects). When a set of concepts are involved, we represent them in a comma
separated values (CSV) fashion. An example for each case is presented
below.

Stated Subsumers with Property Restriction(Universal)

Statement Prototype SubClassOf(<Concept_X> ObjectAllValuesFrom
(<Relation_A> <Concept_Y>))

Feature Structure Prototype

 Subject : Concept_X
Verb : Relation_A
Object : Concept_Y


Example Statement SubClassOf(<RealItalianPizza> ObjectAllValues-

From(<hasBase> <ThinAndCrispyBase>))

Example Feature Structure

 Subject : RealItalianPizza
Verb : hasBase
Object : ThinAndCrispyBase


Table 4.3: F.S. for Stated Subsumers with Universal Restriction, Case:I
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Stated Subsumers with Property Restriction(Universal)

Statement Prototype SubClassOf(<Concept_X> ObjectAllValuesFrom
(<Relation_A> ObjectUnionOf (<Concept_Y>+

)))

Feature Structure Prototype

 Subject : Concept_X
Verb : Relation_A
Object : CSV of concepts in (Concept_Y )+


Example Statement SubClassOf(<Rosa> ObjectAllValuesFrom

(<hasTopping> ObjectUnionOf (<GorgonzolaTop-
ping> <MozzarellaTopping> <TomatoTopping>)))

Example Feature Structure


Subject : Rosa
Verb : hasTopping
Object : GorgonzolaTopping,

MozzarellaTopping,
TomatoTopping


Table 4.4: F.S. for Stated Subsumers with Universal Restriction, Case:II

• Existential Restrictions

We design the following feature structure to represent the category of
existential restriction axioms which restrict a concept (Subject) partici-
pating in a relation (Verb) over another concept (Object).

Stated Subsumers with Property Restriction(Existential)

Statement Prototype SubClassOf (<Concept_X> ObjectSomeValuesFrom
(<Relation_A> <Concept_Y>))

Feature Structure Prototype

 Subject : Concept_X
Verb : Relation_A
Object : Concept_Y


Example Statement SubClassOf (<Margherita> ObjectSomeValuesFrom

(<hasTopping> <TomatoTopping>))

Example Feature Structure

 Subject : Margherita
Verb : hasTopping
Object : TomatoTopping


Table 4.5: F.S. for Stated Subsumers with Existential Restriction
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• HasValue Restrictions

Similarly, we have the following feature structure to represent the cat-
egory of HasValue restrictions which restrict a concept (Subject) partici-
pating in a relation (Verb) over a particular instance (Object) of a concept.

Stated Subsumers with Property Restriction(HasValue)

Statement Prototype SubClassOf (<Concept_X> ObjectHasValue (<Re-
lation_A> <Concept_Y>))

Feature Structure Prototype

 Subject : Concept_X
Verb : Relation_A
Object : Concept_Y


Example Statement SubClassOf (<Napoletana> ObjectHasValue (<has-

CountryOfOrigin> <Italy>))

Example Feature Structure

 Subject : Napoletana
Verb : hasCountryOfOrigin
Object : Italy


Table 4.6: F.S. for Stated Subsumers with HasValue Restriction

Feature Structure for Implied Subsumers with Named Concept

Implied subsumers for a concept are obtained by reasoning. An implied sub-
sumer inferred for a concept can in turn be equivalent to some other concepts
in the ontology. Based on this observation, we present a feature structure rep-
resentation for two cases – the first, where the implied subsumer is simply a
named concept in the ontology and the second, where the subsumer concept is
a named concept which in turn is equivalent to one or more other concepts in
the ontology.

In both cases, we seek to compute lexical items for the features “Object” and
“ObjectModifier” based on our “Concept Lexicalisation Algorithm” . In
case where the subsumer is simply a named concept in the ontology, the task
of computing lexical items for those features is similar to the one we described
earlier for the category of “Stated Subsumers with Named Concept” axioms.
An example for cases, where the “Best Parent” can (for example, the con-
cept “ThinAndCrispyPizza” in table 4.7) and can’t (for example, the concept
“SpicyTopping” in table 4.8) be computed is shown separately below.
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Implied Subsumers with Named Concept

Statement Prototype SubClassOf (<Concept_X> <Concept_Y>)

Feature Structure Prototype

 Subject : Concept_X
Object : BestParent of Concept_Y
ObjectModifier : Simplified Concept_Y


Example Statement SubClassOf (<RealItalianPizza>

<ThinAndCrispyPizza>)

Example Feature Structure

 Subject : RealItalianPizza
Object : Pizza
ObjectModifier : ThinAndCrispy


Table 4.7: F.S. for Implied Subsumers with Named Concept, Case:I

Implied Subsumers with Named Concept

Statement Prototype SubClassOf (<Concept_X> <Concept_Y>)

Feature Structure Prototype
[
Subject : Concept_X
Object : Concept_Y

]
Example Statement SubClassOf (<HotGreenPepperTopping>

<SpicyTopping>)

Example Feature Structure
[
Subject : HotGreenPepperTopping
Object : SpicyTopping

]
Table 4.8: F.S. for Implied Subsumers with Named Concept, Case:II

However, in cases where the subsumer concept is also equivalent to some other
named concept in the ontology (for example, the subsumer concept “SpicyPizza”
is also equivalent to another named concept “SpicyPizzaEquivalent” in table 4.9
below), the task become a bit more involved. First, since the subsumer contains
equivalent concepts, our Best Parent will be the non empty string retrieved
from either one of those equivalent concepts. Next, we generate the possible
“Simplified Concept Name” for each of those equivalent concepts by pro-
cessing them against the “Best Parent” , in turn. Then we set the Object-
Modifier feature’s value by arranging those “Simplified Concept Name”s
in an order where the ones for which the simplification was not successful are
placed earlier followed by the ones for which the simplification was successful
(such order promotes readability in the output sentence to be generated). For
example, we present the values for the “Object” and “ObjectModifier” fea-
tures in table 4.9 below, based on the fact that the “Best Parent” for the
concept “SpicyPizzaEquivalent” could not be computed but the “Best Parent”
computed for the concept “SpicyPizza” was “Pizza”.
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Implied Subsumers with Named Concept

Statement Prototype SubClassOf (<Concept_X>
<Concept_Y=Concept_Z=...>)

Feature Structure Prototype

 Subject : Concept_X
Object : BestParent
ObjectModifier : Simplified Concept_Y


Example Statement SubClassOf (<Cajun>

<SpicyPizza=SpicyPizzaEquivalent>)

Example Feature Structure


Subject : Cajun
Object : Pizza
ObjectModifier : SpicyPizzaEquivalent

/Spicy


Table 4.9: F.S. for Implied Subsumers with Named Concept, Case:III

Feature Structure for Stated Equivalents with Property Restriction

Equivalent class axioms are the ones which define a given concept (defined con-
cept) in terms of some other concept (defining concept) in the ontology. Thus it
is logical to assume that the defined concept is a special variant of the defining
concept. Along this line of thought, we identify the features “Subject” and
“SubjectDescriptor” to be present in the feature structure corresponding to
this category of axioms. The value for the “Subject” is set to the defined con-
cept’s name and the value for the “SubjectDescriptor” feature is set to the
defining concept’s name. Eventually, the value set for “SubjectDescriptor”
feature will be mapped to a sentence of the form "X is a SubjectDescriptor" in
the output. Other features in this feature structure include Verb and Object.

Also, this category of axioms can be specialized into further three sub categories.
They are:

• Universal Restrictions

A universal restriction axiom restricts a concept (Subject) participating
in a relation (Verb) over a single concept (Object) or over a set of con-
cepts (Objects). When a set of concepts are involved, we represent them
in a comma separated values (CSV) fashion. An example for each case is
presented below.
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Stated Equivalents with Property Restriction(Universal)

Statement Prototype EquivalentClasses (<Concept_X> ObjectIntersec-
tionOf (<Concept_Y> ObjectAllValuesFrom (<Re-
lation_A> <Concept_Z>)))

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A
Object : Concept_Z


Example Statement EquivalentClasses (<ThinAndCrispyPizza> Ob-

jectIntersectionOf (<Pizza> ObjectAllValuesFrom
(<hasBase> <ThinAndCrispyBase>)))

Example Feature Structure


Subject : ThinAndCrispyPizza
SubjectDescriptor : Pizza
Verb : hasBase
Object : ThinAndCrispyBase


Table 4.10: F.S. for Stated Equivalents with Universal Restriction, Case:I

Stated Equivalents with Property Restriction(Universal)

Statement Prototype EquivalentClasses (<Concept_X> ObjectIntersec-
tionOf (<Concept_Y> ObjectAllValuesFrom (<Re-
lation_A> ObjectUnionOf (<Concept_Z>+))) )

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A
Object : CSV of concepts in (Concept_Z )+


Example Statement EquivalentClasses (<VegetarianPizzaEquiva-

lent2> ObjectIntersectionOf (<Pizza> Objec-
tAllValuesFrom (<hasTopping> ObjectUnionOf
(<CheeseTopping> <FruitTopping> <Herb-
SpiceTopping> <NutTopping> <SauceTopping>
<VegetableTopping>))))

Example Feature Structure



Subject : VegetarianPizzaEquivalent2
SubjectDescriptor : Pizza
Verb : hasTopping
Object : CheeseTopping,

FruitTopping,
HerbSpiceTopping,
NutTopping,
SauceTopping,
VegetableTopping


Table 4.11: F.S. for Stated Equivalents with Universal Restriction, Case:II
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• Existential Restrictions

An existential restriction axiom restricts a concept (Subject) participat-
ing in a relation (Verb) simply over a concept (Object) or over a concept
(Object) which is further restricted with regards to its participation with
some other concepts via some other relation in the ontology. In the later
case, where the Object is further restricted, we designate a new feature
structure as the value for the Object feature in the main feature struc-
ture. An example for each case is shown below.

Stated Equivalents with Property Restriction(Existential)

Statement Prototype EquivalentClasses (<Concept_X> ObjectInter-
sectionOf (<Concept_Y> ObjectSomeValuesFrom
(<Relation_A> <Concept_Z>)))

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A
Object : Concept_Z


Example Statement EquivalentClasses (<MeatyPizza> ObjectIntersec-

tionOf (<Pizza> ObjectSomeValuesFrom (<hasTop-
ping> <MeatTopping>)))

Example Feature Structure


Subject : MeatyPizza
SubjectDescriptor : Pizza
Verb : hasTopping
Object : MeatTopping


Table 4.12: F.S. for Stated Equivalents with Existential Restriction, Case:I
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Stated Equivalents with Property Restriction(Existential)

Statement Prototype EquivalentClasses (<Concept_X> ObjectInter-
sectionOf (<Concept_Y> ObjectSomeValuesFrom
(<Relation_A> ObjectIntersectionOf (<Con-
cept_Z> ObjectSomeValuesFrom (<Relation_B>
<Concept_V>)))))

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A

Object :

 Subj_1 : Concept_Z
Verb_1 : Relation_B
Obj_1 : Concept_V




Example Statement EquivalentClasses (<SpicyPizzaEquivalent> Object-

IntersectionOf (<Pizza> ObjectSomeValuesFrom
(<hasTopping> ObjectIntersectionOf (<PizzaTop-
ping> ObjectSomeValuesFrom (<hasSpiciness>
<Hot>)))))

Example Feature Structure


Subject : SpicyPizzaEquivalent
SubjectDescriptor : Pizza
Verb : hasTopping

Object :

 Subj_1 : PizzaTopping
Verb_1 : hasSpiciness
Obj_1 : Hot




Table 4.13: F.S. for Stated Equivalents with Existential Restriction, Case:II

• HasValue Restrictions

Similarly, we have the following feature structure to represent the cat-
egory of HasValue restrictions which restrict a concept (Subject) partici-
pating in a relation (Verb) over a particular instance (Object) of a concept.
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Stated Equivalents with Property Restriction(HasValue)

Statement Prototype EquivalentClasses (<Concept_X> ObjectIntersec-
tionOf (<Concept_Y> ObjectHasValue (<Rela-
tion_A> <Concept_Z>)))

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A
Object : Concept_Z


Example Statement EquivalentClasses (<RealItalianPizza> ObjectInter-

sectionOf (<Pizza> ObjectHasValue (<hasCountry-
OfOrigin> <Italy>)))

Example Feature Structure


Subject : RealItalianPizza
SubjectDescriptor : Pizza
Verb : hasCountryOfOrigin
Object : Italy


Table 4.14: F.S. for Stated Equivalents with HasValue Restriction

Feature Structure for Stated Equivalents with Enumeration

An enumeration axiom defines a given concept (Subject) by exhaustively enu-
merating all of its instances (Object). The feature structure we designed to
represent enumeration axioms is shown below.

Stated Equivalents with Enumeration

Statement Prototype EquivalentClasses (<Concept_X> ObjectIn-
tersectionOf (<Concept_Y> ObjectOneOf
(<Concept_Z>+)))

Feature Structure Prototype

 Subject : Concept_X
SubjectDescriptor : Concept_Y
Object : CSV of concepts in (Concept_Z )+


Example Statement EquivalentClasses (<Country> ObjectIntersectionOf

(<DomainConcept> ObjectOneOf (<America>
<England> <France> <Germany> <Italy>)))

Example Feature Structure



Subject : Country
SubjectDescriptor : DomainConcept
Object : America,

England,
France,
Germany,
Italy


Table 4.15: F.S. for Stated Equivalents with Enumeration
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Feature Structure for Stated Equivalents with Cardinality Restrictions

Cardinality restriction axioms state the fact that a given concept (Subject)
can participate for a specified (min, max or exact) number of times in a given
relation (Verb) with another concept (Object). Thus, in addition to the usual
features, we have two additional features – CardinalityType and Cardinali-
tyValue in the feature structures representing this category of axioms. Below,
we present a generic prototype with an example feature structure specific to the
“min” type cardinality.

Feature Structure for Stated Equivalents with Cardinality

Statement Prototype EquivalentClasses (<Concept_X> ObjectIntersec-
tionOf (<Concept_Y> ObjectMinCardinality (Inte-
ger_Value <Relation_A> <Concept_Z>)))

Feature Structure Prototype


Subject : Concept_X
SubjectDescriptor : Concept_Y
Verb : Relation_A
Object : Concept_Z
CardinalityType : Min/Max/Exact
CardinalityValue : Integer_Value


Example Statement EquivalentClasses (<InterestingPizza> ObjectIn-

tersectionOf (<Pizza> ObjectMinCardinality (3
<hasTopping> owl:Thing)))

Example Feature Structure


Subject : InterestingPizza
SubjectDescriptor : Pizza
Verb : hasTopping
Object : owl : Thing
CardinalityType : Min
CardinalityValue : 3


Table 4.16: F.S. for Stated Equivalents with Cardinality Restrictions

Feature Structure for Stated Equivalents with Set Operator

Two types of Set Operator were encountered in the ontology –ObjectUnionOf
andObjectComplementOf. We present the feature structure for each of those
respectively, below.
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Stated Equivalents with Set Operator(ObjectUnionOf)

Statement Prototype EquivalentClasses (<Concept_X> ObjectIn-
tersectionOf (<Concept_Y> ObjectUnionOf
(<Concept_Z>+)))

Feature Structure Prototype

 Subject : Concept_X
SubjectDescriptor : Concept_Y
Object : CSV of concepts in (Concept_Z )+


Example Statement EquivalentClasses (<VegetarianTopping> Object-

IntersectionOf (<PizzaTopping> ObjectUnionOf
(<CheeseTopping> <FruitTopping> <Herb-
SpiceTopping> <NutTopping> <SauceTopping>
<VegetableTopping>)))

Example Feature Structure



Subject : VegetarianTopping
SubjectDescriptor : PizzaTopping
Object : CheeseTopping,

FruitTopping,
HerbSpiceTopping,
NutTopping,
SauceTopping,
VegetableTopping


Table 4.17: F.S. for Stated Equivalents with ObjectUnionOf Operator

Stated Equivalents with Set Operator(ObjectComplementOf)

Statement Prototype EquivalentClasses (<Concept_X> ObjectInter-
sectionOf (<Concept_Y> ObjectComplementOf
(<Concept_Z>)))

Feature Structure Prototype

 Subject : Concept_X
SubjectDescriptor : Concept_Y
Object : Concept_Z


Example Statement EquivalentClasses (<NonVegetarianPizza> Ob-

jectIntersectionOf (<Pizza> ObjectComplementOf
(<VegetarianPizza>)))

Example Feature Structure

 Subject : NonVegetarianPizza
SubjectDescriptor : Pizza
Object : VegetarianPizza


Table 4.18: F.S. for Stated Equivalents with ObjectComplementOf Operator
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Feature Structure for Implied Equivalents with Named Concept

The implied equivalent named concepts for a given concept are obtained by
reasoning. We map the concept names present within the axiom to a set of fea-
tures – Subject (holding the name of the given concept) and Object (holding
the name of equivalent concept for the given concept). An example representing
the feature structure for this category of statements is presented below.

Implied Equivalents with Named Concept

Statement Prototype EquivalentClasses (<Concept_X> <Concept_Y>)

Feature Structure Prototype
[
Subject : Concept_X
Object : Concept_Y

]
Example Statement EquivalentClasses (<SpicyPizzaEquivalent>

<SpicyPizza>)

Example Feature Structure
[
Subject : SpicyPizzaEquivalent
Object : SpicyPizza

]
Table 4.19: F.S. for Implied Equivalents with Named Concept

Feature Structure for Disjoints

Here too, we map the concept names present within the axiom to a set of
features – Subject and Object. An example representing the feature struc-
ture for this category of statements is presented below.

Disjoints

Statement Prototype DisjointClasses (<Concept_X> <Concept_Y>)

Feature Structure Prototype
[
Subject : Concept_X
Object : Concept_Y

]
Example Statement DisjointClasses (<Napoletana> <Parmense>)

Example Feature Structure
[
Subject : Napoletana
Object : Parmense

]
Table 4.20: F.S. for Disjoints
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Feature Structure for Siblings

As discussed earlier in section 4.2, we identify the siblings of a concept with
reference to its superconcept (referred to as Context in our earlier example).
We compute the “Best Parent” for the superconcept and carry out our “Con-
cept Lexicalisation Algorithm” to generate lexical items for the “Context”
and “ContextModifier” features. Further, we assign the Object feature with
a list (as CSV) of sibling concept names identified for the given concept in the
Subject feature. An example feature structure is shown below.

Siblings

Statement Prototype SiblingsOf (<Concept_X> <Concept_Y>
<(Concept_Z)+>)

Feature Structure Prototype


Subject : Concept_X
Context : Best Parent of Concept_Y
ContextModifier : Simplified Concept_Y
Object : CSV of concepts in (Concept_Z )+


Example Statement SiblingsOf (<SloppyGiuseppe> <MeatyPizza>

<Parmense,AmericanHot,LaReine,SloppyGiuseppe>)

Example Feature Structure



Subject : SloppyGiuseppe
Context : Pizza
ContextModifier : Meaty
Object : Parmense,

AmericanHot,
LaReine,
SloppyGiuseppe


Table 4.21: F.S. for Siblings

4.4.2 Aggregation

Aggregation is the task of grouping two or more simple structures to generate
a single sentence, a frequent phenomenon in natural languages. For example,
instead of having sentences like “It is a Friday Afternoon” & “It is a lovely
Afternoon”, it is preferable to have a single sentence, like “It is a lovely Friday
Afternoon”, generated by aggregating the facts present in both of the sentences.

A lot of work on aggregation has focused on aggregating syntactic structures.
By contrast, in our work, we identify aggregation of possible feature structures
from the PreLexicalisation phase based on the semantics of what they express.
The main utility of doing aggregation at this pre-syntactic level is that much
of our aggregation decisions depend on the semantics – we don’t want to risk
aggregating structures that are syntactically eligible but belong to different con-
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cepts, for example. We use a notation of array (shown as [ ] brackets) to describe
and process the aggregated contents (so as to contrast it to the CSV list that
we have used earlier for representing a collection of items) in discussion of our
aggregation strategies of feature structures for each category of axioms, below.

Aggregation of Stated and Implied Subsumers with Named Concept

A concept may have one or more named concepts that are explicitly stated
to be its subsumers in the ontology hierarchy. Also, via reasoning, it is possible
that a given concept has more named subsumers. Since both of these categories
of axioms describe the set of named subsumers (either stated or implied), we
seek to aggregate them into a single feature structure. In order to aggregate
all such named subsumers available for a given concept, first, we retrieve all
the feature structures corresponding to the stated as well as implied category
of subsumers with named concept axioms in its document plan tree. Next, we
generate a new array and populate it with the value assigned to the Object-
Modifier feature in each of those feature structures retrieved. Subsequently,
we generate a new feature structure consisting of features Subject, Object and
ObjectModifier. This new feature structure will have its value for the Sub-
ject feature set to the common value of the Subject feature of the retrieved
feature structures; value for the Object feature set to the common value of the
Object feature of the retrieved feature structures and value for the Object-
Modifier feature set to the newly formed array. The feature structures are
now said to be aggregated and for further processing, we only consider this new
feature structure yielded after aggregation. However, for the concepts for which
no more than one named subsumer can be retrieved (because no more named
subsumers could be inferred via reasoning), aggregation is not feasible and we
preserve the single feature structure (for the stated named subsumer) obtained
from the PreLexicalisation phase for further processing.

Let us consider an example. For the concept “Napoletana” in the pizza ontology,
the concept “NamedPizza” is stated to be it’s subsumer and the concepts “Inter-
estingPizza”, “CheeseyPizza”, “RealItalianPizza” and “NonVegetarianPizza” are
inferred to be its subsumers. Subsequently, during our PreLexicalisation phase,
we had the following feature structures to represent them, respectively. Subject : Napoletana

Object : Pizza
ObjectModifier : Named

 &

 Subject : Napoletana
Object : Pizza
ObjectModifier : Interesting

 &

 Subject : Napoletana
Object : Pizza
ObjectModifier : Cheesey

 &

 Subject : Napoletana
Object : Pizza
ObjectModifier : RealItalian

 &

 Subject : Napoletana
Object : Pizza
ObjectModifier : NonVegetarian
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Now, during the aggregation phase, the following new feature structure is gen-
erated and preserved for further processing; eliminating the above five feature
structures.

 Subject : Napoletana
Object : Pizza
ObjectModifier : [ Named, Interesting, Cheesey, RealItalian, NonVegetarian ]



Aggregation of Stated Subsumers with Property Restriction

For this category of class axioms, earlier, we identified three different subcate-
gories – the Universal Restrictions, the Existential Restrictions & the HasValue
restrictions. Further, for each of these subcategories, we identified feature struc-
tures consisting of features – Subject, Verb & Object. Corresponding to each
subcategory, one or more axioms may be present for a given concept name in
an ontology. Our criteria in deciding the candidate axioms for aggregation task,
under each of those subcategories, is to identify the axioms which bear the same
value for the Verb feature in their feature structure.

Under each subcategory, we first classify the available feature structures (from
the PreLexicalisation stage) into separate groups; each group representing a
set of feature structures which have their Verb feature’s value in common.
There can be one or more such groups depending upon the variety of relations
(Verb) upon which the restrictions have been specified for the given concept.
Next, pertaining to each group, we designate a new array and a new feature
structure. The array is populated with the values retrieved for the Object
feature of the feature structures belonging to that group. The new feature
structure is composed of the feature Subject set to the common Subject of
the feature structures in the group; the feature Verb set to the common Verb
of feature structures in the group and the feature Object set to the newly
formed array in the group. The axioms are now said to be aggregated and
for further processing, we only consider these new feature structures yielded
after aggregation. However, for the feature structures for which aggregation
is not feasible because there are no multiple restriction axioms (of the same
subcategory type) specified over the same relation for the given concept, we
preserve them, without changes, for further processing. Based on this strategy,
we discuss below the aggregation carried out for each subcategory respectively.

• Universal Restrictions

None of the concepts in the pizza ontology have multiple universal re-
striction axioms specified over the same relation. Thus, no aggregation is
feasible for this subcategory of axioms, and we retain the feature struc-
tures obtained during the PreLexicalisation phase for further processing.
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For sake of generality, however, we present an imaginary example below
to represent aggregation of Universal restrictions – if we have the fol-
lowing two feature structures representing the universal restrictions for
the concept “Tree” participating in the relation “hasVertex” over the con-
cepts “AcylicVertex” (meaning that all vertices of a tree are acyclic) &
“TreeVertex” (meaning that all vertices of a tree are of type tree-vertex)
respectively Subject : TreeVerb : hasVertex

Object : AcylicVertex

 &

 Subject : TreeVerb : hasVertex
Object : TreeVertex


the following new aggregated feature structure would then be generated
(meaning that all vertices of a tree are both acyclic and of type tree-
vertex at the same time) and preserved for further processing; eliminating
the above two feature structures. Subject : TreeVerb : hasVertex

Object : [ AcylicVertex, TreeVertex ]


• Existential Restrictions

An example of aggregation carried out for feature structures representing
Existential Restrictions is presented below. The concept “Margherita”, in
the pizza ontology, has following axioms representing existential restric-
tions:

SubClassOf (<Margherita> ObjectSomeValuesFrom (<hasTopping>
<TomatoTopping>))

&
SubClassOf (<Margherita> ObjectSomeValuesFrom (<hasTopping>

<MozzarellaTopping>))

which were respectively represented via feature structures (during the
PreLexicalisation phase) as:

 Subject : Margherita
Verb : hasTopping
Object : TomatoTopping

 &

 Subject : Margherita
Verb : hasTopping
Object : MozzarellaTopping


Now, during the aggregation phase, the following new feature structure is
generated and preserved for further processing; eliminating the above two
feature structures. Subject : Margherita

Verb : hasTopping
Object : [ TomatoTopping, MozzarellaTopping ]
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• HasValue Restrictions

None of the concepts in the pizza ontology have multiple HasValue re-
striction axioms specified over the same relation. Thus, no aggregation is
feasible for this subcategory of axioms, and we retain the feature struc-
tures obtained during the PreLexicalisation phase for further processing.
When present, the multiple axioms specifying the HasValue restriction
over the same relation will have an aggregated feature structure resem-
bling the prototypes we just presented for the aggregation of universal and
existential restrictions.

Aggregation of Stated Equivalents with Property Restrictions

Since this category of axioms define concepts in terms of the relations they
participate in with other concepts in the ontology, usually, such definition of a
concept over a given relation is stated as a single axiom expressing all the con-
straints rather than as a set of multiple axioms, each one expressing a separate
constraint over the same relation. On a similar note, we also observe that none
of the concepts, under our classification of Stated Equivalents (which, in turn,
includes the subcategories Property Restrictions, Enumeration, Cardinality and
Set Operators), in the pizza ontology, bear multiple sets of equivalent axioms
defined over the same relation. Thus, we skip aggregation for this category of
axioms and retain the feature structures generated during the PreLexicalisation
phase for further processing.

Aggregation of Implied Equivalents with Named Concepts

For this category of axioms, from the PreLexicalisation phase, we have fea-
ture structures consisting of the feature Subject & Object. For aggregating
the set of feature structures, we first generate a new array and populate it with
the value of the Object feature from each of the feature structures retrieved.
Then we generate a new feature structure consisting of the feature Subject set
to the common value of Subject feature and the feature Object set to the
newly formed array. The feature structures are now said to be aggregated and
for further processing, we only consider this new feature structure yielded after
aggregation. However, for the concepts for which no more than one implied
Equivalent concept can be inferred, aggregation is not feasible and we preserve
the feature structure obtained during the PreLexicalisation phase for further
processing. For example, if we have the following two sets of feature structures
representing two different implied equivalent concepts, Y & Z respectively, for
the concept X:[

Subject : Concept_X
Object : Concept_Y

]
&
[
Subject : Concept_X
Object : Concept_Z

]
our aggregation will yield,
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[
Subject : Concept_X
Object : [ Concept_Y, Concept_Z ]

]
There are no concepts in the pizza ontology for which more than one equiv-
alent concept can be inferred. Thus, no aggregation is feasible and we retain
the feature structures obtained during the PreLexicalisation phase for further
processing.

Aggregation of Disjoints

There can be zero or more disjoint concepts for a given concept; accordingly,
there can be zero or more axioms stating the disjoint concepts. We aim to ag-
gregate multiple feature structures representing those axioms. First, we build
up a CSV list of concepts from the values assigned to the Object feature in
the feature structures. Next, we form a new feature structure consisting of fea-
ture Subject set to the common value of the Subject feature of the feature
structures retrieved and the feature Object set to the newly formed CSV list of
concepts. The feature structures are now said to be aggregated and for further
processing, we only consider this new feature structure yielded after aggrega-
tion. The concepts for which no more than one disjoint concept is available,
aggregation is not feasible and we preserve the feature structure obtained from
the PreLexicalisation phase for further processing.

Let us consider an example. For the concept “PrawnsTopping” in the pizza on-
tology, the concepts “MixedSeafoodTopping” and “AnchoviesTopping” are stated
to be its disjoint concepts. Subsequently, for the following feature structure that
we have from the PreLexicalisation phase[

Subject : PrawnsTopping
Object : MixedSeafoodTopping

]
&
[
Subject : PrawnsTopping
Object : AnchoviesTopping

]
we generate the following new aggregated feature structure eliminating the
above two feature structures; which is then preserved for further processing.[

Subject : PrawnsTopping
Object : [MixedSeafoodTopping, AnchoviesTopping ]

]
Aggregation of Siblings

During the PreLexicalisation phase, we designed the Siblings feature structure
to represent the siblings of a given concept under each of its different supercon-
cept (Context). Thus, even if we have multiple feature structure representing
the siblings for a given concept, all those feature structures specify the siblings
of the given concept under it’s different superconcepts Context. Hence no
aggregation of this category of axioms is feasible and we preserve the feature
structures from the PreLexicalisation phase for further processing.
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4.4.3 Lexicalisation Proper

The completion of Aggregation phase opens up an opportunity to generate fur-
ther lexical items; which was otherwise infeasible/unsuitable to obtain during
the PreLexicalisation phase. In particular, we attempt to generate lexical items
for the Verb features (whenever present) in the feature structures and as we
shall further discuss, identifying theVerb lexical item will facilitate in augment-
ing the information pertaining to theObject feature in those feature structures.
The need to postpone such activities until the aggregation phase has been com-
pleted stems from the fact that our Aggregation task is highly dependent on
the values assigned to Verb features in the feature structures; they served as
a criterion for judging whether an aggregation task should be carried out on
the available set of feature structures or not. Thus it was desirable that those
values come directly from the name (string) representing the relation in the ax-
iom and remain “intact” throughout the aggregation phase. Let us consider an
example. Suppose that a concept “X” has the following two axioms, both under
the category of “Stated Subsumers with Property Restriction (Existential)”.

SubClassOf (<Concept_X> ObjectSomeValuesFrom (<hasBase> <Concept_Y>))
&

SubClassOf (<Concept_X> ObjectSomeValuesFrom (<hasTopping> <Concept_Z>))

As per our strategy to generate the feature structures corresponding to these
statements at the PreLexicalisation phase, we would have the following feature
structures:  Subject : Concept_X

Verb : hasBase
Object : Concept_Y

 &

 Subject : Concept_X
Verb : hasTopping
Object : Concept_Z


Now, during the aggregation phase, these two feature structures can not be
aggregated as they don’t meet the criteria we defined earlier for aggregation –
they don’t bear the same value for the feature Verb.

Had we instead attempted to generate lexical items for theVerb features during
the PreLexicalisation phase itself, we would have possibly come up with the
same lexical item “has” (we will soon discuss our strategy to generate lexical
items from a relation name) for both of the relation names – “hasBase” and
“hasTopping” and the feature structures would look like:

 Subject : Concept_X
Verb : has
Object : Concept_Y

 &

 Subject : Concept_X
Verb : has
Object : Concept_Z


In such case, the criteria for aggregation would be fulfilled and accordingly these
two feature structures would have been aggregated to yield:
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 Subject : Concept_X
Verb : has
Object : [ Concept_Y, Concept_Z ]


which is misleading because it groups concepts that are restricted via different
relations into same group.

However, after the termination of the Aggregation phase, we already have sep-
arate groups of aggregated feature structures for separate relation names. Now,
it is safe to break down those relation names into lexical items suitable for our
task of natural language generation. The approach we implement in generating
lexical items to represent relation names is based on our observation that rela-
tion names in an ontology are either legitimate words (Verb) of English, such
as “knows”, “teaches” etc. or are made up of two or more concatenating words
(Verb followed by Noun or Adjective), such as “hasBase”, “hasTopping” etc. We
use a POS (Part of Speech) tagger, the Stanford POS Tagger3, to incrementally
look for substring which can be identified as the verb lexical item. For exam-
ple, in the string representing the relation name, “hasBase”, we incrementally
look for substrings (such as ‘h’, ‘ha’, ‘has’) until the POS tagger identifies that
the string “has” is a Verb and then we assign the Verb feature in the feature
structure to value of “has”.

Once the Verb is extracted from such concatenated strings, we use the remain-
der of the string to serve as our lexical item in augmenting the information
pertaining to the Object feature in the feature structure. We identify a new
feature named ObjectDescriptor to represent such lexical item in our feature
structure. Additionally, we check for the possibility of reforming the existing
value of the Object feature by removing its terminally concatenating word if
the word matches the lexical item just assigned for the ObjectDescriptor fea-
ture in the same feature structure. For example, if we have a feature structure
as follows:  Subject : Margherita

Verb : hasTopping
Object : TomatoTopping


we first determine the Verb lexical item to be “has”. Then, we set the value for
the ObjectDescriptor feature to “topping”. Finally, based on the observation
that the terminally concatenating word of the value assigned to the Object
feature is the same as the lexical item just assigned for the ObjectDescriptor
feature, we have the opportunity to reform the value of the Object feature and
set it to “tomato”. The above feature structure would then become:

Subject : Margherita
Verb : has
ObjectDescriptor : topping
Object : tomato


3Java implementation of Stanford POS Tagger is available at http://nlp.stanford.edu/

software/tagger.shtml
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Below, we discuss the changes brought about during the Lexicalisation Proper
phase in the feature structures corresponding to each category of axioms.

Lexicalisation Proper of Stated and Implied Subsumers with
Named Concept

For this category of axioms, we simply preserve the feature structure obtained
from the Aggregation phase for further processing.

Lexicalisation Proper of Stated Subsumers with
Property Restriction

Here we generate lexical item for the Verb and the ObjectDescriptor fea-
ture and check out for possibilities to reform the value assigned to the Object
feature. For example, the aggregated feature structure

 Subject : Margherita
Verb : hasTopping
Object : [ TomatoTopping, MozzarellaTopping ]


obtained after aggregation of existential restrictions on the concept “Margherita”
over the relation “hasTopping” during the Aggregation phase, now becomes:


Subject : Margherita
Verb : has
ObjectDescriptor : topping
Object : [ Tomato, Mozzarella ]


Lexicalisation Proper of Stated Equivalents with
Property Restriction

Here too, we generate lexical items for the Verb and the ObjectDescrip-
tor feature and check out for possibilities to reform the value assigned to the
Object feature. For example, for the feature structure representing universal
restrictions in table 4.11, we now have the following new feature structure.



Subject : VegetarianPizzaEquivalent2
SubjectDescriptor : Pizza
Verb : has
ObjectDescriptor : topping
Object : Cheese,

Fruit,
HerbSpice,
Nut,
Sauce,
Vegetable
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For the Existential Restriction subcategory, earlier, we prototyped two varieties
of feature structure, – the first in which the restriction is simply a concept and
the second in which the restriction is on a concept that is further restricted with
regards to its participation with some other concepts via some other relation
in the ontology. In the first case, we generate a lexical item for the Verb and
the ObjectDescriptor feature and check out for possibilities to reform the
value assigned to the Object feature. For example, for the feature structure
presented in table 4.12, we now have the following new feature structure.


Subject : MeatyPizza
SubjectDescriptor : Pizza
Verb : has
ObjectDescriptor : topping
Object : Meat


In the second case, we generate lexical items for the Verb and the ObjectDe-
scriptor feature in both the main feature structure representing the axiom as
well as in the nested feature structure representing the Object feature. Based
on the value of the ObjectDescriptor feature of the main feature structure,
we check for possibilities to reform the value assigned to the Subject feature of
the nested feature structure and based on the value of the ObjectDescriptor
feature of the nested feature structure, we check for the possibility to reform
the value assigned to the Object feature of the nested feature structure. For
example, we now have the following new feature structure for the one shown in
table 4.13. 

Subject : SpicyPizzaEquivalent
SubjectDescriptor : Pizza
Verb : has
ObjectDescriptor : topping

Object :


Subject : Pizza
Verb : has
ObjectDescriptor : Spiciness
Object : Hot




For the HasValue Restriction subcategory, we obtain lexical items for the Verb
and the ObjectDescriptor feature. For example, for the feature structure rep-
resenting HasValue restriction in table 4.14, we have the following new feature
structure. 

Subject : RealItalianPizza
SubjectDescriptor : Pizza
Verb : has
ObjectDescriptor : CountryofOrigin
Object : Italy
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Lexicalisation Proper of Stated Equivalents
with Enumeration

For this category of axioms, we simply preserve the feature structure obtained
from the Aggregation phase for further processing.

Lexicalisation Proper of Stated Equivalents with
Cardinality Restriction

We generate lexical items for the Verb and the ObjectDescriptor feature.
For example, for the feature structure presented in table 4.16, we now have the
following new feature structure.



Subject : InterestingPizza
SubjectDescriptor : Pizza
Verb : has
ObjectDescriptor : topping
Object : owl : Thing
CardinalityType : Min
CardinalityValue : 3


Lexicalisation Proper of Stated Equivalents with Set Operator,
Implied Equivalents with Named Concept, Disjoints and Siblings

For all of these category of axioms, we simply preserve the feature structure
obtained from their Aggregation phase for further processing.

4.5 Realisation

Realisation is the task of generating actual natural language sentences from the
intermediary (syntactic) representations obtained during the Micro Planning
phase. Developing an actual realisation module is outside the scope of this the-
sis. For a NLG developer, a number of general purpose realisation modules are
available to achieve such functionality. In particular, such modules facilitate in
transforming syntactic information into natural language text by taking care of
various syntactic (for example, the arrangement of Subject, Verb and Object
in a sentence), morphological (for example, the generation of inflected forms
of words, when required, such as the plural of child being children and not
childs) and orthographical (for example, placement of appropriate punctuation
marks in the sentence, such as placing a comma to describe an aggregation of
things) transformations that the contents from the Micro Planning phase need
to adhere to for generating grammatically valid sentences. Realisation has been
a widely studied area of NLG and there are now several wide coverage soft-
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ware packages available to a developer. Some examples include FUF/SURGE4,
OpenCCG5, SimpleNLG6 etc. We use SimpleNLG [15] for our task because of
its ease of understanding and simplicity of use. SimpleNLG also provides a java
based API which can be used to access its functionality from our programming
environment.

SimpleNLG has java classes which allow a programmer to specify the content
(such as Subject, Verb, Object, Modifiers, Tense, Preposition phrase etc) of a
sentence by setting values to the attributes in the classes. Once such attributes
are set, methods can be executed to generate output sentences; the package takes
care of the linguistic transformations and ensures grammatically well formed
sentences. For example, to generate the sentence “The quick brown fox jumps
over the lazy dog”, we identify the lexical items that will serve the role of Subject,
Subject modifier, Verb, Object, Object modifier etc. in the sentence and call
appropriate methods that will generate the given sentence. The code listing for
the example looks like:

/∗ Specify lexical items. ∗/

NPPhraseSpec subject = nlgFactory.createNounPhrase("fox");
subject.addPreModifier("quick");
subject.addPreModifier("brown");
subject. setSpecifier ("the");

VPPhraseSpec verb = nlgFactory.createVerbPhrase("jump");
NPPhraseSpec object = nlgFactory.createNounPhrase("dog");
object. setSpecifier ("the");
object.addPreModifier("lazy");

PPPhraseSpec prepphrase = nlgFactory.createPrepositionPhrase();
prepphrase.addComplement(object);
prepphrase.setPreposition("over");

/∗ Call appropriate methods ∗/

SPhraseSpec sentenceFrame = nlgFactory.createClause();
sentenceFrame.setSubject(subject);
sentenceFrame.setVerb(verb);
sentenceFrame.setComplement(prepphrase);

Our task during Realisation is thus to find a suitable strategy for mapping the
contents from our feature structures (under each category of axioms) to appro-
priate attributes in SimpleNLG classes and execute proper methods to generate

4http://www.cs.bgu.ac.il/surge/index.html
5http://openccg.sourceforge.net/
6http://code.google.com/p/simplenlg/



4.5. REALISATION 55

the corresponding sentences. This is guided by the results of an empirical survey
we carried out on identifying the way people prefer to structure facts, similar to
those present for each category of axioms in section 4.2, while generating natural
language sentences to describe them. We shall discuss our survey methodology
and conclusions derived from the survey in section 5.1 and 5.3. Based on results
of the survey, we then map our feature structures from the Micro Planning phase
into suitable SimpleNLG attributes and call appropriate methods to generate
sentences that will serve as response to the various types of factoid questions
we identified in section 3.3. We shall present sample questions and answers in
section 5.5.
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Chapter 5

Experiments and Results

We carried out an empirical study to identify the best strategies for rendering
knowledge present in ontologies to natural language text. The study was in the
form of a survey comprising several test cases. Each test case was designed to
convey the semantics behind a variety of class axioms (that we identified in sec-
tion 4.2), by providing an example scenario (in a fashion similar to the way facts
are organized in an ontology) around some commonplace concepts like pizza,
student, football team etc. For each test case, we asked the participants to gen-
erate a description of the concept based entirely on the facts provided for that
concept in the particular test case. The participants were free to make decisions
about what they want from the available facts to express, determine what lex-
ical items (words) they prefer to include in their statement (lexicalisation), if
one or more facts could be grouped while producing such statement (aggrega-
tion) and also the syntactic, morphological and orthographical transformation
(realisation) they wanted to use.

5.1 Survey Material

We designed a total of 8 test cases, each test case consisting of a set of facts.
We put efforts in presenting each test case as a set of linguistically expressed
facts (simple assertive sentences) while also flavoring it with the nature and
organization pattern of facts in ontology formalisms (presenting complex con-
cept names such as MeatyPizza, arranging the information so as to resemble
the hierarchal arrangement of facts in ontologies etc.). This makes it feasible to
target our survey among naive users who, solely based on the facts in test cases,
can guide us in realizing similar patterns of information in ontologies. Below,
we reproduce the various test cases that we presented to our participants during
the survey.
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Test Case I : Simplification of Concept Name (in Subject Role)

The aim of this test case is to find out if people prefer to generate base form
and modifier for the concept name that serves the linguistic role of Subject in
the output sentence to be generated, whenever there exists a possibility of iden-
tifying its “Best Parent” . For example, we provided the following facts to the
participants of the survey:

Fact Set 5.1: Simplification of Concept Name (in Subject Role)
Facts:

1. The following classes of PepperTopping are known:
a. GreenPepperTopping
b. JalapenoPepperTopping
c. SweetPepperTopping

and posed the question “Describe GreenPepperTopping”.

Test Case II : Simplification of Concept Name (in Object Role),
Expression of Named Subsumers and Possibilities of Aggregation

The aim of this test case is to two-folds. First, we aim to find out if people
prefer to generate base form and modifier for the concept name that serves the
linguistic role of Object in the output sentence to be generated, whenever there
exists a possibility of identifying its “Best Parent” . Second, we aim to iden-
tify the popular pattern of expressing subsumer information and their possible
aggregation in the output sentence. Accordingly, we provided following facts to
the participants of the survey:

Fact Set 5.2: Simplification of Concept Name (in Object Role)
Facts:

1. The following classes of Pizza are known:
a. DeliciousPizza
b. CheeseyPizza
c. VegetarianPizza
d. RealItalianPizza

2. Napoletana falls under the class of CheeseyPizza.
3. Napoletana falls under the class of VegetarianPizza.
4. Napoletana falls under the class of DeliciousPizza.
5. Napoletana falls under the class of RealItalianPizza.

and posed the question “Describe Napoletana”.
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Test Case III : Expression of Named Equivalents and Aggregation

The aim of this test case is to find out how people express the idea that a
given concept is logically equivalent to the other. In terms of OWL language,
equivalent concepts refer to the fact that the concepts involved describe exactly
the same set of instances. Accordingly, we designed our Fact Set 5.3 to present
participants with the concepts defining exactly the same set of instances, as
shown below.

Fact Set 5.3: Expression of Named Equivalents and Aggregation
Facts:

1. The following are all the known instances of WeekDays:
a. Monday
b. Tuesday
c. Wednesday
d. Thursday
e. Friday

2. The following are all the known instances of WorkingDays:
a. Monday
b. Tuesday
c. Wednesday
d. Thursday
e. Friday

3. The following are all the known instances of BusinessDays:
a. Monday
b. Tuesday
c. Wednesday
d. Thursday
e. Friday

We then asked the question “Describe WeekDays. (In particular, how do you
say that all of these terms - WeekDays, WorkingDays and BusinessDays express
equivalent concepts?)”.

Test Case IV : Expression of Universal Restriction

Universal Restrictions in OWL represent the “all or none” condition; meaning
that the instances of the concept for which the universal restriction is specified
upon a property X, can either only have relationships (via the property X) to
instances of a specific concept or not have any relationship (via the property
X) to any instances of any concepts at all.

We modeled our Fact Set 5.4 to represent the universal restriction over the
property “has free access to” specified for the instances of the concept “EUCiti-
zen” in relation to instances of the concept “EUCountries”, as shown below.
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Fact Set 5.4: Expression of Universal Restriction
Facts:

1. The following classes of Citizen are known:
a. EUCitizen
b. AmericanCitizen

2. The following classes of Countries are known:
a. EUCountries
b. NorthAmericanCountries

3. The following are all the known instances of EUCountries:
a. Italy
b. Norway
b. Spain
b. Hungary

4. The following are all the known instances of
NorthAmericanCountries:

a. United States
b. Canada
b. Mexico

5. Instances of EUCitizen can have free access to instances of
EUCountries only.

6. However, some instances of EUCitizen may not have any free
access rights (because the particular instance of EUCitizen
was a criminal, for example).

We then asked the question “Describe EUCitizen”.

Test Case V : Expression of Existential Restriction

Existential Restrictions in OWL represent the fact that all the instances of
the concept for which an existential restriction is specified upon a property X,
must at least participate in relationship (via the property X) with instances
of a specific concept and may participate in relationship (via the property X)
with instances of any other concept.

We modeled our Fact Set 5.5 to represent the existential restriction over the
property “has point of contact” specified for the instances of the concept “Stu-
dent” in relation to instances of the concept “PersonalContactAddress”, as shown
below.

Fact Set 5.5: Expression of Existential Restriction
Facts:

1. The following classes of Professionals are known:
a. Student
b. Professor

2. The following classes of ContactAddress are known:
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a. PersonalContactAddress
b. BusinessContactAddress

3. The following are all the known instances of
PersonalContactAddress:

a. HomeAddress
b. PersonalEmailAddress

4. The following are all the known instances of
BusinessContactAddress:

a. OfficeAddress
b. CorporateEmailAddress

5. Student always has at least one instance of
PersonalContactAddress as their point of contact.

6. In some cases, Student may also have some instances of
BusinessContactAddress as their point of contact.

We then asked the question “Describe Student”.

Test Case VI : Expression of Disjoints and Aggregation

Here, the aim is to find out how people express the idea that a given con-
cept is logically disjoint from other concepts. In OWL, disjoint concepts are the
ones which have no instances in common. Accordingly, we designed our Fact
Set 5.6 to present participants with concepts that had none of their instances
in common.

Fact Set 5.6: Expression of Disjoints and Aggregation
Facts:

1. The following classes of PopularFootballteam are known:
a. EnglishTeam
b. SpanishTeam
c. ItalianTeam

2. Some known instances of EnglishTeam are Chelsea and ManU.
3. Some known instances of SpanishTeam are RealMadrid and

Barcelona.
4. Some known instances of ItalianTeam are A.C. Milan and Juventus.
5. No instance of EnglishTeam is a SpanishTeam and vice versa.
6. No instance of EnglishTeam is an ItalianTeam and vice versa.

We then asked the question “Describe EnglishTeam”.

Test Case VII : Expression of Set Operators

Similarly, we designed a test case to identify the preferable pattern of expression
for set operations on concepts. For example, below is the test case we designed
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for identifying the preferred pattern for expression of the ObjectComplementOf
operator

Fact Set 5.7: Expression of Set Operators (ObjectComplementOf)
Facts:

1. The following classes of Pizza are known:
a. NonVegetarianPizza
b. VegetarianPizza

2. It is known that NonVegetarianPizza implies that the Pizza
is not a VegetarianPizza and vice versa.

by posing the question “Describe NonVegetarianPizza” to the participants of the
survey.

Test Case VIII : Expression of Siblings

To identify the pattern of expression people prefer in describing the information
about sibling concepts of a given concept, we designed a test case that would
express the sibling concepts for the concept “Parmense” under its different su-
perconcepts, “MeatyPizza” & “CheeseyPizza” as shown below.

Fact Set 5.8: Expression of Siblings and Aggregation
Facts:

1. The following classes of Pizza are known:
a. MeatyPizza
b. CheeseyPizza

2. The following classes of MeatyPizza are known:
a. AmericanHot
b. LaReine
c. SloppyGiuseppe
d. Parmense
e. Siciliana
f . PolloAdAstra

3. The following classes of CheeseyPizza are known:
a. Parmense
b. Soho
c. Napoletana
d. Caprina
e. LaReine
f . Rosa
g. Veneziana

We then asked the question “Describe Parmense. (In particular, how do you
express the idea that Parmense is one of the many other kinds under each of its
superclasses – MeatyPizza & CheeseyPizza?)”.
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5.2 Survey Procedure

We carried out the survey online, with recruitment from among personal ac-
quaintances, university mailing lists etc. In total, we had 13 participants who
responded to all of the test cases.

5.3 Survey Results

The responses from participants provide us with varying expressions in natural
language text for each of the test cases. Since the responses (from 13 partic-
ipants) under each test case are varied and subjective, it is only possible for
us to categorize the popular pattern of expression from the available responses
rather than the popular response itself. Thus, we classify all the available re-
sponses under each test cases into separate categories; each category containing
responses which follow the same general pattern (with few variations) of expres-
sion. In determining the set of responses that fall under the same category, we
tried to rely on intuition to come up with the most reasonable generalization
that would cover the largest subset of similar responses. Below, we present the
distinct categories of response patterns (with a sample response representative
of each pattern) observed along with their frequencies under each of the test
cases.

Results for Test Case I (Simplification of Concept Name (in Subject Role))

The concept name “GreenPepperTopping” will serve the role of Subject in the
output sentence to be generated. With regards to our aim of finding whether or
not people prefer to generate the base form and modifier for the concept name
in Subject role, we have the following statistics of results:

S.No. Pattern (Representative response) Frequency

1 GreenPepperTopping is a kind of PepperTopping 8

2 Green pepper topping is a kind of pepper topping. 2

3 It is a class of pepper topping. 3

Table 5.1: Results Statistics for Test Case I

From the above results, we observe that most of the participants preferred to
keep the concept name in the Subject role (i.e. GreenPepperTopping) intact.
Accordingly, we also keep the concept name in the Subject role intact when we
generate sentences during realisation.
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Results for Test Case II (Simplification of Concept Name (in Object Role),
Expression of Named Subsumers and Possibilities of Aggregation)

The concept names (“DeliciousPizza”, “CheeseyPizza”, “VegetarianPizza” and
“RealItalianPizza”) will serve the role of Object in the output sentence to be
generated. In terms of identifying whether or not people prefer to generate
base form and modifier for these concept names (in Object role), we have the
following statistics:

S.No. Pattern (Representative response) Frequency

1 Napoletana is a pizza that falls under the class of
cheesey, vegetarian, delicious and RealItalian pizza.

9

2 Napoletana is a CheeseyPizza but is also Vegetarian-
Pizza, DeliciousPizza and RealItalianPizza.

4

Table 5.2: Results Statistics for Test Case II : Simplification of Concept Name
(in Object Role)

Additionally, in terms of identifying the popular mode of expression for named
subsumers and their possibility of aggregation in the output sentence, we have
the following statistics:

S.No. Pattern (Representative response) Frequency

1 Napoletana is a pizza that falls under the class of
Cheesey, Vegetarian, Delicious and RealItalian pizza.

5

2 Napoletana is a pizza that is Cheesey, Vegetarian, De-
licious and RealItalian.

3

3 Napoletana is a CheeseyPizza but is also Vegetarian-
Pizza, DeliciousPizza and RealItalianPizza.

2

4 Napoletana is a cheesey pizza. Napoletana is a vegetar-
ian pizza. Napoletana is a delicious pizza. Napoletana
is a realitalian pizza.

1

5 Napoletana is pizza which has qualities sufficient to
place it in any and all known classes of pizza.

1

6 Napoletana is a pizza. 1

Table 5.3: Results Statistics for Test Case II : Expression of Named Subsumers
and Possibilities of Aggregation
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From the results in table 5.2, we can see that most of the participants preferred
to generate the base form and modifier for the concept names in Object role.
Similarly, the most popular pattern of expression of named subsumers among
the participants was the Pattern 1 in table 5.3. Also, we can see that almost
all (10 in total) participants preferred to aggregate all of the available named
subsumers while generating sentences. Based on these observations, we check
for possibilities to identify base form and modifier for concept names in Object
role, adopt the popular pattern to express named subsumers information and
aggregate the available named subsumers while generating sentences during re-
alisation.

Results for Test Case III (Expression of Named Equivalents and Aggregation)

From the answers obtained, we have the following statistics:

S.No. Pattern (Representative response) Frequency

1 An instance of WeekDays is also an instance of Work-
ingDays or BusinessDays.

5

2 WeekDays, WorkingDays and BusinessDays all include
the same instances.

4

3 WeekDays, WorkingDays and BusinessDays express the
same concept

2

4 WeekDays are the days when one works or makes busi-
ness.

1

5 BusinessDays, also known as WorkingDays, are Week-
Days.

1

Table 5.4: Results Statistics for Test Case III

Based on these observations, we follow the Pattern 1 in table 5.4 to generate
text describing and aggregating named equivalents during our realisation phase.

Results for Test Case IV (Expression of Universal Restriction)

The following are the statistics observed:
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S.No. Pattern (Representative response) Frequency

1 EUCitizen is a class of citizen that can have free access
to EU countries only. However, it might be the case
that some instances of EUCitizen don’t have any free
access rights at all.

5

2 EUCitizen usually have free access to EU countries only. 4

3 EUCitizen is a type of citizen that has free access to
EU countries only, unless otherwise specified.

2

4 A few response were irrelevant, like, EUCitizen has free
access to Norway.

2

Table 5.5: Results Statistics for Test Case IV

Accordingly, we choose the Pattern 1 in table 5.5 to generate text describing
universal restriction axioms during our realisation phase.

Results for Test Case V (Expression of Existential Restriction)

The following are the statistics obtained after categorizing the responses de-
scribing the existential restrictions obtained from the survey.

S.No. Pattern (Representative response) Frequency

1 Student is a class of professional that always has at least
one personal contact address and may also have other
types of point of contact.

5

2 A student always has one personal contact address.
Some students can also have other types of point of
contact.

4

3 Student is a type of Professionals that have an instance
of either PersonalContactAddress or BusinessContac-
tAddress as their point of contact.

2

4 A student can be contacted using PersonalContactAd-
dress or BusinessContactAddress.

2

Table 5.6: Results Statistics for Test Case V

Based on these observations, we choose the most popular pattern, i.e. Pattern
1 from table 5.6, to generate text describing existential restrictions during our
realisation phase.
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Results for Test Case VI (Expression of Disjoints and Aggregation)

Below, we present the statistics obtained after analyzing the responses collected
for the expression and aggregation of disjoint concepts from the survey.

S.No. Pattern (Representative response) Frequency

1 An EnglishTeam is not a SpanishTeam or an
ItalianTeam.

5

2 An EnglishTeam cannot be a SpanishTeam or an
ItalianTeam.

2

3 EnglishTeam is one of the kinds of popular football
team.

3

4 EnglishTeam is a PopularFootBallteam and is a class
on it’s own. It doesn’t fall under Spanish or Italian
teams.

1

5 EnglishTeam is a popular football team. 2

Table 5.7: Results Statistics for Test Case VI

From the statistics above, we identify the popular pattern of expression of dis-
joint concepts (Pattern 1 in table 5.7) and utilize the same in generating de-
scriptions of disjoint axioms during our realisation phase. Also, the statistics
reveal that aggregation of the disjoint concepts is desirable while generating our
sentences.

Results for Test Case VII (Expression of Set Operators)

The following were the statistics derived from the response collected for the
Test Case VII:

S.No. Pattern (Representative response) Frequency

1 A NonVegetarianPizza is a pizza that is not vegetarian. 6

2 NonVegetarianPizza is not a vegetarian pizza. 4

3 NonVegetarianPizza is a type of pizza that is mutually
exclusive with vegetarian pizza

1

4 A few responses were irrelevant, such as, NonVegetar-
ianPizza contains ingredients not found in vegetarian
pizza.

2

Table 5.8: Results Statistics for Test Case VII
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Subsequently, we use the popular pattern (Pattern 1 in table 5.8) during our
realisation phase.

Results for Test Case VIII (Expression of Siblings)

Finally, for this category of facts, we have the following statistics:

S.No. Pattern (Representative response) Frequency

1 As a meaty pizza, Parmense is similar to AmericanHot,
LaReine, SloppyGuiseppe etc. and as a cheesey pizza,
it is similar to Soho, Napoletana, Caprina etc.

5

2 Parmense falls under the class of meaty pizza like Amer-
icanHot, Siciliana etc. and under the class of cheesey
pizza like Rosa, Caprina etc.

2

3 Parmense, along with AmericanHot, LaReine, Slop-
pyGuiseppe etc. is a meaty pizza. It is also a cheesy
pizza along with Napoletana, Soho, Veneziana etc.

3

4 A few responses were non contextual, like, Parmense is
a meaty and cheesey pizza.

3

Table 5.9: Results Statistics for Test Case VIII

We use the popular pattern (Pattern 1 in table 5.9) to express the Siblings in-
formation during our realisation phase.

5.4 Application of Survey Results

We utilize the most popular pattern of expressions identified from each of the
Test Cases to model our realisation task. Equipped with the knowledge of lexical
items from the feature structures and identification of most preferred patterns
of expression from the survey, we now have sufficient information to set suitable
attributes and invoke appropriate methods of the SimpleNLG classes for gen-
erating textual output from our system. For example, from the Lexicalisation
Proper phase, we have the following feature structure representing the aggrega-
tion of stated and implied named subsumers for the concept “Napoletana”.

 Subject : Napoletana
Object : Pizza
ObjectModifier : [ Named, Interesting, Cheesey, RealItalian, NonVegetarian ]
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In the feature structure, we already have the information about the lexical
items that will serve the role of Subject, Object and Object modifier in the
output sentence to be generated. From the survey results, we also have the
information about the pattern suitable for description of named subsumers. We
can now map the lexical items from the feature structure to suit the pattern of
expression. Figure 5.1 shows a sample mapping from the feature structure for
named subsumers (of the concept “Napoletana”) to the pattern identified for the
expression of the named subsumers.

Figure 5.1: Sample mapping from Feature Structure to Expression Pattern

As discussed in section 4.5, generating this sentence within our programming
environment is carried out by calling appropriate methods of the SimpleNLG
realisation module. Similarly, the realisation of other set of feature structures
from the Lexicalisation Proper phase is guided by the corresponding patterns of
expression identified from the survey. In effect, we now have a complete modular
approach to generation of text from our feature structures.

In the following section, we present few sample outputs – sentences generated
from our system to respond to the variety of factoid questions. As per the
discussion in section 4.3.1, the answer to “What is X ?” question is generated by
processing all categories of axioms pertaining to the concept X (effectively, the
full document plan tree generated for the concept X ) and the answer to “How
to identify a X ?” question is generated by processing the category of equivalent
axioms (both stated and implied, when present) pertaining to the concept X
(effectively, the “Equivalents” portion of document plan tree generated for the
concept X ). Finally, the answer to “What are the varieties of X ?” question is
generated by the listing the named subconcepts (stated and implied) of the
concept X.
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5.5 Sample Results

Question: What is IceCream?

Answer: IceCream falls under the class of food. As a food, IceCream is similar
to Pizza, PizzaTopping and PizzaBase. IceCream always has at least one
fruit topping and may also have other types of toppings. An IceCream is
not a Pizza or a PizzaBase or a PizzaTopping.

Question: What is VegetarianPizzaEquivalent2?

Answer: VegetarianPizzaEquivalent2 is a pizza that falls under the class of
vegetarian pizza. An instance of VegetarianPizzaEquivalent2 is also an
instance of VegetarianPizzaEquivalent1. VegetarianPizzaEquivalent2 is a
class of pizza that can have toppings of cheese, fruit, herbspice, nut, sauce
and vegetable only. However, it might be the case that some instances of
VegetarianPizzaEquivalent2 don’t have any toppings at all.

Question: What is RealItalianPizza?

Answer: RealItalianPizza is a pizza that falls under the class of thinandcrispy
pizza. RealItalianPizza can have base of thinandcrispy only. However, it
might be the case that some instances of RealItalianPizza don’t have any
base at all. RealItalianPizza has Italy as it’s countryoforigin.

Question: What is SpicyPizzaEquivalent?

Answer: SpicyPizzaEquivalent falls under the class of pizza. As a pizza, SpicyP-
izzaEquivalent is similar to NamedPizza, NonVegetarianPizza, Interesting-
Pizza etc. An instance of SpicyPizzaEquivalent is also an instance of spicy
pizza. SpicyPizzaEquivalent is a class of pizza that always has at least one
pizza topping of hot spice and may also have other types of toppings.
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Question: What is Rosa?

Answer: Rosa is a pizza that falls under the class of named, VegetarianPizzaE-
quivalent1/VegetarianPizzaEquivalent2, interesting and cheesey pizza. As
a named pizza, Rosa is similar to SloppyGiuseppe, FourSeasons, Unclosed-
Pizza etc., as a VegetarianPizzaEquivalent1/VegetarianPizzaEquivalent2,
it is similar to Soho, PrinceCarlo, Giardiniera etc., as an interesting pizza,
it is similar to Mushroom, AmericanHot, LaReine etc. and as a cheesey
pizza, it is similar to Capricciosa, Veneziana, Parmense etc.

Rosa always has at least one mozzarella with gorgonzola and tomato top-
ping and may also have other types of toppings. Rosa can have toppings
of gorgonzola, mozzarella and tomato only. However, it might be the case
that some instances of Rosa don’t have any toppings at all. A Rosa is not
a Giardiniera or a Capricciosa or a PrinceCarlo or a QuattroFormaggi or
a LaReine or a Veneziana or a Napoletana or a Mushroom or a Sloppy-
Giuseppe or a Caprina or a UnclosedPizza or a American or a Fiorentina
or a Parmense or a FruttiDiMare or a PolloAdAstra or a FourSeasons or
a AmericanHot or a Soho or a Siciliana or a Cajun or a Margherita.

Question: How to identify a MeatyPizza?

Answer: Any pizza that has at least one meat topping is a MeatyPizza.

Question: How to identify a RealItalianPizza?

Answer: Any pizza that has Italy as it’s countryoforigin is a RealItalianPizza.

Question: How to identify an InterestingPizza?

Answer: Any pizza that has a minimum of 3 different toppings is an Interest-
ingPizza.

Question: How to identify a NonVegetarianPizza?

Answer: Any pizza that is not VegetarianPizza is a NonVegetarianPizza.
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Question: What are the varieties of RealItalianPizza?

Answer: Following are the all known varieties of RealItalianPizza:

• Napoletana

• Veneziana

Question: What are the varieties of SpicyTopping?

Answer: Following are the all known varieties of SpicyTopping:

• CajunSpiceTopping

• HotGreenPepperTopping

• HotSpicedBeefTopping

• JalepenoPepperTopping

• TobascoPepperSauce

Question: What are the varieties of IceCream?

Answer: There are no known varieties of IceCream.

5.6 Discussion

In terms of identifying the lexical items for sentence generation, we have entirely
based our work on exploiting the structural patterns common in naming of con-
cepts and relations during ontology authoring. When such attempts have been
feasible, we have obtained grammatical lexical items, as in the sentence “Rosa
is a pizza that falls under the class of named pizza”. However, the structural
similarities can not be taken for granted and attempts relying purely on such
techniques will often fail; producing lexical items that are not really words of
English, as in the sentence “RealItalianPizza has Italy as it’s countryoforigin”.
In our work, we have accepted lexicalisations resulting in both valid and invalid
words of English as lexical items; our goal here is to generate sentences that
respond to a particular question by conveying the semantics behind the facts
expressed by various axioms associated to concepts in ontologies, which we be-
lieve that sentences like “Rosa is a pizza that falls under the class of named pizza”
and “RealItalianPizza has Italy as it’s countryoforigin”, both, truly achieve. In
existing works, authors have targeted generation of true words of English as
lexical items from the concept and relation names in ontologies in various ways.



5.6. DISCUSSION 73

Mellish & Sun [28] rely on separators such as capital letters (as in CheeseTop-
ping), underscores (as in red_wine) etc. to breakup a complex concept name,
such as “CheeseTopping” into lexicons “Cheese” and “Topping”. Androutsopou-
los & Galanis [14] go further in suggesting that an external annotation of OWL
ontologies to associate the ontological resources (concept and relation names)
with domain-dependent linguistic resources (lexical items, templates etc.) is
necessary for natural language generation from ontologies. However, we have
also observed, particularly with regards to the question-answer scenario, that
people do not always prefer to break up a complex concept name into simpler
lexical items (as in Test Case I, where participants preferred to keep the name
for the concept in subjective role intact). It would be interesting to investigate
how appropriately lexicalisation could be carried out to address such needs.
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Chapter 6

Conclusion

We have presented a generic approach in Natural Language Generation from
ontologies. We have identified factoid questions that can be posed upon the
knowledge base in ontologies and discussed with detailed and structured meth-
ods of transiting from the logical representation of knowledge in ontologies to
their textual descriptions in natural language. In particular, we have put efforts
in describing the class axioms present in ontologies; we have identified, classi-
fied and processed several varieties of those axioms in coming up with our own
plan to generate natural language text. We have identified the categories and
order of axioms, beforehand, that any NLG developer can pursue to come up
with similar generation systems. In addition to the explicitly stated knowledge
available in the axioms, we have utilized the services of a reasoner in extracting
implicit knowledge from the ontology and identified additional constructs (such
as the Siblings category of axioms we custom defined in section 4.2) to broaden
up the “content” for our system. Further, we have identified the category of
axioms that best serve to generate a response to each type of the factoid ques-
tions respectively. In this way, we believe that we have significantly addressed
the content determination task for similar systems. We have discussed and im-
plemented generic procedures of identifying lexical items and their roles. The
factoid questions we have determined are effectively a stipulation of the com-
municative goals of our system and have overall shaped our generation system;
from the determination of content to the empirical study carried out for making
informed decisions on identifying the best pattern of expression of the ontolog-
ical facts into natural language text. Thus, from a theoretical perspective, one
can view the present work as bridging between QA (as traditionally understood)
and NLG.

While we have used the pizza ontology as a reference for presenting the proce-
dure, the methods we have designed in carrying out those procedures is generic
enough to be applicable to other ontologies as well. The pizza ontology al-
ready provides numerous varieties of axioms that are likely to be encountered in
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other ontologies; thus we have sufficiently addressed our procedure for a broad
set of ontologies. We have also discussed possible implementation model for
variations not encountered within the pizza ontology (for example, the aggre-
gation of stated subsumers with Universal restrictions and the aggregation of
stated subsumers with HasValue restrictions in section 4.4.2); we believe that
it should not be very difficult for anyone to formulate similar implementation
model (resembling our methodology) to address newer varieties.

6.1 Application Context

We can envisage numerous application scenarios for our system. Given that
the framework described is designed to provide answers to questions posed over
concept names in the ontology, there are at least three immediate applications:

• Empower understanding of ontological facts to a beginner.

• Serve an ontology author in suitably expressing the knowledge he/she has
authored into his/her ontologies to general people.

• Facilitate an expert in reviewing the facts expressed by an author in
his/her ontology

Particularly, with large scale ontologies being popular to represent complex
chains of relationships among several participating concepts in a huge domain
such as the biomedical domain; during the course of design, operation and
maintenance, a human author/expert/user would perhaps like to comprehend
the current state of knowledge within the ontology in terms of intuitive natural
language text rather than by exploring the ontology tree hierarchy and rebuild-
ing a mental model of the knowledge base each time. This is where we presume
our system comes in handy. From a long-term perspective, finding general ways
of generating texts from ontologies is a scientifically useful tool: since an ontol-
ogy is a general description of some domain, the application of NLG techniques
and their validation, can serve to help us in understanding how we talk about
specific domains of knowledge.

6.2 Future Work

Apart from the issue of generating proper lexical items, which we discussed in
section 5.6, we see other possibilities to improve upon the results of the current
system. One possibility is in terms of realising “closure restrictions” – a condition
in which a universal restriction specified over a property has a filler that is the
logical union of the fillers specified for existential restrictions over the same
property. As an example from the pizza ontology itself, we have the following
universal and existential restriction axioms specified for the concept “Rosa”:
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SubClassOf(<Rosa> ObjectAllValuesFrom (<hasTopping>
ObjectUnionOf (<GorgonzolaTopping> <MozzarellaTopping> <TomatoTopping>)))

SubClassOf(<Rosa> ObjectSomeValuesFrom(<hasTopping> <GorgonzolaTopping>))

SubClassOf(<Rosa> ObjectSomeValuesFrom(<hasTopping> <MozzarellaTopping>))

SubClassOf(<Rosa> ObjectSomeValuesFrom(<hasTopping> <TomatoTopping>))

As we can see, the axiom expressing the universal restriction has the filler that is
the logical union (ObjectUnionOf) of the fillers specified for the remaining three
separate existential restriction axioms over the same property “hasTopping”,
thus fulfilling the criteria for “closure restriction”. Semantically, when such a
“closure restriction” is present, it eliminates the possibility of the concept (Rosa)
not participating in any “hasTopping” relation (the “none” part of the universal
restriction axioms, as we discussed for Test Case IV in section 5.1). It also
eliminates the possibility of participating via the “hasTopping” relation with
fillers other than those specified – GorgonzolaTopping, MozzarellaTopping and
TomatoTopping (the open world assumption which is default with existential
restrictions, as presented with an example in Test Case V in section 5.1). In
turn, the realisation obtained for this set of universal and existential restrictions
could be fairly simpler, perhaps along the lines of “Rosa is a class of pizza that
only has mozzarella with gorgonzola and tomato topping” instead of the verbose
statements “Rosa always has at least one mozzarella with gorgonzola and tomato
topping and may also have other types of toppings. Rosa can have toppings of
gorgonzola, mozzarella and tomato only. However, it might be the case that
some instances of Rosa don’t have any toppings at all.” that we have presented
in section 5.5.

In existing work, we haven’t targeted survey questionnaire with similar situa-
tion of closure restrictions; rather we used the popular pattern of expression
of universal and existential restrictions identified from the survey, in turn, to
generate the sentences describing universal and existential restrictions of the clo-
sure restrictions respectively; thereby generating the verbose statements. While
it should not be very difficult to compute feature structures for representing
closure restriction axioms – either by deploying a theorem prover to derive a
better OWL statement uniting both the restrictions and then generating a fea-
ture structure based on the new statement or by provisioning a suitable aggre-
gation strategy, similar to various cases we discussed in section 4.4.2, between
the feature structure representing universal restriction and the feature structure
representing existential restriction of the closure restriction – from their respec-
tive universal and existential restriction counterparts, we have yet to identify
the popular pattern of expression of such closure restrictions. In future, an addi-
tional test case could be developed by providing the participants with both the
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universal and existential restrictions acting over the same concept and asking
them to come up with a response. The responses so obtained could then be
used to designate our pattern of expression of closure restrictions.

With regards to the factoid question “How to identify a X ?”, we have looked into
ways of generating answers by using the stated equivalence axioms for the given
concept name X in the ontology. This approach could be scaled up by taking
into account the set of properties present in the ontology, which when combined
(via some logical operations such as the complement, intersection and quantifiers
etc.), are sufficient to distinguish the concept X from others in the ontology.
For example, Ren et al. [39] present and discuss their Description Logic based
approach in generating OWL expression which represents a singleton set for a
given individual in the ontology; thereby generating a referring expression which
uniquely identifies that individual in the ontology. Similar approach would
enable us in generating answers to the “How to identify a X ?” questions in
terms of the conjugating properties that uniquely identify the concept X rather
than relying exclusively on the presence of equivalence axioms stated for the
given concept X in the ontology.

As of now, our system is not capable of processing inherited class restrictions.
For example, for the concepts “Rosa” and “RealItalianPizza”, among others in
the pizza ontology, the existential restriction specified over the relation “has-
Base” gets inherited from their superconcept “Pizza”, as shown below:

SubClassOf(<Rosa> ObjectSomeValuesFrom(<hasBase> <PizzaBase>))

SubClassOf(<RealItalianPizza> ObjectSomeValuesFrom(<hasBase> <PizzaBase>))

While in some cases (for example, the answer generated for the question “What
is Rosa?” in section 5.5) this incapability simply means an omission of informa-
tion, in other cases (for example, the answer generated for the question “What is
RealItalianPizza?” in section 5.5), it would lead to misleading information – we
have generated text defining “RealItalianPizza” as “RealItalianPizza can have
base of thinandcrispy only. However, it might be the case that some instances
of RealItalianPizza don’t have any base at all.”; however this is not completely
true because the inherited restriction states that all instances of “RealItalian-
Pizza” must have at least one base (of type “PizzaBase”) and thus rules out the
possibility for instances of “RealItalianPizza” not having any base. How such
restrictions could be retrieved, represented and processed is also an interesting
question for future work. In particular, such complex semantic inferences open
up many possibilities for aggregation and realisation, and the best choice among
these is an interesting empirical question in its own right.

We have yet to see how our approach could be extended in terms of generating
natural language text from ontologies that involve a merging of one or more other
ontologies within them and ontologies that are augmented with rule markup
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languages, such as SWRL (Semantic Web Rule Language). It would also be
interesting to extend our work in terms of describing individuals and relations
present in ontologies.

All of these are essentially instances of a more general problem, namely: how
to communicate logically complex information in natural language, allowing for
complex patterns of inference. Investigating such questions in depth is bound
to yield more insight into the connection between abstract, formal knowledge
representation and reasoning and human communication. This is an area in
which NLG – as a concrete way of making machines communicate in a more
humanlike manner – can contribute to a broader understanding of how linguistic
communication interacts with the vast repositories of knowledge that humans
have at their disposal.
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