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Learning Information Extraction Rules with Sequential Patterns

Abstract

This thesis describes an automatic approach to learning information
extration rules, or more precisely relation extraction rules. It uses
sequential pattern mining to learn patterns from research abstracts on
a rare disease called fibromuscular dysplasia. Information extraction
can be useful in this field for creating review articles on rare diseases,
thereby making information on them more accessible.

Preprocessing includes lemmatization, POS tagging and semantic
tagging. Different settings with regard to the semantic tags as well as
what to use as input sequences are tried out. The patterns are post-
processed in order to obtain those which relate entities in a treatment-
relation. After a manual analysis, the patterns are filtered and gap
constraints are implemented to reduce noise. Evaluated on a test set,
the best F1-measure reaches 50%.
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1 Introduction

Recently, information extraction (IE) has been increasingly applied to the
domains of biology, biomedicine and medicine. In these domains, the grow-
ing number of articles makes processing with human eyes unfeasible and
time-consuming, while the information in them can be crucial to further re-
search or treatment of patients. Therefore, automatic extraction of certain
information is an important application in this domain.

IE is the task of identifying and extracting information from raw text.
One subtask of IE is named entity recognition (NER), which is the identifi-
cation of references to specific things. Another subtask of IE is the identi-
fication of relations between the extracted named entities. A third subtask
of IE involves co-reference resolution, i.e. the identification of sets of ex-
pressions referring to the same entity (Humphreys et al., 2000). In order to
develop an IE system, we have to define which named entities and relations
we want to extract, i.e. a template, and we have to develop IE extraction
rules for the template (Kim et al., 2007).

There are basically three ways to develop IE rules: hand-construct them,
use Machine Learning (ML), or data-mine them. While hand construction
takes a lot of time and needs to be adapted to every new domain, ML
based methods are automatic. However, they require training material and
their output is supposed to be hard to understand. On the other hand, data
mining techniques are also automatic and their output is easy to understand.

My work has been applied to research articles on rare diseases, specifi-
cally on one rare disease called fibromuscular dysplasia. Since a rare disease
affects less than 0.05% of the population, interest in them is not widespread.
However, advancing research on them is crucial since for many of them, the
treatment or even the cause are not known yet. Therefore, an automatic
method of learning IE rules will be very useful here. My aim has been to
extract the different ways with which a given disease is treated. I have
assumed that the required named entities are already recognized.

In order to learn rules for relation extraction, I have made use of sequen-
tial pattern mining, i.e. a data mining technique. I have implemented con-
straints in a postprocessing step and have included a very simple anaphora
resolution method. Finally, I have analyzed the quality of the resulting pat-
terns and have come up with ways to further improve the patterns.

In chapter 2 of this thesis, I will define information extraction and its
subtasks in more detail and point out issues for them. Furthermore, I will
describe different methods for IE, which have been presented in the litera-
ture. In chapter 3, I will describe the data that I have used as well as the
algorithm for sequential pattern mining, preprocessing and postprocessing
steps, and a simple method for anaphora resolution. In chapter 4, I will
give a manual analysis of learnt sequential patterns and their performance
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as relation extraction rules. Finally, in chapter 5, I will discuss some short-
comings and possible improvements of my work and give a conclusion.

2 Information Extraction - State of the Art

In this section, I will define what information extraction is and how it can
be useful. Different subtasks of IE and issues that need to be dealt with are
presented. Finally, I will outline various approaches to IE.

2.1 Definition

Information extraction refers to the automatic extraction of structured in-
formation, such as named entities or relationships between named entities,
from unstructured text and its placement into a template. IE is useful when
a large number of natural language text exists so that processing with human
eyes is too time-consuming, while it is possible to predefine the information
that is supposed to be extracted (Humphreys et al., 2000).

Therefore, IE is especially useful for extracting information from scien-
tific research papers, e.g. in the domain of biomedicine. As an example,
the MEDLINE database (searchable via PubMed1), which is a database for
citations of biomedical literature, currently contains about 19.6 million cita-
tions and has been growing at an average rate of 550,000 new ones per year
since 1995 (U.S. National Library of Medicine, 2012). Therefore, keeping
up with new publications can be very time-consuming, while it is important
in order to prevent overlaps in research and to promote further research,
for example on diagnosis, prevention and treatment of diseases (Cohen and
Hersh, 2005).

Information extraction consists of several subtasks: named entity recog-
nition (NER), relation extraction and co-reference resolution.

Named Entity Recognition: NER is the identification of all names re-
ferring to a certain type of object in a text or text collection. For example,
one could extract all the names referring to persons or locations, or in the
biomedical domain all the names referring to genes or diseases (Humphreys
et al., 2000). In example 1, the words in blue are named entities of the type
disease and syndrome2, respectively.

(1) Fibro-muscular dysplasia (FMD) is a rare but well documented
disease with multiple arterial aneurysms.

1http://www.ncbi.nlm.nih.gov/pubmed/
2The term syndrome refers to the co-occurrence of clinical signs, symptoms and other

characteristics of a disease. A clinical sign is something that is observed by a doctor, while
a symptom is experienced by the patient.
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The idea behind NER is that it enables identification of relationships be-
tween named entities, e.g. between a certain person and a certain location,
by knowing that those types are related to each other and that those par-
ticular names are instances of those types (Cohen and Hersh, 2005). Ap-
proaches to NER can be manually encoded, statistically learnt, Machine
Learning (ML) based or text mined. I will describe selected approaches in
section 2.3.

Relation extraction: Relation extraction refers to the task of identifying
relations between named entities. For instance, if it is known that named
entities of type person are related to named entities of type location in a
living-relation, it can be extracted that a certain person lives in a certain
city (Humphreys et al., 2000). In the biomedical domain, if it is known
that genes cause diseases, it can be extracted that a certain gene causes a
certain disease. In example 2, the words in blue are named entities of the
type syndrome and therapeutic procedure, respectively, which are related in
a treatment-relation.

(2) The aneurysm was treated by embolization.

Approaches to relation extraction can be manually encoded, ML based or
text mined. I will present various approaches in section 2.3.

Co-reference resolution: Another less discussed subtask of IE is co-
reference resolution, also called anaphora resolution. This is the identifi-
cation of different names, definite noun phrases (NPs) or pronouns, called
anaphora, referring to the same entity as an earlier name or NP, called the
antecedent (Humphreys et al., 2000). This can be illustrated by the abstract
in figure 1.

Figure 1: Example abstract

For example, the PCA aneurym (figure 1, line 6) refers to one of the
multiple aneurysms in the lt. PCA, lt. ICA, bil. VA, and the lt. renal
artery (line 5). Next, it in line 7 refers to the PCA aneurysm, and so does
The aneurysm in line 8.
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The motivation for doing co-reference resolution is to be able to find
more instances of a relation. For instance, if the IE system extracts a re-
lation between aneurysm (figure 1, line 8) and clipping the artery (line 8),
this might not be informative enough since this treatment method might be
something which can only be used on certain aneurysms. Furthermore, for
pronouns, as long as they are not recognized as a named entity of the given
type, they cannot be extracted in a relation with another named entity.
Even if they are extracted, without their antecedent they are not informa-
tive, either. Therefore, this shows the importance of anaphora resolution.
Approaches to anaphora resolution are usually manually encoded or ML
based, some of which I will describe in section 2.3.

Development of an IE system: In order to develop an IE system, one
has to develop a template, i.e. specify which named entities should be recog-
nized and which relations between them should be extracted. Furthermore,
one has to develop rules which will be used in the process of NER and rela-
tion extraction (Kim et al., 2007). Based on the method, the development
of IE rules might include preprocessing steps, such as POS tagging, lemma-
tization, syntactic or semantic parsing or others (Nédellec, 2004), and post-
processing steps, such as the implementation of constraints based on specific
features or manual selection of rules (Kim et al., 2007).

Evaluation of IE: Finally, the IE system should be evaluated. Evalu-
ation is usually done for each of the subtasks separately. Usually, a gold
standard annotation, i.e. a (human) annotation which is considered as per-
fect, is taken and the system’s output is compared to it. Two metrics called
precision and recall are calculated. As shown below, precision is the per-
centage of the system’s output that is correct, meaning that incorrect output
decreases the precision (Humphreys et al., 2000).

precision =
|correct extracted answers|
|all extracted answers|

Recall is the percentage of the correct gold standard annotations which
occur in the system’s output, meaning that missing output decreases the
recall (Humphreys et al., 2000).

recall =
|correct extracted answers|

|all correct answers in the gold standard|

Often, the F1-measure, which is the harmonic mean between precision and
recall, is calculated as well.

F1 = 2 ∗ precision ∗ recall

precision + recall
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While state-of-the-art NER systems can achieve between 75 and 85% F1-
measure, the performance for relation extraction tasks is mixed, depending
on the relation to be extracted and the data that is used (Cohen and Hersh,
2005).

GATE: There are some existing IE tools, for example GATE (General
Architecture for Text Engineering)3. GATE is a graphical environment for
developing language engineering components and running them in combina-
tion with or without existing components. Existing components are known
as CREOLE (a Collection of REusable Objects for Language Engineering).
Among others, they include resources for preprocessing text, such as tok-
enization, POS tagging or syntactic parsing.

They also include an IE system called ANNIE (A Nearly-New IE system).
It consists of a tokenizer, a sentence splitter, a POS tagger, a gazetteer used
for NER, an orthomatcher and a coreferencer, both used for co-reference
resolution. Custom rules, e.g. for relation extraction, can be implemented
via a finite state transducer, which uses JAPE (Java Annotations Pattern
Engine) grammars as input. A JAPE grammar consists of patterns over
text strings or previously created annotations, and annotations to be created
(Cunningham et al., 2002).

Furthermore, CREOLE provides resources for processing biomedical text,
e.g. GENIA for tokenization, POS tagging, shallow parsing and NER, or
MetaMap for semantic tagging using the UMLS Metathesaurus (Cunning-
ham et al., 2011).

Finally, GATE allows the user to create manual annotations, thereby
creating a gold standard annotation. Then, with GATE’s AnnotationDiff
tool, automatically created annotations can be evaluated against the gold
standard, using precision, recall and F-measure (Cunningham et al., 2002).

To sum up, IE is the automatic extraction of information from unstruc-
tured text. Its subtasks include named entity recogntion, relation extraction
and co-reference resolution. An IE system is developed by defining a tem-
plate and extraction rules, and it is evaluated using precision and recall.
There are existing tools for it, such as GATE.

2.2 Different Issues of Information Extraction

IE systems need to handle several issues, among them variation and ambi-
guity of named entities or relations, performance and evaluation issues.

Issues for NER: Firstly, NER has to deal with the fact that the same
named entity may be expressed through orthographic, morphological, syn-

3http://gate.ac.uk/
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tactic or semantic variations of its name. For example, arterial fibromuscular
dysplasia may be expressed as:

(3) arterial fibro-muscular dysplasia (orthographic variation)

(4) arterial FMD (abbreviation)

(5) fibromuscular dysplasia of the arteries (syntactic variation)

(6) intimal fibroplasia (semantic variation - hyponym)

Furthermore, names can be ambiguous, i.e. one name can refer to more
than one named entity. For example, embolization can refer to a therapeutic
procedure as in example (2), or it can refer to a syndrome as in example 7.

(7) This case report describes a patient with digital embolization from
brachial artery fibromuscular dysplasia.

Variations in names can decrease the recall of NER, while ambiguity of
names can decrease its precision (Nenadić et al., 2002). In existing methods,
variations are for example handled by using similarity metrics (Mooney and
Bunescu, 2005), a normalization step (Schneider et al., 2009) or by using
transformation rules (Cherfi et al., 2003).

Issues for relation extraction: Relation extraction needs to deal with
the fact that the same relation may be expressed through different verbs in
active or passive, through different nominalizations or even through relative
clauses (Kim et al., 2007). For instance, a treatment-relation between a
syndrome A and a therapeutic procedure B may be expressed as:

• treat A with B vs. A be treated with B (active vs. passive)

• undergo B for A (different verb)

• B as treatment of A vs. management of A with B (different nom-
inalizations)

• A which be treated with B (relative clause)

If one of those patterns is included in the IE rules, but another one or more
are lacking, this will decrease recall, as described in Cellier et al. (2010).
Here again, transformation rules may be useful (Kim et al., 2007).

Furthermore, for relation extraction, coordination and negation have to
be treated (Bunescu and Mooney, 2005; Cherfi et al., 2003). Examples of
this are:

(8) Patients with fibromuscular dysplasia (FMD) and hypertension are
frequently treated with percutaneous transluminal renal angioplasty
(PTRA).
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(9) Twelve (52.2%) of the patients were taking no antihypertensive
medications at 6 months and were classified as cured.

Missing one or even more named entities belonging to a coordinated struc-
ture in a relation would decrease the recall, while extracting a relation from
a negated sentence would decrease the precision.

Performance and evaluation issues: Another problem is that IE sys-
tems usually perform with high precision, but with significantly lower recall
(Nahm and Mooney, 2004). Therefore, methods for improving recall are
needed. One approach is to do NER and relation extraction within the
same step. This is based on the idea that named entities can help to iden-
tify relations, through their presence as well as type, and identified relations
can help to recognize previously missed named entities (Kate and Mooney,
2010). Another approach is to use back-off techniques, such as simple surface
patterns, to improve recall whenever the primary method fails (Schneider
et al., 2009). This, however, introduces the risk of hurting the precision.

However, evaluation using recall is not always possible. This is mostly
due to the fact that gold standard annotations do not always exist. As a
solution, Kim et al. (2007) for example, approximate recall by assuming that
each relevant sentence contains only one relation. Based on this, they use
the number of relevant sentences as the denominator in the calculation of
recall. If an approximation is not possible, or also in addition to the use of
precision and recall, a manual evaluation by a domain expert can be done
(e.g. Cherfi et al. (2003)).

Since the number of IE rules produced by a learning algorithm is usu-
ally huge, the process has to be constrained in some way (e.g. Cellier et al.
(2010)) or the rules have to be ranked in an intelligent way (e.g. Cherfi
et al. (2003)), so that the number of rules which the domain expert has to
evaluate is manageable.

To sum up, IE has to deal with variation and ambiguity of named enti-
ties and relations, and with phenomena such as coordination and negation.
Furthermore, evaluation is not always possible, has to be approximated or
be done manually.

2.3 Methods for Developing Information Extraction Systems

There are basically three approaches to developing IE rules: manual, ML
based and data mining ones. I will describe selected methods for each of the
approaches.
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2.3.1 Hand-constructed Rules

Previously, many IE systems have made use of hand-constructed rules.
While they usually give a good precision, their recall is much lower. Further-
more, the construction of manual rules is very time-consuming and needs to
be adapted to every new domain (Nédellec, 2004).

NER & relation extraction: Ono et al. (2001) are an example of doing
NER and relation extraction with hand-constructed rules. They want to
extract protein-protein interactions. They recognize protein names based
on pattern matching, using a manually constructed lexicon. Similarly, they
use pattern matching rules for relation extraction. The rules make use of
protein names, prepositions and a set of keywords which indicate interaction.
An example pattern is the following, where A and B express protein names:

A interact with B

Ono et al. (2001) handle coordinated sentences by finding them with pattern
matching rules and then splitting them up into sub-sentences. Different from
other approaches, they also try to handle negated sentences by including
negated patterns into their rules. An example is:

A not interact with B

Relation extraction & anaphora resolution: Pustejovsky et al. (2002)
describe a method for relation extraction and anaphora resolution. They
want to extract inhibit-relations between biological entities. With the help
of semantic automata and corpus analysis, they create extraction rules based
on predicate-argument structures for the verb in question. Their anaphora
resolution method is based on syntactic information, such as person and
number, semantic type and simple string comparisons. I have adopted a
similar anaphora resolution method in my work.

Co-reference resolution: Castaño et al. (2002) describe a method for
co-reference resolution in biomedical texts. They limit resolution to pro-
nouns in the third person and definite NPs tagged with a semantic type
from the biomedical domain. For each candidate anaphora-antecedent pair,
a salience measure is calculated based on agreement of person and num-
ber. Furthermore for definite NPs, string similarity and matching semantic
types are taken into account. Unlike other approaches, a semantic type is
taken into account for pronouns, as well: it is “coerced” on them, based on
semantic types occurring frequently with the verb in the given sentence.

Tested on 46 MEDLINE abstracts, Castaño et al. (2002) report a preci-
sion of 77% and a recall of 72%. This gives an F1-measure of 74%.
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2.3.2 Statistical and ML Based Learning Methods

Statistical methods are less time-consuming than manually coded rules and
usually give a higher recall, but their precision is usually worse (Nédellec,
2004).

NER: Nenadić et al. (2002) are an example of using a statistical method
for NER. Their overall system uses automatic term recognition and cluster-
ing in order to populate an ontology and perform IE-like tasks based on the
ontology. Terms can be thought of as named entities, even though unlike
named entities they are not further distinguished into classes. Terms are
recognized based on two statistical measures: C- and NC-values. The C-
value for a candidate term is calculated based on different frequency counts
over a given text collection, such as frequency of the candidate or frequency
as a substring in other candidates. The NC-value is an improvement of the
C-value since it also takes surrounding words of the candidate term into
account. Nenadić et al. (2002) deal with variation in terms by normalizing
them to a single form before performing statistics on them.

Machine Learning based techniques automatically learn rules and are
therefore less time-consuming, as well. Unlike hand-coded methods, they
can easily be adapted to new domains (Kim et al., 2007). As with statisti-
cal methods, their recall is usually higher than that of manual approaches,
but unlike statistical methods, their precision is also comparable to that of
manual approaches (Nédellec, 2004).

However, supervised ML techniques need a correctly annotated text col-
lection to learn from (Kim et al., 2007), i.e. all the named entities and
relations between them have to be annotated as such, which can be quite
time-consuming. They also need a set of features on which to base the learn-
ing (Cellier et al., 2010). Furthermore, according to Plantevit et al. (2009),
their output is not easily understandable by humans and therefore not as
useful whenever the validation of rules and possibly adaptation by a domain
expert is desired.

NER & relation extraction: Kate and Mooney (2010) propose a method
for doing NER and relation extraction at the same time using so called “card-
pyramid parsing”. As already mentioned in section 2.2, performing the two
tasks in the same step is based on the idea that while recognized named
entities help in the identification of relations, identified relations may also
support recognition of otherwise missed named entities. Therefore, this is a
method to improve recall and maybe also precision. Each sentence is repre-
sented as a card pyramid, with the named entities at the very bottom and
relations (including a type NR for no relation) linking them, up until the
top node of the pyramid. An example of this can be seen in figure 2. The
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card-pyramid parsing amounts to labelling the nodes with specific named
entity and relation types. The grammar used for parsing is learnt using
Support Vector Machines. Features for named entity learning include word
subsequences of the candidate entity and its POS tags, surrounding words
and others. Features for relation learning include existing named entities.

Figure 2: Example of a card pyramid by Kate and Mooney (2010)

Relation extraction: Craven and Kumlien (1999) compare three ML
based approaches for extracting relations between proteins and other en-
tities. Two use statistical ML, or more specifically Naive Bayes classifiers,
and the other uses relational learning. In the first approach, they hand-label
sentences as positive or negative instances of a given relation and then use
a Naive Bayes classifier with a bag of words (BOW) representation4.

In the second approach, they exploit article references for instances of
the desired relation from a database, since the preparation of the training
data is quite time-consuming. They make the simplifying assumption that
each sentence in an abstract containing the relation is a positive example of
it. Sentences in abstracts not containing the relation are taken as negative
examples. Again they use Naive Bayes classification with a BOW represen-
tation. The second approach gives a better precision with a similar recall
than the first approach.

Unlike the other approaches, the third makes use of linguistic informa-
tion, namely phrase types (e.g. NP), order of phrases, whether a phrase
contains another phrase, grammatical functions of phrases (e.g. subject,
object) and co-occurrence of phrases in the same clause. The relational
learning algorithm then learns rules which cover positive but not negative
instances of the given relation. Compared to the other approaches, the pre-

4this means that each sentence is represented as a BOW, i.e. assuming that the order
of the words does not matter and that the occurrence of a word does not depend on other
words in the sentence (Craven and Kumlien, 1999)
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cision is much higher at a similar level of recall. Therefore, Craven and
Kumlien (1999) show the benefit of using linguistic information over not
using it.

Similarly to Craven and Kumlien (1999), Kim et al. (2007) use a collec-
tion of sentences which are labelled as relevant or irrelevant with respect to
a given relation. They want to extract relations between proteins and dis-
eases, functions or structure. They use Inductive Logic Programming (ILP),
with features such as POS tags, named entities and grammatical functions.
ILP then tries to find rules which cover all relevant instances, but no irrel-
evant instances for a given relation from the labelled sentences. Before the
thus developed IE rules are applied to a test set of texts, a domain expert
selects relevant rules, eliminating about half of them. However, they do
not give details on what basis the expert makes his decisions. I have also
done a manual selection of rules, but will describe this process in more detail.

Schneider et al. (2009) combine manual work and ML in their approach
to extracting interactions between proteins. Firstly, they use dependency
parsing on all sentences and then extract syntactic paths which link two
proteins. Since not all syntactic paths actually express an interaction, they
manually classify paths into relevant and irrelevant paths. Then, for relevant
paths, they use ML to learn words which frequently occur inside them, so
called “transparent words” (Schneider et al., 2009). A transparent word
is usually a noun which does not add to the meaning, as in the following
example by Schneider et al. (2009), where the transparent word is marked
in blue:

(10) A activates groups of B vs. A activates B

Finally, they manually develop surface patterns, such as:

A interacts with B

The resulting IE system is used as following: whenever a syntactic path can
be applied to a test sentence, this is used for extraction. If no path exists
and the sentence contains any transparent words, those are cut out of the
sentence. Then the system checks again if a syntactic path exists. If not, the
surface patterns can be used as a back-off technique. Both the transparent
words and the surface patterns are used in order to improve the recall of the
system.

Anaphora resolution: Yang et al. (2004) describe an ML based approach
to co-reference resolution in biomedical literature. They want to link an
anaphora to a “coreferential cluster” instead of a single antecedent. This
is based on the idea that the closest antecedent to an anaphora sometimes
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lacks information that would make linking them to each other possible, while
an earlier antecedent has this information. Features for learning include
type (e.g. definite/indefinite NP or pronoun) of the anaphora and of a
reference NP from the cluster, agreement of number, gender and semantic
type between the anaphora and both a reference NP and the cluster and
string similarity. The learning is done with the C5.0 algorithm, i.e. decision
trees. By looking at the decision trees, Yang et al. (2004) establish that the
string similarity features are most important.

Based on this, I assume that a very simple anaphora resolution method,
which is based mostly on string similarity, might already be quite successful.

2.3.3 Data and Text Mining Methods

To overcome the disadvantages of manual and ML based techniques, re-
search on the use of data and text mining techniques for IE has been done.
Similarly to ML based methods, they are easily adaptable to new domains.
On the other hand, unlike ML based techniques, they do not need annotated
texts for learning (Plantevit et al., 2009). Therefore, the data preparation
for them is less time-consuming than for ML based methods. Furthermore,
Plantevit et al. (2009) claim that the output of data/text mining is un-
derstandable for human experts of the domain, while the output of ML is
not.

Data and text mining aim at identifying patterns from structured data
(such as a database, in the case of data mining) and from unstructured data
(i.e. text, in the case of text mining) (Delgado et al., 2002). Therefore, in the
form of patterns, they try to generate new information, while IE wants to
extract information that is already encoded in the text and therefore not new
(Hearst, 1999). Mining techniques are frequent itemset mining, association
rule mining, sequential pattern mining and sequential rule mining. I will
shortly define important concepts for them in the context of text mining.

Important concepts: An itemset is a set of keywords which characterize
a document5. In this way, itemsets can be used to detect the topic of a
document. The number of documents which contain the itemset, normalized
by the size of the entire document collection, is called the support of the
itemset (Agrawal et al., 1993). Given the dataset in table 1 where d stands
for document and i for item, itemsets are (i1), (i2), (i3), (i1, i2), (i1, i3), (i2,
i3), (i1, i2, i3).

An itemset is called large or frequent if it appears in more than a fixed
threshold, called the minimum support, of the documents (Agrawal et al.,

5for the sake of simplicity, I will keep referring to documents in the following para-
graphs, but an itemset might also characterize a smaller unit, such as a paragraph or a
sentence
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i1 i2 i3

d1 x x
d2 x x
d3 x x x

Table 1: Example dataset for itemsets

1993). A frequent itemset is called closed if there is no bigger itemset con-
taining it while having the same support (Cherfi et al., 2003). Closure is
based on the idea that a closed itemset will give the maximum information
possible, as opposed to incomplete information coming from a non-closed
itemset. Closed frequent itemsets with a support of 2

3 in table 1 are (i3),
(i1, i3), (i2, i3).

An association rule of the form A ⇒ C consists of an itemset on the
left-hand side of the rule, called antecedent, and an itemset on the right-
hand side, called the consequent6. It expresses that whenever the antecedent
occurs in a document, the consequent will appear with a given probability.
The support of an association rule is defined as the number of documents
which contain both the antecedent and consequent, normalized by the size
of the document collection (Agrawal et al., 1993). The probability that the
consequent will occur, given the antecedent, is called confidence of the rule.
It is defined as the support of the association rule divided by the support
of the antecedent alone. An association rule is called valid if its support
and confidence are greater than their fixed thresholds (Cherfi et al., 2003).
Association rules with a support of 2

3 and a confidence of 1 in table 1 are
(i1) ⇒ (i3) and (i2) ⇒ (i3).

A sequential pattern is similar to an itemset, but unlike in an itemset,
the items are ordered. Therefore, not only mere occurrence in the document,
but also their order in it matters. However, the items do not have to occur
consecutively in order to form a sequential pattern. As with itemsets, the
support of a sequential pattern is defined as the number of documents in
which it occurs, normalized by the size of the document collection. A closed
frequent sequential pattern is defined analogously to a closed frequent itemset
(Agrawal and Srikant, 1995). Given the dataset in table 2 where s stands
for input sequence and i for item, sequential patterns with a support of 2

3
are <(i1) (i3)> and <(i3) (i4)>.

Furthermore, a sequential pattern can also consist of ordered itemsets
instead of ordered items (Agrawal and Srikant, 1995). Many algorithms
implement constraints into the mining process, e.g. syntactic ones or limits
to the gap which exists between items in the document (Plantevit et al.,

6both of the itemsets might also be of size one, i.e. be a single item
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s1 <(i1) (i2) (i3)>
s2 <(i1) (i3) (i4)>
s3 <(i3) (i2) (i4)>

Table 2: Example dataset for sequential patterns

2009).
Similarly to association rules consisting of itemsets, a sequential rule

consists of sequential patterns. The rule expresses that if the sequential
pattern in the antecedent occurs in the document, the sequential pattern
in the consequent will occur with a given probability. Support and confi-
dence of a sequential rule are defined analogously to those of association
rules (Plantevit et al., 2009). Sequential rules with a support of 2

3 and a
confidence of 2

3 in table 2 are (i1) ⇒ (i3) and (i3) ⇒ (i4).

There are two research directions combining text mining and IE: methods
that use text mining to automatically learn IE rules (e.g. Cellier et al. (2010);
Plantevit et al. (2009)), and methods that integrate IE and text mining with
each other (e.g. Nahm and Mooney (2004)).

Within the first direction, sequential pattern mining, sequential rule min-
ing, frequent itemset mining and association rule mining or combinations of
them are used.

NER: Plantevit et al. (2009) are an example of the use of text mining
for NER. They compare sequential pattern and sequential rule mining with
a third approach, a combination of sequential pattern and itemset mining,
which they call left-sequence-right (LSR) pattern mining. They want to
recognize gene names. Firstly, they detect that sequential patterns for NER
give a good recall but low precision and that sequential rules give a good
precision but low recall. Therefore, they propose LSR patterns, which are
sequential patterns with itemsets on their left and right sides. They imple-
ment two constraints: all patterns must contain a named entity and there
must be no gaps between the items of the sequential pattern. The result-
ing patterns are used for NER as following: whenever the confidence of a
sequential pattern7 is not high enough, its context is checked for the pres-
ence of a minimum of words from the itemsets. In this way, precision can
be improved, while also having a good recall through the use of sequential
patterns.

7they define the confidence of a pattern to be its support divided by the support of a
pattern with all words except for the given named entity
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Relation extraction: Cellier et al. (2010) use recursive sequential pattern
mining together with some linguistic constraints in order to build IE rules for
relation extraction. They assume that the data is already annotated with
recognized named entities. The linguistic constraints used are that each
pattern must include two named entities and that it must include either a
verb or a noun. I have adopted similar constraints in my method.

In this way, Cellier et al. (2010) avoid dealing with anaphora and with
relations between more than two entities. They use recursiveness, i.e. they
repeat the pattern mining on the output of the process, in order to reduce
the number of patterns. This is useful since the mining process usually
produces a huge, unmanageable number of patterns. The reduced set, on
the other hand, can be validated by a human expert. In their experiment,
roughly 35% of the candidate patterns are validated by the expert. Then
the validated rules are tested on 200 random sentences each from three text
collections (BioCreative, GeneTag, AIMed). The highest precision reaches
93% and the highest recall 84%, both on the AIMed sentences.

Usefulness of itemsets and association rules for IE: Cherfi et al.
(2003) use frequent itemsets and association rules for creating rules in the
domain of molecular biology. They propose a number of quality measures
which can be used to sort the rules according to their interestingness and
then have a domain expert judge the rules based on whether the words in
the antecedent can be related to those in the consequent.

However, the rules are not used for IE. In fact, the form of appearance
of the rules indicates that association rules are not useful for IE with the
given kind of data. This is mostly due to the fact that the items are not
ordered in any way in the rule, the disadvantage of which can be illustrated
by example 11.

(11) The following patient with multiple visceral aneurysms first had coil
embolization of bilateral renal artery aneurysms and then operative
excision of her remaining splenic artery aneurysms to minimize the
potential morbidity of a larger operation.

If a rule exists that associates coil embolization with aneurysms (yield-
ing a treatment-relation, all marked in blue) but the order of occurrence
is not known, it is possible that multiple visceral aneurysms or splenic
artery aneurysms are extracted instead of the correct bilateral renal artery
aneurysms. This shows that itemset and association rule mining might be
useful for information discovery, but not for information extraction from
scientific abstracts.

Anaphora resolution: To my knowledge, there are no data or text min-
ing approaches to co-reference resolution.
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As I said, other researchers do not use text mining in order to develop IE
rules, but rather implement IE in a different way and then use text mining
to improve the system.

Relation extraction: An example of this are Nahm and Mooney (2004).
They want to extract job requirements from a collection of computer-science
job postings. Firstly, they learn and apply IE rules by Boosted Wrapper
Induction8. From the output, they mine association rules, such as “if re-
quirement A has value B, then requirement C will have value D”. In order
to handle variations of named entities, they do the association rule min-
ing based on soft matching of words using edit distance or BOW measures.
However, the actual application of the resulting association rules is subject
to the presence of the consequent from the rule or a similar string in the text.
In this way, they can improve the recall of their method while preventing
false positives.

Mooney and Bunescu (2005), using the same technique as Nahm and
Mooney (2004), compare two approaches to mining association rules: on
the one hand, mining them from a database constructed by IE, and on the
other hand, mining them from a manually built database. Since the accuracy
of rules is similar in the two approaches, they conclude that IE is a useful
way to build a database which can then be mined for new knowledge.

Summary: To sum up, in this section I have defined information extrac-
tion with its subtasks named entity recognition, relation extraction and co-
reference resolution. I have described issues for them, such as variations in
names or relations, difficulties for evaluation or the need to improve perfor-
mance. Furthermore, I have described different manual, ML based and data
mining approaches to the subtasks. Manual approaches are mostly based
on pattern matching or matching of linguistic features, such as person and
number. Machine learning methods use features such as words, POS tags
and grammatical function. Finally, data and text mining techniques use
mainly sequence mining with different constraints.

3 Sequential Pattern Learning for Information Ex-
traction

In the following section, I will describe collection and characteristics of the
data used for learning and testing. I will also give details on the IE relation
that I aimed to extract. Furthermore, I will describe what tools, algorithms
and scripts have been used. Based on the related literature, I have decided

8a wrapper is a contextual pattern, and wrapper induction is the automatic learning
of wrappers (Nahm and Mooney, 2004)
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to use sequential pattern mining in order to learn IE rules. I will also make
use of preprocessing and postprocessing steps.

3.1 Description of Data and Information Extraction Task

Domain: As I said in section 2.1, information extraction has been increas-
ingly applied to scientific research articles in the domain of biomedicine. For
research articles on rare diseases, it is even more important that there exists
an automatic method of learning IE rules, and that as a result there exists
an automatic way of extracting information. Since a rare disease affects less
than 0.05% of the population (European Commission, 2012), a doctor with
a patient with a rare disease might have never come across it before. There-
fore, finding the correct diagnosis and treatment might be difficult and could
be supported by a quick search for relevant information with the possibility
to go back to the original research articles. Furthermore, it is important to
promote research on rare diseases since for many of them, the treatment or
cause are not known yet.

Therefore, my work has been applied to research articles on rare diseases.
I have used abstracts of research articles. Firstly, abstracts are usually freely
available while the full text often is not. Secondly, all of the important
information from the article is presented in a compact way in the abstract,
which will make IE easier or at least will make the processing less time-
consuming.

I have used abstracts on a particular rare disease called fibromuscu-
lar dysplasia. The choice of disease is based on the availability of a do-
main expert. However, my approach could be applied to any other disease
as well. Fibromuscular dysplasia (FMD) refers to a group of arterial dis-
eases, which mostly affect the renal and carotid arteries (i.e. the arteries
of the kidney and of the head and neck, respectively). Depending on the
affected arteries, clinical signs and symptoms include stenosis, “string of
beads” appearance, hypertension and aneurysms. Treatment methods in-
clude anti-hypertensive medications, percutaneous angioplasty and recon-
structive surgery. The cause of FMD is not known yet (Plouin et al., 2007).

IE task: My aim was to extract the different ways with which the disease
is treated. Therefore, diseases, clinical signs and symptoms (i.e. anything
that can be treated) have been identified as named entities of one type. On
the other hand, treatment methods, including procedures, devices and drugs
(i.e. anything that can be used for treating) have been identified as named
entities of another type. Then I have aimed to extract a treatment-relation
between them.

Even though Plouin et al. (2007) already include main treatment meth-
ods in their review article, other research articles mention further possi-
bilities, such as thrombolytic therapy, orthotopic autotransplantation or
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nephrectomy. Therefore, extraction of treatment-relations will bring forth
previously missed treatment methods of a clinical sign or of course newly
adopted ones. Then, if the IE method is able to perform well, it can be used
to extract information needed in order to create review articles on other rare
diseases (i.e. for diseases where no review article exists yet).

Collection of data: The abstracts have been collected from PubMed9, a
database of citations for biomedical literature. The query used to search for
abstracts was “fibromuscular dysplasia[majr] AND arteries[majr]”10.
Abstracts were manually selected according to whether there is at least one
instance of a treatment-relation. If there is more than one instance of a
treatment-relation present and it is not possible to disambiguate which en-
tities are linked to each other, the abstract has been excluded. Selected
abstracts were saved as xml-files. In this way, PubMed meta information
can be kept, while at the same time the abstract’s text can be used on its
own for processing.

In total, I have collected 95 abstracts. They contain 686 sentences and
14,310 tokens (including punctuation). This makes an average of 7 sentences
per abstract and an average of 21 tokens per sentence.

Next, I have divided the data into three sets: one for training, one for
development, and one for testing, with around 75%, 15% and 10% of the
data respectively. The training set contains 70 abstracts with an average
of 7 sentences per abstract and an average of 21 tokens per sentence. The
development set contains 15 abstracts with averaged 8 sentences per abstract
and averaged 21 tokens per sentence. The testing set contains 10 abstracts
with an average of 7 sentences per abstract and an average of 22 tokens per
sentence. This shows that the distribution of long and short abstracts is
similar across the three sets, as well as the distribution of long and short
sentences.

Characteristics of the data: With the help of the example abstracts in
figures 3, 4 and 5, characteristics of the data will be illustrated.

Most abstracts have the following implicit structure: describing one or
more patients’ disease and possibly symptoms (figure 3, line 1), describing
clinical signs with or without the diagnostic procedures to find them (figure
3, line 1), describing treatment methods for the clinical signs (figure 3, line
3). Additionally, some of them start with a more general description of the
disease and its syndromes and end with follow-up procedures for the given
patient (figure 4, lines 4-5) and/or a more general statement of how the
given clinical signs should be treated (figure 3, lines 5-6).

9http://www.ncbi.nlm.nih.gov/pubmed
10the query was automatically created by using the link to PubMed from the Orphanet

homepage (http://www.orpha.net/consor/cgi-bin/index.php?lng=EN) on fibromuscular
dysplasia
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Figure 3: Example abstract

Figure 4: Example abstract

Figure 5: Example abstract
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Characteristics of the treatment-relation: The treatment-relation is
usually expressed within one sentence (figure 3, lines 1-2 and 3-4), but this is
not always the case. It may occur over two sentences or even with sentences
in between (figure 5, lines 2-3).

The named entities (referring to diseases/syndromes and treatment meth-
ods) do not always occur in the same order: e.g stenosis is followed by balloon
angioplasty in figure 3 (lines 1-2), but stenosis and hypertension are pre-
ceded by implantation of Palmaz-Schatz stents in figure 3 (lines 3-4). The
order depends, for example, on the way the relation is expressed (e.g. verb in
active vs. verb in passive), or on pragmatic factors such as special emphasis
on one of the named entities.

Verbs where the semantic agent is the doctor, such as treat, usually
occur in passive voice (figure 4, line 1), while verbs where the semantic
agent is the patient, such as undergo, usually occur in active voice (figure
4, line 3). Apart from verbs, the treatment-relation may be expressed as a
nominalization, e.g. as treatment (figure 3, line 5).

Rarely, there is a negation occurring with the treatment-relation. In
some cases, this means that the treatment method was not used (figure
4, line 4). In other cases, it means that it was used but was not success-
ful (figure 3, line 2). Conjunctions frequently appear, expressing that one
disease/syndrome is treated with more than one treatment method, one
treatment method is used for more than one disease/syndrome (figure 4,
line 1) or that pairs of diseases/syndromes and treatments are used.

While diseases/syndromes are straightforwardly referred to by nouns,
treatment methods may be expressed as nouns as well as verbs (e.g. resection
vs. be resected).

Both the disease/syndrome and the treatment method may be referred
to by an anaphor. On average, there is about one anaphor referring to a
disease/syndrome or treatment method within an abstract, and only about
half of them actually participate in a treatment-relation. This corresponds
to the observation of Liang and Lin (2005) that anaphora do not occur
frequently in biomedical texts. According to Castaño et al. (2002), most
anaphora in biomedical literature are expressed through NPs or pronouns.
In my data set, however, most of them are expressed by NPs. An example
of this is this procedure in figure 4 (line 2 and 3). Of all tokens in my data
set, less than 1% are pronouns. Those mostly refer to persons (e.g. figure 5,
line 2) and only very rarely to diseases/syndromes or treatment methods.

To sum up, the data used for training, development and testing consists
of 95 abstracts on fibromuscular dysplasia, each of which contains at least
one treatment-relation. Characteristics of the abstracts are that most of
them share the same content structure. Characteristics of the treatment-
relation are that it mostly occurs within one sentence and that its entities
may be linked by different verbs and nouns in different orders. Anaphora
rarely occur within the treatment-relation.
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3.2 Sequential Pattern Mining Algorithm BIDE+

I have used sequential pattern mining in order to learn IE rules for relation
extraction, following Cellier et al. (2010). On the one hand, this is based on
the fact that sequential patterns take order into account. This is important
since language does so, as well. On the other hand, the choice of sequential
patterns is based on the observation of Plantevit et al. (2009) that IE with
sequential patterns yields a higher recall than with sequential rules. This
is relevant since, according to Nahm and Mooney (2004), recall is usually
much lower than precision for IE.

I have decided to use the algorithm BIDE+ for sequential pattern min-
ing (Wang and Han, 2004). According to them, it has several advantages.
Firstly, it mines closed frequent sequential patterns, where closure leads to
a complete but more compact result. Secondly, BIDE+ is faster and uses
less memory than other sequential pattern mining algorithms, both closed
and non-closed ones.

Wang and Han (2004) describe the BIDE algorithm for mining sequential
patterns consisting of items. The BIDE+ algorithm can be used for sequen-
tial patterns consisting of both items and itemsets. It works essentially in
the same way as BIDE.

In a nutshell, BIDE first creates frequent sequential patterns of size one
from the data. Treating each of them as a prefix, it uses pseudo projection to
create a database of projected sequences for each of the prefixes. This means,
given an input sequence and a prefix, a projected sequence is the remaining
part of the input sequence after having removed the first occurrence of the
prefix. For example, in figure 6 given prefix C, the projected sequences
are AABC, B, ABC and A. Pseudo projection means that the database is not
actually created, but rather the projected sequences are referred to with
pointers.

Figure 6: Example sequence database by Wang and Han (2004)

Then for each prefix and its pseudo projected database, locally frequent
items are computed. For the prefix C and the support threshold 2

4 , locally
frequent items in figure 6 are A, B and C. Furthermore, it is checked in each
direction (i.e. before, within and after the prefix) if there is any item which
always occurs with the given prefix. If not, the prefix is output as a closed
frequent sequential pattern. In figure 6, none of the items always occurs
with the prefix C. Therefore, C is a closed frequent sequential pattern.
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By combining it with its locally frequent items, new prefixes are formed.
For each new prefix, it is checked whether it can already be removed as
non-closed before the previous steps are performed on it as well.

The BIDE+ algorithm is implemented in the Sequential Pattern Mining
Framework (SPMF)11, which is a data mining framework. SPMF contains
not only implementations of algorithms for sequential pattern mining, but
also for frequent itemset mining, association rule mining and sequential rule
mining. I have used the SPMF in my work.

3.3 Learning Sequential Patterns for Treatment-Relation Ex-
traction

This subsection describes my approach to the extraction of the treatment-
relation, including preprocessing, sequential pattern mining and postpro-
cessing.

3.3.1 Preprocessing

Firstly, I have used GATE to do tokenization, sentence splitting, lemmatiza-
tion, POS tagging and shallow parsing. For the first two tasks, I have used
GATE Unicode Tokenizer and ANNIE Sentence Splitter. The latter three
tasks were performed by the GENIA tagger. Since it is specifically devel-
oped for parsing biomedical texts, its performance on them is much better
than that of the ANNIE POS tagger. For example, the ANNIE POS tagger
frequently mistags biomedical adjectives as nouns, e.g. fibromuscular. Since
I have used POS tags for further preprocessing and for postprocessing, a
good performance is important. The shallow parsing module of the GENIA
tagger recognizes chunks of phrases. I have made use of this for anaphora
resolution.

NER was implemented with GATE as well, or more precisely the MetaMap
Annotator. MetaMap uses the UMLS Metathesaurus to map tokens to
biomedical concepts. Referring to their Semantic Groups12, I have taken
the following MetaMap types for diseases and syndromes: Acquired Abnor-
mality, Anatomical Abnormality, Cell or Molecular Dysfunction, Congenital
Abnormality, Disease or Syndrome, Experimental Model of Disease, Find-
ing, Injury or Poisoning, Mental or Behavioral Dysfunction, Neoplastic Pro-
cess, Pathologic Function, Sign or Symptom. From now on, I will refer to
this group of types as “DISY” for “DIsease or SYndrome”. For treatment
methods, I have taken the followings MetaMap types: Antibiotic, Biomedi-
cal or Dental Material, Clinical Drug, Drug Delivery Device, Medical Device,

11http://www.philippe-fournier-viger.com/spmf/
12full list: http://metamap.nlm.nih.gov/SemGroups 2011.txt; shortened list in ap-

pendix A
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Pharmacologic Substance, Therapeutic or Preventive Procedure. I will refer
to this group of types as “TRME” for “TReatment MEthod” from now on.

By way of my own JAPE grammars and Perl scripts, I have transformed
nouns into semantic types. E.g. example 2 will look this way:

(12) The dsyn was treated by topp13

The use of semantic types is based on the idea that there will be less variation
and thus more opportunity to learn patterns. Independently from each
other, I have tried out four different type transformation methods:

1. AllTypes: every noun which has a MetaMap type is transformed into
it

2. RelevantTypes: only nouns which have a type from the DISY or
TRME group are transformed into it

3. OnlyTwo: nouns which have a type from the DISY or TRME group
are transformed into “DISY” or “TRME”, respectively

4. Two&Others: nouns which have a type from the DISY or TRME
group are transformed into “DISY” or “TRME”, respectively, while
nouns with other MetaMap types are transformed into that type

I have expected that with methods OnlyTwo and Two&Others, more pat-
terns might be learnt since there is even less variation. On the other hand,
patterns learnt with methods AllTypes or RelevantTypes might be more
precise. The four methods have been tested in the experiment phase.

All tokens which have not been transformed into a semantic type, were
then transformed into their lemmata. Again this is supposed to eliminate
variation. Finally, I filtered the tokens based on their POS tags and on a
stop word list. In this way, I kept nouns, verbs (except for modals, have and
be), adjectives, adverbs and infrequent prepositions. E.g. example 12 will
then look this way:

(13) dsyn treat topp

Stop wording is based on the idea that even though certain words, such as
determiners, frequently appear, their presence or absence in a pattern used
for relation extraction is not helpful. However, this has not been tested.
Therefore, it is not clear if they are merely redundant or if they could make
the performance worse.

Finally, there are four methods for transforming the text into input se-
quences for sequential pattern mining, which have been tried out indepen-
dently from each other:

13mappings from abbreviations to full types can be found here:
http://metamap.nlm.nih.gov/SemanticTypeMappings 2011AA.txt (full list) or shortened
in appendix B
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1. OneSent: one sequence consists of one sentence

2. TwoSent: one sequence consists of two sentences, where each second
sentence is also taken as a first sentence in the next sequence

3. Paragraph: one sequence consists of one paragraph

4. Paragraph&Sent one sequence consists of one paragraph, where each
sentence is an itemset14

All of them can be combined with all of the input sequence transformation
methods. I expected that with method TwoSent more patterns might be
learnt, while patterns learnt with OneSent might be more precise. With
the method Paragraph I have wanted to test the idea whether the bigger
context around the relation might help to identify it since the abstracts
are structured similarly, e.g. with a diagnostic procedure coming before
the treatment. Finally, with the method Paragraph&Sent I have wanted to
exploit the bigger context while also trying to exploit sentence boundaries.
I will get back to the input sequence methods in section 4.

In the next part, I will give some details on the input and output of the
sequential pattern mining process.

3.3.2 Sequential Pattern Mining

Based on a short preliminary analysis of sequential patterns for each input
sequence method15, I start with a more thorough analysis for input sequence
method OneSent. Therefore, I will give details on the sequential pattern
mining process for OneSent combined with all type transformation methods
in table 3. As I said before, the training set consists of 70 abstracts, and
the algorithm BIDE+ implemented in SPMF has been used.

For all four combinations, the number of input sequences is 483, as this
is the number of sentences in the training set. Depending on the type
transformation strategy, i.e. depending on whether all MetaMap types are
used or only types from the DISY and TRME group, they have a different
number of items (i.e. semantic types and lemmata). This is due to the fact
that a MetaMap type annotation often spans more than one word. This
means that the more MetaMap types are used, the less lemmata remain.
The number of unique items is different for each input since they not only
have more or less lemmata, but also more or less semantic types (DISY and
TRME as opposed to all types).

As the support threshold for all inputs, I chose 1%, which means that a
pattern has to occur in at least four input sequences.

14this means that the sentences are ordered, while the tokens within each sentence are
considered as unordered

15this will be described in detail in section 4
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OneSent OneSent OneSent OneSent
AllTypes RelevantTypes OnlyTwo Two&Others

Input
No. sequences 483 483 483 483
Total no. items 4710 5235 5235 4710
Unique no. items 965 1312 1299 951

Support 0.01 0.01 0.01 0.01

Output
No. patterns 1194 1124 1233 1319
Total no. items 2636 2391 2981 3313
Unique no. items 228 297 286 217
Average seq. length 2.2 2.1 2.4 2.5
Max. seq. length 5 5 6 6

Table 3: Details for input sequence method OneSent combined with all type
transformation methods

After sequential pattern mining, every input results in a different number
of sequential patterns. As suspected, the input types containing “DISY” and
“TRME” result in more patterns. Of the two, type transformation method
OnlyTwo&Others gives even more patterns than OnlyTwo. Therefore, the
less variation there is due to the use of semantic types, the more patterns
were found with the given data and support threshold.

An example pattern which has been learnt with method OneSent +
OnlyTwo is the following:

<(patient) (TRME) (DISY)>16

Further patterns as well as their evaluation will be discussed in section 4.

Based on which type transformation method performs best together with
input sequence method OneSent, the other input sequence methods have
been combined only with that one. As I will show in section 4, this is type
transformation method OnlyTwo. Therefore, I will give details for OnlyTwo
combined with all the input sequence transformation methods in table 4.

The two combinations which use sentences have 483 input sequences
again. The other two have 89 input sequences, as this is the number of
paragraphs in the training set. Apart from method TwoSent, they have
the same total number of items, and they all have the same number of

16as in section 2.3.3, the arrow brackets indicate the boundaries of a sequential pattern
and the round brackets indicate the boundaries of an itemset
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OnlyTwo OnlyTwo OnlyTwo OnlyTwo
OneSent TwoSent Paragraph Paragraph&Sent

Input
No. sequences 483 483 89 89
Total no. items 5235 9468 5235 5235
Unique no. items 1299 1299 1299 1299

Support 0.01 0.02 0.1 0.1

Output
No. patterns 1233 1625 109 4778
Total no. items 2981 4657 624 20680
Unique no. items 286 197 14 91
Average seq. length 2.4 2.9 5.7 4.3
Max. seq. length 6 6 10 9

Table 4: Details for type transformation method OnlyTwo combined with
all input sequence methods

unique items, as they all use the same type transformation method. The
combination using TwoSent has almost twice as many total items17.

As support thresholds, I chose 2% for method TwoSent (i.e. 8 sequences),
and 10% for methods Paragraph and Paragraph&Sent (i.e. 8 sequences).

As I suspected, the combination using TwoSent results in more patterns
than OneSent. The combination using the method Paragraph results in a
much lower number of patterns and a very low number of unique items. This
means that the patterns learnt from Paragraph contain many similar items
in different orders. The combination with method Paragraph&Sent behaves
similarly to Paragraph, with a higher number of patterns and a not much
higher number of unique items. Again, patterns and results for this will be
discussed in section 4.

3.3.3 Postprocessing with the Use of Constraints

Obviously, not all patterns that have been mined are to do with a treatment-
relation. Examples are the two following patterns:

• <(DISY) (month)>

• <(patient) (treat) (TRME)>

In the first pattern, “DISY” occurs but “TRME” does not. In the second
pattern, the verb treat and “TRME” occur but “DISY” does not. If one of

17the total number of items is not exactly twice as much because the first sentence of
each abstract occurs only once, while the others occur twice
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the entities that is supposed to be extracted does not occur in the pattern,
it cannot be extracted.

Therefore, the patterns need to be constrained. Similarly to Cellier
et al. (2010), I have decided that each pattern has to contain two named
entities, where one belongs to the DISY group and one to the TRME group.
Differently from them, however, patterns may also contain more than one
named entity of each type. This is important since, as I mentioned in section
3.1, a relation may exist between more than one disease/syndrome and more
than one treatment method. Furthermore, as in Cellier et al. (2010), each
pattern has to contain a verb or a noun. This is based on the observation
that the relation is mainly expressed through verbs and nouns, such as treat
and treatment. The results of postprocessing with these constraints are
shown in table 5.

OneSent OneSent OneSent OneSent
AllTypes RelevantTypes OnlyTwo Two&Others

output before/after
no. patterns 1194 / 26 1124 / 18 1233 / 33 1319 / 56
total no. items 2636 / 81 2391 / 57 2981 / 115 3313 / 195
unique no. items 228 / 10 297 / 11 286 / 15 217 / 15
average seq. length 2.2 / 3.1 2.1 / 3.2 2.4 / 3.5 2.5 / 3.5
max. seq. length 5 / 4 5 / 5 6 / 5 6 / 4

OnlyTwo OnlyTwo OnlyTwo OnlyTwo
OneSent TwoSent Paragraph Paragraph&Sent

output before/after
no. patterns 1233 / 33 1625 / 112 109 / 45 4778 / 1375
total no. items 2981 / 115 4657 / 424 624 / 302 20680 / 6943
unique no. items 286 / 15 197 / 26 14 / 11 91 / 35
average seq. length 2.4 / 3.5 2.9 / 3.8 5.7 / 6.7 4.3 / 5
max. seq. length 6 / 5 6 / 5 10 / 10 9 / 8

Table 5: Patterns before and after postprocessing

As before postprocessing, combinations containing “DISY” and “TRME”
result in more patterns after postprocessing, as opposed to combinations
which contain all the MetaMap types. Of the two, method OneSent +
Two&Others has more patterns again than method OneSent + OnlyTwo.
However, they have the same number of unique items. This means that
they contain similar patterns where method OneSent + Two&Others will
have additional patterns with different orders of the items. For method
OnlyTwo + TwoSent, the number of patterns after postprocessing is much
higher than the others and also has more unique items. Therefore, this will
contain patterns which are not contained in the other sets. The method
OnlyTwo + Paragraph&Sent has an even higher number of patterns after
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postprocessing and a higher number of unique items, compared to the other
methods.

To sum up, preprocessing mainly includes POS tagging and semantic
typing, stop wording based on the POS tags, and then transformation of the
text into different input sequences combined with different type transforma-
tion methods. Sequential patterns learnt in this way have been discussed by
way of their quantity as well as total and unique number of items in them,
while the actual patterns and a numerical evaluation will be discussed in
section 4. Finally, postprocessed patterns include at least one “DISY”, at
least one “TRME” and at least one verb or noun.

3.4 Simple Method for Anaphora Resolution

Before I applied the sequential patterns to extract instances of the treatment-
relation, I performed a simple anaphora resolution method. It is based on
that of Pustejovsky et al. (2002).

Similar to Castaño et al. (2002), I restricted it to MetaMap types from
the DISY and TRME groups. Furthermore, I restricted it to NP anaphora
since, as I mentioned in section 3.1, almost none of the few occurring pro-
nouns refers to a sign or treatment.

Firstly, I have made temporary annotations, marking NPs from the DISY
or TRME group as “candidate antecedent” or “candidate anaphora”. Can-
didate antecedents are NPs where the noun is preceded by the determiners
a, an or which do not contain a determiner. Candidate anaphora are NPs
where the noun is preceded by a determiner which is not a or an. However,
in order to simplify the method, I have excluded nouns preceded by both and
neither since those usually require more than one antecedent (as opposed to
an antecedent in plural).

Next, I have used a Perl script to compare the string of the candidate
anaphora to the strings of the candidate antecedents, starting from the can-
didate antecedent closest to the candidate anaphora going until the begin-
ning of the given abstract. This is based on the observation that many of
the anaphora are contained in their antecedent. An example of this is:

(14) a subsequent brachial artery aneurysm ... the aneurysm

For candidate anaphora which cannot be matched to an antecedent in
this way, I have checked for matching semantic type and matching number.
To reduce false positives, I have computed the string distance using Leven-
shtein distance. If the semantic types are an exact match, the string distance
has to be less or equal to the length of the candidate anaphora string. If the
semantic types match within their group (i.e. DISY or TRME), the string
distance has to be less or equal to 3

4 of the length of the candidate anaphora
string18. An example of a pair which can be matched in this way is:

18this has been determined heuristically
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(15) thromboemboli ... the radial artery embolism.

Matched pairs have then been annotated using a JAPE grammar.
The performance of this anaphora resolution method has been evaluated

on the test set. In order to do so, the test set has been manually annotated
with correct anaphora-antecedent pairs. In total, there are 15 pairs. 14 of
those refer to entities from the DISY group and only one of them refers to
an entity from the TRME group.

With the above described method, 17 pairs are identified. Out of them,
11 are correct and 6 are false positives. This gives a recall of 73%, precision
of 65% and F1-measure of 69%.

Of the missing pairs, three of them are absent because either the anaphora
or antecedent has not been marked as a candidate in the first step. Of the
false positives, three come from the string comparison part and the other
three from the semantic type matching part. However, of the six false pos-
itives, none of them participates in a treatment-relation. Therefore, in this
data, the medium precision of anaphora resolution will not influence the
precision of relation extraction.

I will show in the next section that an anaphora resolution method with
the given performance can already improve relation extraction.

To sum up, in this section I have described collection, division and char-
acteristics of the data as well as which relation I aimed to extract. I have
shortly described the algorithm BIDE+ used for sequential pattern mining.
Then I have described my approach to extraction of the treatment-relation,
and compared different sets of mined patterns based on numerical charac-
teristics before and after postprocessing. Finally, I have described how I am
resolving NP anaphora which have a type from the DISY or TRME group.

4 Evaluation

In this section, I will give a qualitative and quantitative evaluation of the se-
quential patterns described previously. Qualitative evaluation will be based
on a manual analysis of patterns. For this, I have looked at the sequences
from which the given pattern has been derived, i.e. at sequences from the
training set. Quantitative evaluation will be based on precision, recall and
F-measure computed on the test set.

For this purpose, I have created a reference set in which the treatment-
relation relating a disease/syndrome with a treatment method is annotated.
Furthermore, NP anaphora referring to diseases/syndromes and treatment
methods are annotated with their antecedent. In total, there exist 16
treatment-relations in the test set. Of those, one relation contains more than
one disease/syndrome, and two contain more than one treatment method.
Six of the diseases/syndromes in a treatment-relation are expressed through
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an anaphora. None of the treatment methods in a treatment-relation is
expressed through an anaphora.

Evaluation against the reference set is done as follows: for a treatment-
relation with one occurrence of “DISY” and “TRME” each, it is counted as
1 correct answer if the entities are connected to each other. For a treatment-
relation with multiple occurrences of one or both of the entities, it is counted
as 1 correct answer if all the entities are connected to each other. For
example, if there are two “DISY” and one “TRME”, it is counted as 1
correct answer if both “DISY” are connected to “TRME” and it is counted
as 0.5 correct answer if only one of them is connected to it. Furthermore, if
there is an anaphora present and the correct antecedent is present as well,
this is counted as 1 correct answer. If the anaphora is present without its
antecedent, this is counted as half a correct answer (based on the idea that
an anaphora is still better to extract than completely missing the given
relation).

In order to have a comparison for the quantitative evaluation, I have
created a baseline result. For this, a JAPE grammar extracts a treatment-
relation whenever a disease/syndrome and treatment method occur in the
same sentence, in whatever order. Evaluated on the test set, this method
gives a precision of 22%, a recall of 83% and an F1-measure of 34%. I will
refer to the F1-measure as the baseline.

4.1 Preliminary Analysis of Sequential Patterns

OneSent vs. TwoSent patterns: Based on the observation that the
treatment-relation mostly occurs either within one sentence or over two sen-
tences, I have started with comparing patterns learnt with method OneSent
to patterns learnt with TwoSent, both after postprocessing. For this, I have
looked not only at the patterns itself, but also at the sequences in the train-
ing set from which the given pattern was learnt.

I have distinguished the sequences into relevant and irrelevant occur-
rences of the pattern. I define a relevant occurrence to be one where a cor-
rect treatment-relation can be extracted with the given pattern. Irrelevant
occurrences are then defined as those where the entities extracted with the
pattern are not related in a treatment-relation. Based on this, I have tried
to find characteristics which distinguish relevant and irrelevant occurrences
of a pattern.

For patterns from TwoSent, it can be seen that most relevant occurrences
have the entities within one sentence, while many irrelevant occurrences
have them over two sentences. For example, for pattern <(TRME) (artery)

(DISY)> (pattern 2 in appendix F), this is true of sequence 176 and 206,
respectively: sequence 176 has the entities in one sentence and is relevant,
while sequence 206 has the entities over two sentences and is irrelevant19.

19In each of the following sequences, the items of the pattern are marked in blue. For
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TwoSent - 176: we describe a 57 - year-old woman who , on multiple occasions ,
presented with progressive gastrointestinal symptoms and eventually underwent sur-
gical revascularization for celiac and superior mesenteric artery stenosis of uncertain
etiology . her postoperative course was complicated by bowel ischemia , multiple
organ failure , and death .

# TwoSent - 206: angiographic control at the end of operation demonstrated a
good reconstructive result without any changes in the right common iliac artery and
the aorta . histopathological examination of the removed material showed fibromus-
cular dysplasia of the media .

For a sample of 10 patterns (two frequent, one medium and two rare
patterns containing verbs, and the same for nouns), 73% of the relevant
occurrences have the entities within one sentence, and 53% of the irrelevant
occurrences have the entities over two sentences.

The pattern <(TRME) (artery) (DISY)> has 4 relevant occurrences
and 36 irrelevant occurrences for the TwoSent input, where all the relevant
occurrences have the entities within one sentence and 61% of the irrelevant
occurrences have them in two sentences. On the other hand, the OneSent
input has 2 relevant occurrences for the same pattern (pattern 3 in appendix
C) and 9 irrelevant occurrences. An example of a relevant occurrence is
sequence 176 and an example of an irrelevant occurrence is sequence 343.

OneSent - 176: we describe a 57 - year-old woman who , on multiple occasions ,
presented with progressive gastrointestinal symptoms and eventually underwent sur-
gical revascularization for celiac and superior mesenteric artery stenosis of uncertain
etiology .

# OneSent - 343: this case report describes a patient with digital embolization
from brachial artery fibromuscular dysplasia .

For both OneSent and TwoSent sequences, most of the irrelevant occur-
rences that have the entities within one sentence are irrelevant due to one of
the entities being mistagged, i.e. being tagged as a treatment method when
it is a syndrome or the other way around (e.g. sequence 343 for the OneSent
input).

In sum, for the pattern <(TRME) (artery) (DISY)>, the coverage of
relevant occurrences of the OneSent pattern is the same as for the TwoSent
pattern20. At the same time, the accuracy of the OneSent pattern is better
than that of the TwoSent pattern. Therefore, I assume that input method
OneSent will perform better than method TwoSent.

relevant occurrences, this corresponds to the entities related in a treatment-relation, while
for irrelevant occurrences it does not correspond to the correct entities. Furthermore,
irrelevant occurrences are marked with a #

20as the 4 relevant occurrences from the TwoSent input come from the same two sen-
tences as in the OneSent pattern
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Paragraph and Paragraph&Sent: A preliminary analysis of the pat-
terns learnt with Paragraph and Paragraph&Sent shows that the patterns
mostly contain multiple occurrences of “DISY” and “TRME” and not many
verbs or other nouns. An example of this is the following:

<(DISY) (undergo) (TRME) (TRME) (DISY)>

However, obviously not every occurrence participates in a treatment-relation
since the occurrences are distributed over a whole paragraph. Therefore, in
order to use those patterns, we would need a way of knowing which are the
relevant occurrences. I will get back to this in section 4.4.

Quantitative evaluation of OneSent: Based on this preliminary analy-
sis, I have continued to analyze patterns created with input method OneSent
more closely. In order to decide with which type transformation method I
should analyze it, I have evaluated OneSent combined with all type trans-
formation methods on the test set. For all the patterns, all the items of
the pattern have to occur within one sentence with an unlimited number of
tokens in between. This gives the results in table 6.

Precicion Recall F1-measure

OneSent, AllTypes 21% 34% 26%
OneSent, RelevantTypes 21% 28% 24%
OneSent, OnlyTwo 20% 44% 27%
OneSent, Two&Others 16% 44% 24%

Table 6: Quantitative evaluation of OneSent patterns

Based on these results, I have decided to give a more detailed analysis
for method OneSent + OnlyTwo in section 4.3. Based on the analysis,
I will present ideas how to filter the patterns so that their precision will
increase, as right now none of the results reaches the baseline result. Then
I will apply these ideas to all the type transformation methods again since
at least OnlyTwo and AllTypes have very similar results.

4.2 Impact of Anaphora Resolution on the Test Results

In this section, I will evaluate the impact of anaphora resolution on the
extraction of the treatment-relation. By way of example, I have compared
extraction with and without anaphora resolution with method OneSent +
OnlyTwo.

Table 7 shows that both precision and recall are increased when anaphora
resolution is performed. Therefore, all the following experiments have been
performed with anaphora resolution, without explicitly stating it every time.
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Precicion Recall F1-measure

without anaphora resolution 20% 44% 27%
with anaphora resolution 22% 50% 31%

Table 7: Impact of anaphora resolution for OneSent + OnlyTwo

4.3 Detailed Analysis of Sequential Patterns Created Using
Most Relevant Method

For a detailed analysis of sequential patterns created with method OneSent
+ OnlyTwo, I have looked at all the sequences that were used in order
to build the patterns. As I said in table 5, there are 33 patterns after
postprocessing. They can be found in appendix C.

7 of them contain a verb and 26 contain a noun. There are five different
verbs, with treat being used three times. There are five different nouns,
with patient, artery and case being used multiple times. 5 of the noun
patterns and one verb pattern contain two occurrences of “DISY”, while 3
noun patterns and no verb pattern contain two occurrences of “TRME”.

Again, I have distinguished the sequences for each pattern into relevant
and irrelevant occurrences as described above and tried to find similarities
and differences between them based on syntactic or semantic information.

Verb patterns: I have started with the analysis of the verb patterns. The
five occurring verbs are treat, undergo, describe, report and cause. I have
looked at the meaning of the verb, its voice, and the syntactic or semantic
roles that the entities play with regard to the verb.

Firstly, by way of its meaning the verb treat is obviously able to relate
two entities in a treatment-relation. The verb undergo is able to relate two
entities in a treatment-relation as well, but could also be used in different
ways (e.g. relating a disease/syndrome with a diagnostic procedure). Then,
describe and report are both verbs of speech. Since they have a general
meaning, i.e. not related to the biomedical domain, we have to check if
and when they describe a treatment-relation. Finally, semantically the verb
cause could describe a treatment-relation if “DISY” was the agent21 and
“TRME” was the theme22.

The verb treat always occurs either as a main verb in passive voice or as
a past participle. In all the relevant occurrences of its patterns, the “DISY”

21the semantic role agent expresses the doer of the action (here, the thing that causes
something)

22the semantic role theme expresses something that undergoes an action while not chang-
ing in its course (here, the thing that is caused)
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semantically expresses the patient23 of treat, while “TRME” expresses its
manner or instrument. The same semantic roles apply to the relevant oc-
currences of the patterns with undergo, describe and report, with all three of
the verbs being in active voice in the sequences. For the pattern with cause,
none of the sequences are relevant since in none of them “DISY” is the agent
and “TRME” is the theme, as stipulated above. This analysis shows that
for future work inclusion of semantic roles into the preprocessing and then
into the sequential pattern mining might be very useful.

Syntactically, in the treat patterns “DISY” is usually expressed as an
of -prepositional object, while “TRME” is usually expressed as the by-agent
in a passive sentence or as a with-prepositional object. The verb undergo
has a rigid syntactic structure: “TRME” is expressed as its direct object
in all sequences and “DISY” is expressed as a prepositional object in all
relevant occurrences. An example is sequence 176.

OneSent - 176: we describe a 57 - year-old woman who , on multiple occasions ,
presented with progressive gastrointestinal symptoms and eventually underwent sur-
gical revascularization for celiac and superior mesenteric artery stenosis of uncertain
etiology .

In almost all relevant cases of describe and report, “DISY” is expressed
as a prepositional object referring to the direct object of the verb (e.g. case,
management) and “TRME” is expressed as a prepositional object referring
to the direct object as well or to a past participle, such as treated. Examples
are sequences 83 and 212, respectively.

OneSent - 83: this case report describes management of a left renal artery
aneurysm with covered stents .

OneSent - 212: we report a case of symptomatic cervical carotid artery stenosis
associated with fibromuscular dysplasia ( fmd ) successfully treated by percutaneous
transluminal angioplasty ( pta ) .

As I said before, there are no relevant occurrences with cause, an example
of which is sequence 270.

# OneSent - 270: multiple medical regimens failed , including an angiotensin-
converting enzyme inhibitor , which caused acute renal failure .

While there are syntactic similarities between relevant sequences of a
given pattern, as described above, it depends on the support threshold

23the semantic role patient expresses something that undergoes an action while changing
in its course
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whether they can be exploited. Some of them will be too infrequent to
be learnt.

The verb treat is the only one which occurs in more than one pattern
and therefore the only one with different orders of items in the different
patterns. For treat, different orders of “TRME” and “DISY” are mostly due
to different emphasis.

• <(treat) (TRME) (DISY)> (pattern 5 in appendix C)

• <(DISY) (DISY) (treat) (TRME)> (pattern 29 in appendix C)

For example, for pattern 5 the emphasis seems to be on the treatment
method, while for pattern 29 the emphasis seems to be on the diseases/
syndromes. However, there is also one pattern containing treat which has
only irrelevant sequences:

<(treat) (DISY) (TRME)> (pattern 15 in appendix C)

Two of the irrelevant occurrences are due to mistagging, while the other
two do not extract the correct disease/syndrome. Instead, the correct dis-
ease/syndrome occurs after “TRME” (as in pattern 5). This clearly shows
that the order of items in the pattern matters and that using sequential
pattern mining is a good choice, as opposed to itemset mining.

Finally, I have taken a closer look at pattern 29, which is the only verb
pattern with multiple occurrences of a named entity. I have found out that
both occurrences of “DISY” should only be extracted if they are connected
by a conjunction such as and/or. On the contrary, if the first occurrence
is connected to the second by a preposition or anything else, only the first
occurrence should be extracted. Examples of this are the sequences 263 and
212, respectively.

OneSent - 263: patients with fibromuscular dysplasia ( fmd ) and hypertension
are frequently treated with percutaneous transluminal renal angioplasty ( ptra ) .

# OneSent - 212: we report a case of symptomatic cervical carotid artery stenosis
associated with fibromuscular dysplasia ( fmd ) successfully treated by percutaneous
transluminal angioplasty ( pta ) .

While the relevant occurrences of the verb patterns have some things in
common, as described above, this is not really the case for the irrelevant
occurrences. On the one hand, the entities in them can be semantically
and syntactically expressed as they are in the relevant occurrences, but do
not relate the entities as they occur in the pattern. On the other hand,
they can also be expressed differently from relevant occurrences. One thing
the irrelevant occurrences have in common is that usually the gap between
items, i.e. the number of words occurring between the items, is bigger than
for relevant occurrences.
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Noun patterns: There are noun patterns with the following nouns: treat-
ment, patient, artery with or without modifiers, case and type.

As treat, the noun treatment is obviously able to relate two entities in a
treatment-relation. Syntactically, “TRME” is usually the subject, treatment
the direct object and “DISY” a prepositional object referring to treatment.
An example is sequence 100.

OneSent - 100: current percutaneous angioplasty is the preferred treatment
for symptomatic carotid fmd , but no randomized controlled trials comparing this
methodology with surgery is available .

On the other hand, the noun type does not have anything to do with the
biomedical domain. A look at the sequences from which the pattern was
learnt shows that none of them is relevant to the treatment-relation. This
is due to “TRME” being related to another disease/syndrome than the one
in the pattern. An example is sequence 302.

# OneSent - 302: for uncontrolled hypertension , nephrectomy was performed
and histopathology of the renal artery showed intimal fibroplasia , an uncommon type
of fibromuscular dysplasia .

The other three nouns do have something to do with the biomedical do-
main, but as with the verbs of speech, it is not obvious in what way they can
or cannot be used to extract a treatment-relation. Semantically, a patient
is always explicitly or implicitly present in a sentence with a treatment-
relation, but of course the word also frequently occurs in non-relevant sen-
tences. The same holds for the word case and as long as we are talking
about fibromuscular dysplasia, for the word artery.

Each of the three nouns occurs with more than one order of the noun,
“DISY” and “TRME” in the pattern. When analyzing the sequences for
each pattern, I have found out that most of them are not relevant to the
treatment-relation. There are only three patterns for which most of the
sequences are relevant:

• <(case) (DISY) (TRME)> (pattern 7 in appendix C)

• <(artery) (DISY) (TRME)> (pattern 12 in appendix C)

• <(TRME) (DISY) (internal) (carotid) (artery)> (pattern 16 in
appendix C)

Examples are the sequences 212, 451 and 14, respectively.
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OneSent - 212: we report a case of symptomatic cervical carotid artery stenosis
associated with fibromuscular dysplasia ( fmd ) successfully treated by percutaneous
transluminal angioplasty ( pta ) .

OneSent - 451: fibromuscular dysplasia ( fmd ) of the renal arteries is classi-
cally associated with secondary hypertension in younger individuals , which may be
treatable and even curable by percutaneous transluminal renal angioplasty .

OneSent - 14: angioplasty may be used as an alternative to open arteriotomy and
graduated dilatation in treating stenosis due to symptomatic fibromuscular dysplasia
in the immediate extracranial part of the internal carotid artery .

Intuitionally, we can say that the disease/syndrome belongs to the pa-
tient/artery/case, while the treatment method is something which is done to
them because of the disease/syndrome. Therefore, “DISY” occurs between
the noun and “TRME” in relevant sequences.

As with verb patterns, if there is more than one occurrence of “DISY”
or “TRME”, then both occurrences should only be extracted if they are
connected by a conjunction and otherwise only the first occurrence should
be extracted. Also as with verb patterns, the number of words occurring
between items is usually bigger for irrelevant occurrences than for relevant
occurrences.

Apart from that, in all of the patterns (i.e. verb and noun patterns)
about half of the irrelevant occurrences are irrelevant because one of the
entities is mistagged. Usually, this is the case when a word is able to denote
both a syndrome and a treatment method, such as I mentioned in section
2.2. Obviously, this influences both the learning phase and the testing phase.
For learning, it means that patterns will be learnt which would not be learnt
with correct tagging and the given support threshold. For testing, it means
that the precision will possibly decrease.

Filtering: Based on the analysis of the verb and noun patterns produced
by method OneSent + OnlyTwo, I conclude that the performance of these
patterns for extraction of the treatment-relation will be better if the patterns
are filtered, i.e. if patterns which introduce a lot of noise are excluded. This
is also done by Cellier et al. (2010), who have their sequential patterns
validated by a domain expert.

Therefore, firstly I have excluded the patterns with cause, type and the
irrelevant treat pattern, as all their sequences are irrelevant. Furthermore,
for noun patterns, I have excluded all patterns which do not have one of the
following orders:

• <(noun) (DISY) (TRME)>

• <(TRME) (DISY) (noun)>

“DISY” or “TRME” may occur multiple consecutive times in one pattern
and the noun may be modified with adjectives. If the entities do occur
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multiple times, both occurrences are only extracted if they are connected
by and, or or a comma. Only the first occurrence is extracted if the two
occurrences are otherwise connected. Due to the fact that BIDE+ mines
closed sequences, sometimes the same pattern with one occurrence instead
of two occurrences is missing (namely when they have the same support).
Therefore, I furthermore say that the second occurrence is optional.

The filtered set of patterns can be found in appendix D. On the test set,
this method of filtering gives the results in table 8.

Precicion Recall F1-measure

OneSent, AllTypes 29% 31% 30%
OneSent, RelevantTypes 27% 25% 26%
OneSent, OnlyTwo 30% 50% 37%
OneSent, Two&Others 23% 56% 33%

Table 8: Quantitative evaluation of OneSent patterns after filtering

Table 8 shows that the precision increases for all methods in comparison
with table 6. Except in one case, the recall does not decrease. Therefore, the
filtering method is able to reduce noise while keeping almost all of the useful
patterns. Furthermore, now one of the methods, OneSent + OnlyTwo, is
able to outperform the baseline result.

Gap constraints: Next, since the gap between items from the pattern is
usually bigger in irrelevant occurrences than in relevant occurrences, I have
decided to implement a gap constraint for the patterns, i.e. to not allow an
unlimited number of tokens between items. Using the development set, I
heuristically determined the maximum number of tokens in the gap. This
means that I have tried to maximize the precision on the development set,
while keeping the recall as high as possible. This was done for each pattern
separately. By way of example, the patterns with their corresponding gaps
for method OneSent + OnlyTwo can be found in appendix E. Using the
resulting patterns on the test set gives the results in table 9.

Precicion Recall F1-measure

OneSent, AllTypes 50% 31% 38%
OneSent, RelevantTypes 60% 19% 29%
OneSent, OnlyTwo 50% 50% 50%
OneSent, Two&Others 35% 50% 41%

Table 9: Quantitative evaluation of OneSent patterns after filtering and with
gap constraints

Table 9 shows that the precision is much higher for all methods, while the
recall decreases a little for method OneSent + RelevantTypes and OneSent
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+ Two&Others. This still results in a higher F1-measure for all methods.
Furthermore, now all methods except for OneSent + RelevantTypes are
able to outperform the baseline result. Finally, both in table 8 and 9, the
superiority of method OneSent + OnlyTwo over the other methods is more
pronounced than it was in table 6.

4.4 Short Analysis of Other Sequential Patterns

Based on the results from the previous section, I have decided to test the
other input methods with the type transformation method OnlyTwo.

TwoSent + OnlyTwo: The method TwoSent + OnlyTwo includes the
patterns of OneSent + OnlyTwo, but it also has additional ones. They can
be found in appendix F. As I said in section 4.1, the sequences are usually
relevant when the entities occur in only one of the sentences, while they are
usually irrelevant when they occur over two sentences.

The patterns include a new verb, perform, which semantically looks
promising. However, analysis of its patterns and their sequences shows that
most of them are irrelevant. Even though there are also relevant sequences
occurring in one sentence, those are not frequent enough to be learnt with
the method OneSent + OnlyTwo and with the given support threshold.
Examples of a relevant and irrelevant occurrence are sequences 25 and 35,
respectively.

TwoSent - 25: extracranial-intracranial bypass graft was performed , followed
by excision of the arterial lesion . pathological examination revealed fibromuscular
dysplasia and dissecting aneurysm .

# TwoSent - 35: a retrospective analysis of all patients with renal artery rafmd
who underwent transcatheter therapy between january 1999 and december 2009 was
performed . blood pressure ( bp ) measurement , number of bp medications , and
hypertension defined by a systolic bp >140 diastolic bp >90 were recorded .

Before testing the TwoSent + OnlyTwo patterns on the test set, I have
applied filtering to them in the same way as for OneSent + OnlyTwo. The
set of filtered patterns can be found in appendix G. I have compared the
performance of a gap constraint of 0 to 20 tokens24 to the gap constraint
adjusted using the development set. The results of this are shown in table
10.

It can be seen that even though the recall is higher than for method
OneSent + OnlyTwo, the precision is lower, resulting in a lower F1-measure.

24since the average sentence length is close to that and since there are usually two gaps,
the first item in the pattern might be at the beginning of one sentence and the last item
at the end of the following sentence with this gap constraint
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Precicion Recall F1-measure

gap 0-20 16% 81% 27%
gap adjusted on d.s. 33% 56% 42%

Table 10: Quantitative evaluation of TwoSent + OnlyTwo after filtering

Paragraph + OnlyTwo: Patterns by strategy Paragraph + OnlyTwo
mainly contain multiple occurrences of “DISY” or “TRME”, but not many
different verbs or nouns. They can be found in appendix H. Since the occur-
rences are distributed over a whole paragraph, not each of them participates
in the treatment-relation. I have analyzed two patterns more closely to see if
there is a way of telling which occurrences of “DISY” and “TRME” should
be extracted.

• <(DISY) (undergo) (TRME) (DISY) (DISY)> (pattern 16 in appendix
H)

• <(DISY) (report) (DISY) (DISY) (DISY) (DISY) (artery) (TRME)

(DISY)> (pattern 45 in appendix H)

In five sequences of pattern 16, only the first occurrence of “DISY” is rele-
vant, where in two of those “DISY” is not in the same sentence as undergo
and “TRME” (e.g. sequence 24). In four sequences, only the second occur-
rence of “DISY” is relevant and it is always in the same sentence as undergo
and “TRME”. One sequence is completely irrelevant.

# Paragraph - 24: fibromuscular dysplasia of the aorta is an exceedingly rare
disease with 26 cases reported to date in medline . we present a case of stenosis of
the infrarenal abdominal aorta in a 49 - year-old woman with a history of intermit-
tent claudication . the patient underwent aortic endarterectomy , and subsequent
anatomopathologic examination of the specimen revealed fibromuscular dysplasia .
the possible causes of aortic stenosis in this case , its angiographic findings , and the
alternatives of treatment are discussed .

For pattern 45, in two sequences, only the last occurrence of “DISY” is
relevant, and it is in the same sentence with “TRME” but with nothing else
from the pattern. In three sequences, either the forth, fifth or both occur-
rences of “DISY” are relevant, where one of them is in the same sentence
with “TRME” and the others are not.

This short analysis already shows that in order for the patterns to be
useful for relation extraction, each one would have to be analyzed with
respect to which entities participate in the relation and which ones are con-
text. Furthermore, even within one pattern, there is variation with respect
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to that. Therefore, I conclude that it would take too much work to analyze
the patterns before the context can be useful.

Paragraph&Sent + OnlyTwo: Patterns learnt by Paragraph&Sent +
OnlyTwo will also require too much work. Since there are still 1375 pat-
terns after postprocessing, only a sample of them can be found in appendix
I. In fact, those patterns might require even more work than the method
Paragraph + OnlyTwo since while the sentences are ordered in them, the
words are considered as unordered. As we have seen in section 4.3 that not
every order is equally good, these patterns will introduce a lot of noise.

Therefore, I conclude that the idea of using paragraphs, even though it
might make sense in theory, is not practical without extra-work. Even then,
the precision and recall still might be worse than with OneSent or TwoSent
patterns.

To sum up, I have firstly shown that anaphora resolution can improve
both precision and recall for extraction of the treatment-relation. Then,
based on preliminary test results, I have analyzed the patterns of the method
OneSent + OnlyTwo as the most promising method.

Based on the analysis, I have come up with a way of filtering the patterns
and constraining the gap between items in the pattern. Furthermore, I have
discovered some linguistic considerations, which will be interesting for future
work. Firstly, labeling with grammatical roles, such as subject and object,
is promising. However, the grammatical roles are not completely fixed for
each pattern and could therefore not be exploited for all of them. Secondly,
for verb patterns semantic role labeling would be interesting. It is not clear,
however, if and how this could help with noun patterns.

With both filtering and gap constraints, the F1-measure has reached
50% for method OneSent + OnlyTwo. This remains the best result, after
also having filtered and constrained the gaps of the other, less promising
methods.

5 Discussion and Conclusion

Some points in the previous work need improvement or further discussion.
Firstly, the dataset seems to be fairly limited. For example, promising pat-
terns, such as with the verb perform, are only learnt with method TwoSent
and not with the best method, i.e. OneSent. While the pattern does not
help method TwoSent to outperform method OneSent, it is a pattern we
intuitionally would like to keep. Some other verbs and nouns occurring in
the test set are too infrequent in the training set to be learnt as a pattern
with any given method and given support threshold, e.g. manage and man-
agement. Furthermore, some of the verbs occur with different orders of the
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named entities, while only one of them has been learnt as a pattern, e.g. the
verb undergo.

Therefore, the performance of relation extraction would probably be bet-
ter if the dataset was bigger. Since I have taken all the existing PubMed
abstracts talking about treatment of fibromuscular dysplasia, the only possi-
bility would be to mix abstracts talking about different diseases. This would
be interesting for future work.

Then with a bigger dataset, the importance of anaphora resolution is
not entirely clear. While it is able to improve the performance of relation
extraction with the given test set, this might not be the case for a bigger
one. This is due to the assumption that in a bigger dataset, there would be
redundancy in the instances of the treatment-relation. Not every anaphora
would have to be resolved then in order to capture each instance of the
relation.

Furthermore, with a bigger dataset, it might be possible that the post-
processed patterns have to be reduced in a more efficient way than manual
filtering. It would be interesting to see how recursion as proposed by Cellier
et al. (2010) works. However, since they only give examples of final patterns
and not of originally learnt patterns, it is hard to know if this is a useful
technique. The original patterns, even though more numerous, might be
more accurate.

Moreover, the gap constraints have been adjusted for each pattern by
hand. It would be better if this could be done automatically, so that we can
be sure that the best possible performance is reached.

Finally, the best F1-measure that has been reached is only 50%. This
is much less than the results by Cellier et al. (2010), where the best F1-
measure is 88%. Obviously, the results are not entirely comparable since
they have not been created on the same test set.

Taking into account the limitations of the data set, the ceiling imposed
by the semantic tagging and the manual adjustment of the gap constraints,
I think that the approach described here is useful and can be improved by
taking care of the above things.

To sum up, in this thesis my aim was to extract instances of a treatment-
relation between treatment methods and syndromes of fibromuscular dys-
plasia. The motivation for this is the need to create review articles on rare
diseases, in order to make information on them more accessible. Therefore,
we would like to automatically extract information for the articles.

I have developed relation extraction rules for the treatment-relation, us-
ing sequential pattern mining. The preprocessing for this includes POS
tagging, lemmatization, named entity recognition using MetaMap tagging,
and anaphora resolution using mostly string comparison. The learnt pat-
terns are postprocessed using constraints. Furthermore, based on a manual
analysis, the postprocessed patterns are filtered and gap constraints are im-
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plemented.
The best method makes use of grouped MetaMap tags which are replaced

by “DISY” or “TRME”, and single sentences as the input for sequential
pattern mining. Its F1-measure reaches 50%. While this result is not as
high as, for example, the one by Cellier et al. (2010), who also use sequential
pattern mining, I think it can be improved by gathering more data and
using an automatic method for adjusting gaps. Furthermore, it would be
interesting to use grammatical role labeling and semantic role labeling during
preprocessing and see how they can improve the results. Given that, I
think that sequential pattern mining is a useful method for creating relation
extraction rules.
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A Semantic Groups of MetaMap Types

Note: this is a shortened list of semantic groups, while the full list can be
found here: http://metamap.nlm.nih.gov/SemGroups 2011.txt

CHEM—Chemicals & Drugs—T116—Amino Acid, Peptide, or Protein

CHEM—Chemicals & Drugs—T195—Antibiotic

CHEM—Chemicals & Drugs—T123—Biologically Active Substance

CHEM—Chemicals & Drugs—T122—Biomedical or Dental Material

CHEM—Chemicals & Drugs—T118—Carbohydrate

CHEM—Chemicals & Drugs—T103—Chemical

CHEM—Chemicals & Drugs—T120—Chemical Viewed Functionally

CHEM—Chemicals & Drugs—T104—Chemical Viewed Structurally

CHEM—Chemicals & Drugs—T200—Clinical Drug

CHEM—Chemicals & Drugs—T111—Eicosanoid

CHEM—Chemicals & Drugs—T196—Element, Ion, or Isotope

CHEM—Chemicals & Drugs—T126—Enzyme

CHEM—Chemicals & Drugs—T131—Hazardous or Poisonous Substance

CHEM—Chemicals & Drugs—T125—Hormone

CHEM—Chemicals & Drugs—T129—Immunologic Factor

CHEM—Chemicals & Drugs—T130—Indicator, Reagent, or Diagnostic Aid

CHEM—Chemicals & Drugs—T197—Inorganic Chemical

CHEM—Chemicals & Drugs—T119—Lipid

CHEM—Chemicals & Drugs—T124—Neuroreactive Substance or Biogenic Amine

CHEM—Chemicals & Drugs—T114—Nucleic Acid, Nucleoside, or Nucleotide

CHEM—Chemicals & Drugs—T109—Organic Chemical

CHEM—Chemicals & Drugs—T115—Organophosphorus Compound

CHEM—Chemicals & Drugs—T121—Pharmacologic Substance

CHEM—Chemicals & Drugs—T192—Receptor

CHEM—Chemicals & Drugs—T110—Steroid

CHEM—Chemicals & Drugs—T127—Vitamin

DEVI—Devices—T203—Drug Delivery Device

DEVI—Devices—T074—Medical Device

DEVI—Devices—T075—Research Device

DISO—Disorders—T020—Acquired Abnormality

DISO—Disorders—T190—Anatomical Abnormality

DISO—Disorders—T049—Cell or Molecular Dysfunction

DISO—Disorders—T019—Congenital Abnormality

DISO—Disorders—T047—Disease or Syndrome

DISO—Disorders—T050—Experimental Model of Disease

DISO—Disorders—T033—Finding

DISO—Disorders—T037—Injury or Poisoning

DISO—Disorders—T048—Mental or Behavioral Dysfunction

DISO—Disorders—T191—Neoplastic Process
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DISO—Disorders—T046—Pathologic Function

DISO—Disorders—T184—Sign or Symptom

PROC—Procedures—T060—Diagnostic Procedure

PROC—Procedures—T065—Educational Activity

PROC—Procedures—T058—Health Care Activity

PROC—Procedures—T059—Laboratory Procedure

PROC—Procedures—T063—Molecular Biology Research Technique

PROC—Procedures—T062—Research Activity

PROC—Procedures—T061—Therapeutic or Preventive Procedure

B Mappings from Abbreviations to Full MetaMap
Types

Note: this is a shortened list of mappings, while the full list can be found
here: http://metamap.nlm.nih.gov/SemanticTypeMappings 2011AA.txt

acab—Acquired Abnormality

anab—Anatomical Abnormality

antb—Antibiotic

bodm—Biomedical or Dental Material

cgab—Congenital Abnormality

clnd—Clinical Drug

comd—Cell or Molecular Dysfunction

drdd—Drug Delivery Device

dsyn—Disease or Syndrome

emod—Experimental Model of Disease

fndg—Finding

inpo—Injury or Poisoning

medd—Medical Device

mobd—Mental or Behavioral Dysfunction

neop—Neoplastic Process

patf—Pathologic Function

phsu—Pharmacologic Substance

sosy—Sign or Symptom

topp—Therapeutic or Preventive Procedure

C Patterns OneSent + OnlyTwo after Postpro-
cessing

1. <(patient) (TRME) (DISY)> SID: 343 479 204 374 66 311 232 468 47 223 158 332 56 268
SUP: 14
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2. <(patient) (DISY) (TRME)> SID: 221 204 35 375 223 445 263 311 173 127 332 435 SUP:
12

3. <(TRME) (artery) (DISY)> SID: 343 201 217 202 128 214 176 56 12 390 302 SUP: 11

4. <(TRME) (DISY) (artery)> SID: 137 236 217 232 432 128 468 390 271 14 151 SUP: 11

5. <(treat) (TRME) (DISY)> SID: 479 204 311 294 163 144 407 448 SUP: 8

6. <(case) (TRME) (DISY)> SID: 343 236 338 202 22 432 454 439 SUP: 8

7. <(case) (DISY) (TRME)> SID: 236 200 83 261 212 127 454 245 SUP: 8

8. <(TRME) (patient) (DISY)> SID: 394 374 144 42 433 57 211 SUP: 7

9. <(artery) (TRME) (DISY)> SID: 394 21 113 123 467 407 390 SUP: 7

10. <(patient) (TRME) (DISY) (DISY)> SID: 479 223 66 468 56 268 SUP: 6

11. <(TRME) (DISY) (patient)> SID: 394 374 294 42 264 57 SUP: 6

12. <(artery) (DISY) (TRME)> SID: 356 173 113 83 451 303 SUP: 6

13. <(TRME) (carotid) (DISY)> SID: 100 217 128 214 12 390 SUP: 6

14. <(undergo) (TRME) (DISY)> SID: 260 158 232 468 176 SUP: 5

15. <(treat) (DISY) (TRME)> SID: 204 375 311 294 144 SUP: 5

16. <(TRME) (DISY) (internal) (carotid) (artery)> SID: 217 432 128 390 14 SUP: 5

17. <(describe) (DISY) (TRME)> SID: 173 83 127 176 245 SUP: 5

18. <(TRME) (internal) (carotid) (artery) (DISY)> SID: 217 128 214 12 390 SUP: 5

19. <(case) (DISY) (DISY) (TRME)> SID: 261 212 127 454 245 SUP: 5

20. <(patient) (TRME) (TRME) (DISY)> SID: 479 374 223 232 332 SUP: 5

21. <(patient) (DISY) (DISY) (TRME)> SID: 223 263 127 332 435 SUP: 5

22. <(TRME) (type) (DISY)> SID: 415 214 302 439 SUP: 4

23. <(case) (TRME) (TRME) (DISY)> SID: 236 338 22 439 SUP: 4

24. <(TRME) (DISY) (DISY) (artery)> SID: 236 128 468 14 SUP: 4

25. <(TRME) (DISY) (renal) (artery)> SID: 137 236 468 271 SUP: 4

26. <(report) (DISY) (TRME)> SID: 236 261 212 332 SUP: 4

27. <(DISY) (patient) (TRME) (DISY)> SID: 374 332 56 268 SUP: 4

28. <(TRME) (TRME) (DISY) (artery)> SID: 236 232 390 14 SUP: 4

29. <(DISY) (DISY) (treat) (TRME)> SID: 263 212 435 245 SUP: 4

30. <(DISY) (DISY) (TRME) (artery)> SID: 137 203 10 435 SUP: 4

31. <(TRME) (treatment) (DISY)> SID: 255 204 100 454 SUP: 4

32. <(TRME) (DISY) (patient) (DISY)> SID: 394 374 42 57 SUP: 4

33. <(TRME) (cause) (DISY)> SID: 21 270 12 151 SUP: 4
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D Patterns OneSent + OnlyTwo after Filtering

Note: Since I define that the second occurrence of “DISY” or “TRME” is
optional, I delete the pattern with a single occurrence when both occur (i.e.
when they do not have the same support). This is done simply to avoid
redundancy.

1. <(treat) (TRME) (DISY)> SID: 479 204 311 294 163 144 407 448 SUP: 8

2. <(TRME) (DISY) (patient)> SID: 394 374 294 42 264 57 SUP: 6

3. <(artery) (DISY) (TRME)> SID: 356 173 113 83 451 303 SUP: 6

4. <(undergo) (TRME) (DISY)> SID: 260 158 232 468 176 SUP: 5

5. <(TRME) (DISY) (internal) (carotid) (artery)> SID: 217 432 128 390 14 SUP: 5

6. <(describe) (DISY) (TRME)> SID: 173 83 127 176 245 SUP: 5

7. <(case) (DISY) (DISY) (TRME)> SID: 261 212 127 454 245 SUP: 5

8. <(patient) (DISY) (DISY) (TRME)> SID: 223 263 127 332 435 SUP: 5

9. <(TRME) (DISY) (DISY) (artery)> SID: 236 128 468 14 SUP: 4

10. <(TRME) (DISY) (renal) (artery)> SID: 137 236 468 271 SUP: 4

11. <(report) (DISY) (TRME)> SID: 236 261 212 332 SUP: 4

12. <(TRME) (TRME) (DISY) (artery)> SID: 236 232 390 14 SUP: 4

13. <(DISY) (DISY) (treat) (TRME)> SID: 263 212 435 245 SUP: 4

14. <(TRME) (treatment) (DISY)> SID: 255 204 100 454 SUP: 4

E Patterns OneSent + OnlyTwo after Filtering
and with Gap constraints

Note: the number of tokens allowed in the gap is simply written in between
the items, where “ * ” stands for “0 or more” and [x,y] expresses a range
from x to y. As I said in section 4.3, this number has been heuristically
determined on the development set for each pattern.

1. <(treat) * (TRME) * (DISY)>

2. <(TRME) [0,4] (DISY) [0,21] (patient)>

3. <(artery) [0,2] (DISY) [0,10] (TRME)>

4. <(undergo) [0,7] (TRME) [0,7] (DISY)>

5. <(TRME) * (DISY) * (internal) * (carotid) * (artery)>

6. <(describe) * (DISY) * (TRME)>

7. <(case) [0,4] (DISY) [0,1] (DISY) [0,11] (TRME)>
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8. <(patient) [0,11] (DISY) [0,1] (DISY) [0,14] (TRME)>

9. <(TRME) [0,2] (DISY) [0,1] (DISY) [0,5] (artery)>

10. <(TRME) [0,4] (DISY) [0,4] (renal) [0,1] (artery)>

11. <(report) * (DISY) * (TRME)>

12. <(TRME) [0,1] (TRME) [0,4] (DISY) [0,3] (artery)>

13. <(DISY [0,1]) (DISY) [0,11] (treat) [0,7] (TRME)>

14. <(TRME) [0,6] (treatment) [0,5] (DISY)>

F Patterns TwoSent + OnlyTwo after Postpro-
cessing

1. <(patient) (TRME) (DISY)> SID: 478 343 479 342 204 474 65 66 203 468 13 194 259 154
222 223 157 263 158 267 332 265 331 268 373 35 375 374 445 311 310 232 231 108 41 46
437 47 55 127 56 423 SUP: 42

2. <(TRME) (artery) (DISY)> SID: 343 342 139 272 206 201 203 202 128 12 285 393 154 18
216 398 217 82 213 214 147 451 390 389 328 210 175 232 432 108 55 430 127 176 56 420
301 122 183 302 SUP: 40

3. <(artery) (DISY) (TRME)> SID: 342 69 201 143 203 202 9 12 21 216 397 83 82 146 94
451 149 441 173 310 172 162 437 356 288 358 116 113 355 112 247 419 56 123 301 302 121
422 303 SUP: 39

4. <(patient) (DISY) (TRME)> SID: 479 204 273 477 474 203 468 220 221 259 222 223 263
267 332 331 373 441 35 375 374 444 445 173 311 172 310 42 433 435 41 437 376 294 355
127 56 481 SUP: 38

5. <(artery) (TRME) (DISY)> SID: 342 474 201 65 143 203 467 407 394 393 154 21 216 20
147 451 390 389 210 368 370 310 432 162 315 437 356 252 113 112 127 58 56 123 122 301
121 SUP: 37

6. <(TRME) (DISY) (artery)> SID: 343 137 136 139 201 202 128 468 199 13 14 220 18 216
217 82 214 270 390 271 389 150 448 151 236 232 432 231 433 356 359 431 294 127 122 302
SUP: 36

7. <(TRME) (patient) (DISY)> SID: 478 272 203 143 13 220 394 154 393 144 210 211 373
375 374 445 370 42 432 433 41 49 294 57 56 481 183 420 SUP: 28

8. <(DISY) (artery) (TRME) (DISY)> SID: 342 474 65 203 143 407 393 21 20 451 210 389
310 370 432 315 437 356 252 127 58 56 301 122 121 SUP: 25

9. <(treat) (TRME) (DISY)> SID: 478 479 204 442 375 311 143 203 447 310 163 162 407
194 356 289 393 18 263 293 294 144 212 448 SUP: 24

10. <(TRME) (DISY) (patient)> SID: 373 204 32 374 272 415 370 432 42 41 12 439 394 393
49 154 293 263 294 332 57 264 56 147 SUP: 24

11. <(case) (DISY) (TRME)> SID: 236 101 65 200 143 202 432 199 288 157 397 260 83 355
261 82 127 212 454 453 125 146 245 422 SUP: 24

12. <(DISY) (DISY) (TRME) (artery)> SID: 137 342 69 136 101 175 203 202 9 468 10 435
107 284 55 397 127 247 213 419 451 301 209 448 SUP: 24

13. <(DISY) (DISY) (artery) (TRME)> SID: 101 369 65 143 203 9 468 435 107 284 288 252
20 397 294 355 127 58 419 149 209 302 448 SUP: 23
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14. <(DISY) (artery) (DISY) (TRME)> SID: 441 342 143 203 310 172 9 437 288 358 116 21
397 355 82 419 56 451 149 301 121 302 422 SUP: 23

15. <(case) (TRME) (DISY)> SID: 343 342 236 201 65 338 143 337 202 432 438 439 21 157
431 22 261 127 212 454 453 SUP: 21

16. <(patient) (TRME) (TRME) (DISY)> SID: 478 373 479 35 374 232 231 108 41 13 154
222 223 263 127 332 56 331 423 SUP: 19

17. <(patient) (DISY) (DISY) (TRME)> SID: 373 479 441 374 42 468 435 437 376 259 222
223 263 355 127 267 332 56 331 SUP: 19

18. <(patient) (TRME) (DISY) (DISY)> SID: 478 373 479 374 65 66 232 468 41 13 154 222
223 55 158 127 267 56 268 SUP: 19

19. <(TRME) (artery) (DISY) (DISY)> SID: 272 201 202 128 393 154 55 216 398 217 176 56
147 420 390 183 301 328 302 SUP: 19

20. <(artery) (TRME) (DISY) (DISY)> SID: 368 65 143 370 394 393 154 252 21 216 113 112
127 56 147 123 390 301 389 SUP: 19

21. <(DISY) (patient) (TRME) (DISY)> SID: 373 342 375 374 65 203 310 231 46 437 222 55
157 267 332 56 331 423 268 SUP: 19

22. <(artery) (DISY) (DISY) (TRME)> SID: 69 143 202 9 162 437 288 116 397 113 355 112
247 56 94 149 302 422 SUP: 18

23. <(DISY) (TRME) (artery) (DISY)> SID: 342 175 201 203 393 55 216 398 127 213 176 56
451 301 389 210 302 SUP: 17

24. <(DISY) (DISY) (patient) (TRME)> SID: 373 69 342 375 374 65 203 42 107 55 157 263
267 332 331 423 422 SUP: 17

25. <(DISY) (DISY) (treat) (TRME)> SID: 441 442 374 143 203 172 162 435 288 392 263
293 355 212 245 302 448 SUP: 17

26. <(case) (DISY) (DISY) (TRME)> SID: 101 65 143 202 288 157 260 397 261 355 127 212
454 453 245 422 SUP: 16

27. <(patient) (DISY) (TRME) (DISY)> SID: 373 35 375 474 445 41 437 259 222 223 263
127 267 332 56 331 SUP: 16

28. <(TRME) (DISY) (internal) (artery)> SID: 136 432 433 128 13 14 359 216 217 431 127
214 390 389 448 SUP: 15

29. <(TRME) (DISY) (carotid) (artery)> SID: 432 433 128 13 14 18 359 216 217 431 127 214
390 389 448 SUP: 15

30. <(DISY) (TRME) (patient) (DISY)> SID: 373 375 374 445 143 203 370 432 42 41 393
294 144 56 210 SUP: 15

31. <(present) (DISY) (TRME)> SID: 175 173 172 202 381 288 259 157 397 454 213 453 146
176 422 SUP: 15

32. <(TRME) (carotid) (DISY)> SID: 100 99 432 128 12 18 216 217 430 127 213 214 390 328
389 SUP: 15

33. <(DISY) (treat) (TRME) (DISY)> SID: 442 375 143 203 310 163 162 407 356 289 393
263 293 144 212 SUP: 15

34. <(artery) (DISY) (TRME) (DISY)> SID: 342 201 143 162 437 356 21 216 113 112 56 451
123 301 121 SUP: 15
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35. <(woman) (DISY) (TRME)> SID: 101 474 175 278 41 259 252 358 157 397 58 176 149
269 SUP: 14

36. <(TRME) (DISY) (patient) (DISY)> SID: 373 272 374 370 432 42 41 394 49 154 393 294
57 56 SUP: 14

37. <(TRME) (TRME) (DISY) (artery)> SID: 136 236 232 231 13 14 18 294 127 214 270 390
150 389 SUP: 14

38. <(treat) (DISY) (TRME)> SID: 479 204 375 442 374 143 203 311 310 263 293 294 144
448 SUP: 14

39. <(TRME) (DISY) (DISY) (artery)> SID: 136 236 202 128 468 13 14 359 294 127 270 390
302 448 SUP: 14

40. <(DISY) (patient) (DISY) (TRME)> SID: 373 273 375 374 203 172 310 42 437 222 294
332 56 331 SUP: 14

41. <(TRME) (DISY) (internal) (carotid) (artery)> SID: 432 128 433 13 14 359 216 217 431
127 214 390 389 448 SUP: 14

42. <(patient) (TRME) (DISY) (TRME)> SID: 373 479 204 374 203 311 310 468 41 222 223
263 332 56 SUP: 14

43. <(TRME) (DISY) (artery) (DISY)> SID: 139 201 232 432 128 18 216 217 82 127 122 390
302 389 SUP: 14

44. <(angiography) (DISY) (TRME)> SID: 96 97 231 9 132 437 438 220 116 428 209 301 210
SUP: 13

45. <(TRME) (carotid) (artery) (DISY)> SID: 432 128 12 18 216 217 430 127 213 214 390
328 389 SUP: 13

46. <(undergo) (TRME) (DISY)> SID: 35 175 232 231 108 468 259 154 157 458 158 260 176
SUP: 13

47. <(DISY) (TRME) (DISY) (artery)> SID: 137 136 236 231 356 216 294 431 127 270 150
302 389 SUP: 13

48. <(TRME) (DISY) (TRME) (patient)> SID: 373 204 32 374 415 42 432 41 12 293 294 264
56 SUP: 13

49. <(renal) (artery) (DISY) (TRME)> SID: 342 397 83 310 82 247 56 451 301 149 302 422
SUP: 12

50. <(cause) (DISY) (TRME)> SID: 356 358 116 21 278 355 77 146 270 12 149 151 SUP: 12

51. <(TRME) (TRME) (artery) (DISY)> SID: 18 201 398 232 127 213 214 108 420 390 389
285 SUP: 12

52. <(TRME) (perform) (DISY)> SID: 136 35 359 279 21 398 261 25 24 301 328 302 SUP: 12

53. <(case) (TRME) (DISY) (DISY)> SID: 236 338 65 337 143 202 432 212 127 454 438 439
SUP: 12

54. <(DISY) (DISY) (TRME) (patient)> SID: 373 375 374 415 293 263 203 143 144 247 332
56 SUP: 12

55. <(artery) (DISY) (TRME) (artery)> SID: 356 342 69 216 201 397 202 247 9 419 451 301
SUP: 12

56. <(TRME) (examination) (DISY)> SID: 206 279 398 368 157 158 370 163 25 183 328 285
SUP: 12
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57. <(TRME) (TRME) (patient) (DISY)> SID: 373 394 393 154 374 294 432 42 56 41 420
210 SUP: 12

58. <(TRME) (left) (artery) (DISY)> SID: 18 216 398 217 82 213 214 420 390 389 302 285
SUP: 12

59. <(TRME) (internal) (carotid) (artery) (DISY)> SID: 216 217 430 432 127 213 128 214 12
390 389 328 SUP: 12

60. <(TRME) (TRME) (DISY) (patient)> SID: 394 393 154 32 374 263 42 332 56 41 439
SUP: 11

61. <(DISY) (artery) (DISY) (DISY) (TRME)> SID: 288 116 397 143 355 9 56 437 149 302
422 SUP: 11

62. <(patient) (DISY) (DISY) (TRME) (DISY)> SID: 373 259 222 223 263 127 267 332 56
437 331 SUP: 11

63. <(artery) (TRME) (TRME) (DISY)> SID: 394 393 252 154 21 127 58 123 390 389 210
SUP: 11

64. <(patient) (DISY) (TRME) (TRME)> SID: 373 441 204 35 222 223 263 127 42 332 331
SUP: 11

65. <(DISY) (DISY) (artery) (TRME) (artery)> SID: 101 397 127 9 468 419 435 209 107 448
284 SUP: 11

66. <(describe) (DISY) (TRME)> SID: 175 173 83 355 172 82 127 315 176 245 107 SUP: 11

67. <(renal) (artery) (TRME) (DISY)> SID: 394 342 393 252 154 474 310 56 451 467 301
SUP: 11

68. <(year) (woman) (DISY) (TRME)> SID: 259 252 101 175 278 157 397 58 176 149 269
SUP: 11

69. <(case) (DISY) (artery) (TRME)> SID: 288 101 200 65 397 355 432 127 199 146 422 SUP:
11

70. <(patient) (DISY) (patient) (TRME)> SID: 373 204 375 222 477 374 263 42 267 332 331
SUP: 11

71. <(present) (TRME) (DISY)> SID: 259 175 157 65 66 370 454 213 453 176 13 SUP: 11

72. <(DISY) (DISY) (patient) (TRME) (DISY)> SID: 373 342 375 374 55 157 65 203 267 331
423 SUP: 11

73. <(TRME) (case) (DISY)> SID: 100 359 223 201 21 260 370 82 199 124 438 SUP: 11

74. <(TRME) (DISY) (artery) (TRME)> SID: 220 294 82 432 468 199 271 122 302 448 151
SUP: 11

75. <(TRME) (patient) (DISY) (DISY)> SID: 478 394 49 374 143 144 42 41 420 183 13 SUP:
11

76. <(TRME) (renal) (artery) (DISY)> SID: 393 154 139 272 55 398 82 56 451 301 302 SUP:
11

77. <(report) (TRME) (DISY)> SID: 373 342 236 65 261 212 332 331 438 439 SUP: 10

78. <(patient) (TRME) (TRME) (DISY) (DISY)> SID: 478 479 154 374 223 232 127 56 41
13 SUP: 10

79. <(treat) (TRME) (DISY) (TRME)> SID: 479 204 442 293 263 311 294 203 310 448 SUP:
10
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80. <(woman) (TRME) (DISY)> SID: 259 252 474 175 157 58 176 41 407 269 SUP: 10

81. <(present) (DISY) (DISY) (TRME)> SID: 259 175 157 397 202 381 454 213 453 422 SUP:
10

82. <(patient) (DISY) (DISY) (DISY) (TRME)> SID: 373 259 222 374 223 263 355 42 332
331 SUP: 10

83. <(DISY) (TRME) (DISY) (patient)> SID: 373 393 374 293 263 370 42 332 56 41 SUP: 10

84. <(DISY) (renal) (artery) (DISY) (TRME)> SID: 342 397 310 82 56 451 301 149 302 422
SUP: 10

85. <(angiography) (TRME) (DISY)> SID: 220 97 231 213 214 437 301 132 438 210 SUP: 10

86. <(TRME) (reveal) (DISY)> SID: 414 415 398 157 260 158 232 25 270 271 SUP: 10

87. <(reveal) (DISY) (TRME)> SID: 216 415 260 261 231 9 271 209 389 210 SUP: 10

88. <(DISY) (DISY) (artery) (TRME) (TRME)> SID: 252 397 203 127 58 419 149 107 448
284 SUP: 10

89. <(TRME) (show) (DISY)> SID: 375 206 108 124 56 316 301 302 285 378 SUP: 10

90. <(report) (DISY) (TRME)> SID: 373 358 236 65 260 261 212 332 94 331 SUP: 10

91. <(artery) (TRME) (artery) (DISY)> SID: 342 216 201 127 147 451 390 301 389 210 SUP:
10

92. <(case) (DISY) (TRME) (DISY)> SID: 236 157 65 143 261 432 212 127 454 453 SUP: 10

93. <(DISY) (artery) (TRME) (DISY) (DISY)> SID: 393 252 21 65 143 370 127 56 301 389
SUP: 10

94. <(TRME) (DISY) (case)> SID: 100 223 201 21 260 158 82 280 124 438 SUP: 10

95. <(treat) (TRME) (DISY) (DISY)> SID: 478 479 393 18 294 143 212 163 144 448 SUP: 10

96. <(artery) (DISY) (treat) (TRME)> SID: 356 288 441 173 143 355 172 162 302 303 SUP:
10

97. <(TRME) (DISY) (TRME) (artery)> SID: 136 201 294 202 433 468 270 271 448 SUP: 9

98. <(perform) (TRME) (DISY)> SID: 137 136 35 279 21 22 25 24 135 SUP: 9

99. <(patient) (DISY) (treat) (TRME)> SID: 441 477 374 263 173 355 172 433 435 SUP: 9

100. <(DISY) (DISY) (patient) (TRME) (TRME)> SID: 373 374 203 42 332 331 107 423 422
SUP: 9

101. <(show) (DISY) (TRME)> SID: 337 112 162 125 56 376 301 302 284 SUP: 9

102. <(year) (TRME) (DISY)> SID: 478 373 220 479 65 294 41 46 407 SUP: 9

103. <(DISY) (treat) (DISY) (TRME)> SID: 442 375 374 293 263 203 143 310 144 SUP: 9

104. <(woman) (DISY) (TRME) (DISY)> SID: 259 252 474 175 157 58 176 41 269 SUP: 9

105. <(TRME) (treatment) (DISY)> SID: 254 255 204 154 100 99 203 454 453 SUP: 9

106. <(TRME) (associate) (DISY)> SID: 236 223 431 143 430 432 144 265 167 SUP: 9

107. <(TRME) (type) (DISY)> SID: 220 414 415 213 214 301 438 302 439 SUP: 9
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108. <(patient) (DISY) (DISY) (TRME) (TRME)> SID: 373 441 222 223 263 127 42 332 331
SUP: 9

109. <(case) (TRME) (TRME) (DISY)> SID: 236 21 338 337 22 432 127 438 439 SUP: 9

110. <(report) (DISY) (DISY) (TRME)> SID: 373 358 65 260 261 212 332 94 331 SUP: 9

111. <(patient) (DISY) (artery) (TRME)> SID: 220 441 221 474 294 355 127 468 435 SUP: 9

112. <(patient) (undergo) (TRME) (DISY)> SID: 259 35 154 157 158 232 231 468 108 SUP: 9

G Patterns TwoSent + OnlyTwo after Filtering

1. <(artery) (DISY) (DISY) (TRME)> SID: 69 143 202 9 162 437 288 116 397 113 355 112
247 56 94 149 302 422 SUP: 18

2. <(DISY) (DISY) (treat) (TRME)> SID: 441 442 374 143 203 172 162 435 288 392 263
293 355 212 245 302 448 SUP: 17

3. <(case) (DISY) (DISY) (TRME)> SID: 101 65 143 202 288 157 260 397 261 355 127 212
454 453 245 422 SUP: 16

4. <(TRME) (DISY) (internal) (artery)> SID: 136 432 433 128 13 14 359 216 217 431 127
214 390 389 448 SUP: 15

5. <(TRME) (DISY) (carotid) (artery)> SID: 432 433 128 13 14 18 359 216 217 431 127 214
390 389 448 SUP: 15

6. <(woman) (DISY) (TRME)> SID: 101 474 175 278 41 259 252 358 157 397 58 176 149
269 SUP: 14

7. <(TRME) (TRME) (DISY) (artery)> SID: 136 236 232 231 13 14 18 294 127 214 270 390
150 389 SUP: 14

8. <(TRME) (DISY) (DISY) (artery)> SID: 136 236 202 128 468 13 14 359 294 127 270 390
302 448 SUP: 14

9. <(TRME) (DISY) (internal) (carotid) (artery)> SID: 432 128 433 13 14 359 216 217 431
127 214 390 389 448 SUP: 14

10. <(angiography) (DISY) (TRME)> SID: 96 97 231 9 132 437 438 220 116 428 209 301 210
SUP: 13

11. <(undergo) (TRME) (DISY)> SID: 35 175 232 231 108 468 259 154 157 458 158 260 176
SUP: 13

12. <(renal) (artery) (DISY) (TRME)> SID: 342 397 83 310 82 247 56 451 301 149 302 422
SUP: 12

13. <(TRME) (perform) (DISY)> SID: 136 35 359 279 21 398 261 25 24 301 328 302 SUP: 12

14. <(artery) (DISY) (TRME) (artery)> SID: 356 342 69 216 201 397 202 247 9 419 451 301
SUP: 12

15. <(TRME) (TRME) (DISY) (patient)> SID: 394 393 154 32 374 263 42 332 56 41 439
SUP: 11

16. <(describe) (DISY) (TRME)> SID: 175 173 83 355 172 82 127 315 176 245 107 SUP: 11

17. <(year) (woman) (DISY) (TRME)> SID: 259 252 101 175 278 157 397 58 176 149 269
SUP: 11
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18. <(present) (TRME) (DISY)> SID: 259 175 157 65 66 370 454 213 453 176 13 SUP: 11

19. <(report) (TRME) (DISY)> SID: 373 342 236 65 261 212 332 331 438 439 SUP: 10

20. <(present) (DISY) (DISY) (TRME)> SID: 259 175 157 397 202 381 454 213 453 422 SUP:
10

21. <(patient) (DISY) (DISY) (DISY) (TRME)> SID: 373 259 222 374 223 263 355 42 332
331 SUP: 10

22. <(reveal) (DISY) (TRME)> SID: 216 415 260 261 231 9 271 209 389 210 SUP: 10

23. <(TRME) (DISY) (case)> SID: 100 223 201 21 260 158 82 280 124 438 SUP: 10

24. <(treat) (TRME) (DISY) (DISY)> SID: 478 479 393 18 294 143 212 163 144 448 SUP: 10

25. <(artery) (DISY) (treat) (TRME)> SID: 356 288 441 173 143 355 172 162 302 303 SUP:
10

26. <(perform) (TRME) (DISY)> SID: 137 136 35 279 21 22 25 24 135 SUP: 9

27. <(patient) (DISY) (treat) (TRME)> SID: 441 477 374 263 173 355 172 433 435 SUP: 9

28. <(show) (DISY) (TRME)> SID: 337 112 162 125 56 376 301 302 284 SUP: 9

29. <(TRME) (treatment) (DISY)> SID: 254 255 204 154 100 99 203 454 453 SUP: 9

30. <(patient) (DISY) (DISY) (TRME) (TRME)> SID: 373 441 222 223 263 127 42 332 331
SUP: 9

31. <(report) (DISY) (DISY) (TRME)> SID: 373 358 65 260 261 212 332 94 331 SUP: 9

32. <(patient) (DISY) (artery) (TRME)> SID: 220 441 221 474 294 355 127 468 435 SUP: 9

33. <(patient) (undergo) (TRME) (DISY)> SID: 259 35 154 157 158 232 231 468 108 SUP: 9

H Patterns Paragraph + OnlyTwo after Postpro-
cessing

1. <(DISY) (report) (DISY) (DISY) (TRME)> SID: 35 64 11 46 73 15 50 49 18 55 24 57 29
28 61 SUP: 15

2. <(DISY) (report) (DISY) (DISY) (DISY) (TRME)> SID: 35 64 11 46 73 15 50 49 18 55
57 29 28 61 SUP: 14

3. <(DISY) (internal) (carotid) (artery) (TRME) (DISY)> SID: 0 35 32 3 65 77 46 74 15 20
25 57 62 SUP: 13

4. <(DISY) (report) (TRME) (DISY) (DISY)> SID: 35 49 64 55 76 59 24 57 11 46 28 15
SUP: 12

5. <(DISY) (internal) (carotid) (artery) (DISY) (TRME)> SID: 0 35 32 3 65 25 77 57 46 62
74 15 SUP: 12

6. <(DISY) (internal) (carotid) (artery) (TRME) (TRME) (DISY)> SID: 0 35 32 3 65 20 25
77 57 46 15 SUP: 11

7. <(DISY) (report) (DISY) (artery) (TRME)> SID: 50 35 18 64 55 57 11 29 73 61 15 SUP:
11
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8. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (DISY)> SID: 0 35 32 3 65 20 25
77 46 62 15 SUP: 11

9. <(DISY) (report) (case) (TRME) (DISY)> SID: 50 35 49 76 59 24 57 11 46 61 15 SUP:
11

10. <(DISY) (report) (DISY) (DISY) (DISY) (DISY) (TRME)> SID: 50 49 64 55 57 11 46
29 73 61 15 SUP: 11

11. <(DISY) (undergo) (TRME) (DISY)> SID: 35 16 81 64 23 6 24 27 11 46 47 SUP: 11

12. <(DISY) (report) (DISY) (DISY) (DISY) (artery) (TRME)> SID: 50 18 64 55 57 11 29
73 61 15 SUP: 10

13. <(DISY) (internal) (carotid) (artery) (DISY) (TRME) (DISY)> SID: 35 32 3 65 25 77 57
46 62 15 SUP: 10

14. <(DISY) (report) (DISY) (DISY) (TRME) (DISY) (DISY)> SID: 35 49 64 55 24 57 11
46 28 15 SUP: 10

15. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (artery)> SID: 0 35 32 3 65 20 77
62 74 15 SUP: 10

16. <(DISY) (undergo) (TRME) (DISY) (DISY)> SID: 35 16 64 23 6 24 27 11 46 47 SUP: 10

17. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (DISY) (DISY) (DISY)> SID: 0
35 32 3 65 20 25 77 46 15 SUP: 10

18. <(DISY) (report) (artery) (TRME) (DISY)> SID: 50 35 64 55 57 11 29 28 61 15 SUP: 10

19. <(DISY) (internal) (carotid) (artery) (DISY) (TRME) (artery)> SID: 0 35 32 3 65 77 62
74 15 SUP: 9

20. <(DISY) (report) (DISY) (DISY) (DISY) (TRME) (artery)> SID: 50 35 18 64 57 11 28
61 15 SUP: 9

21. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (TRME)> SID: 0 32 65 25 77 57
46 74 15 SUP: 9

22. <(DISY) (report) (artery) (DISY) (DISY) (TRME)> SID: 35 18 64 55 57 11 73 28 61
SUP: 9

23. <(DISY) (report) (TRME) (DISY) (DISY) (DISY)> SID: 35 64 76 59 57 11 46 28 15
SUP: 9

24. <(DISY) (report) (DISY) (DISY) (DISY) (DISY) (artery) (TRME)> SID: 50 64 55 57 11
29 73 61 15 SUP: 9

25. <(DISY) (report) (DISY) (DISY) (DISY) (TRME) (DISY) (DISY)> SID: 35 49 64 55 57
11 46 28 15 SUP: 9

26. <(DISY) (report) (case) (DISY) (DISY) (TRME) (DISY)> SID: 50 35 49 24 57 11 46 61
15 SUP: 9

27. <(DISY) (internal) (carotid) (artery) (DISY) (DISY) (TRME) (TRME) (DISY)> SID:
35 32 3 65 25 77 57 46 15 SUP: 9

28. <(DISY) (internal) (carotid) (artery) (DISY) (TRME) (DISY) (DISY)> SID: 35 32 3 65
25 77 46 62 15 SUP: 9

29. <(DISY) (report) (DISY) (artery) (TRME) (DISY)> SID: 50 35 64 55 57 11 29 61 15
SUP: 9
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30. <(DISY) (internal) (carotid) (artery) (TRME) (TRME) (DISY) (artery)> SID: 0 35 32 3
65 20 77 15 SUP: 8

31. <(DISY) (report) (TRME) (DISY) (DISY) (DISY) (DISY)> SID: 35 64 76 57 11 46 28
15 SUP: 8

32. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (carotid) (artery)> SID: 32 3 65
20 77 62 74 15 SUP: 8

33. <(DISY) (report) (present) (DISY) (DISY) (TRME)> SID: 35 64 55 24 11 46 29 73 SUP:
8

34. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (DISY) (DISY) (DISY) (DISY)>
SID: 0 32 3 65 20 25 77 15 SUP: 8

35. <(DISY) (internal) (carotid) (artery) (TRME) (TRME) (DISY) (DISY) (DISY) (DISY)>
SID: 0 35 3 65 20 25 77 15 SUP: 8

36. <(DISY) (report) (DISY) (DISY) (TRME) (DISY) (case)> SID: 50 35 49 55 24 57 46 15
SUP: 8

37. <(DISY) (report) (artery) (DISY) (DISY) (DISY) (TRME)> SID: 18 64 55 57 11 73 28
61 SUP: 8

38. <(DISY) (report) (DISY) (artery) (TRME) (TRME)> SID: 50 35 18 64 55 57 11 15 SUP:
8

39. <(DISY) (internal) (carotid) (artery) (TRME) (DISY) (DISY) (artery)> SID: 0 32 3 65
20 77 62 15 SUP: 8

40. <(DISY) (report) (DISY) (artery) (DISY) (DISY) (TRME)> SID: 35 18 64 55 57 11 73
61 SUP: 8

41. <(DISY) (undergo) (TRME) (TRME) (DISY)> SID: 35 16 81 64 23 6 46 47 SUP: 8

42. <(DISY) (perform) (TRME) (DISY)> SID: 50 49 2 3 21 6 57 31 SUP: 8

43. <(DISY) (report) (TRME) (artery) (DISY)> SID: 50 35 64 59 57 11 28 15 SUP: 8

44. <(DISY) (report) (patient) (TRME) (DISY) (DISY)> SID: 35 64 55 59 24 57 11 46 SUP:
8

45. <(DISY) (report) (DISY) (DISY) (DISY) (DISY) (artery) (TRME) (DISY)> SID: 50 64

55 57 11 29 61 15 SUP: 8

I Patterns Paragraph&Sent + OnlyTwo after Post-
processing

Note: This sample includes a random selection of patterns with support 8.

1. <(report) (DISY artery) (TRME) (DISY)> SID: 50 32 64 55 11 29 61 15 SUP: 8

2. <(treat TRME) (TRME DISY) (DISY)> SID: 51 32 64 65 25 77 88 47 SUP: 8

3. <(DISY treat) (TRME DISY) (DISY)> SID: 51 32 64 65 25 77 47 13 SUP: 8

4. <(DISY fmd) (DISY) (TRME) (DISY TRME)> SID: 32 2 52 46 88 47 13 15 SUP: 8

5. <(year-old DISY) (artery) (artery) (TRME) (TRME)> SID: 32 2 18 21 65 25 43 63 SUP:
8
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6. <(DISY fmd) (DISY TRME) (DISY)> SID: 2 65 23 25 9 78 46 15 SUP: 8

7. <(year-old DISY) (artery) (DISY) (TRME) (patient)> SID: 32 71 18 21 65 57 63 31 SUP:
8

8. <(DISY) (DISY) (TRME DISY) (TRME artery)> SID: 32 48 21 23 77 11 74 31 SUP: 8

9. <(internal carotid) (DISY) (DISY) (DISY) (TRME) (DISY)> SID: 35 32 65 25 77 57 46
15 SUP: 8

10. <(DISY artery) (artery DISY) (TRME)> SID: 19 22 25 78 11 12 28 15 SUP: 8

11. <(artery) (DISY) (TRME) (DISY) (DISY artery)> SID: 32 2 3 21 77 63 31 15 SUP: 8
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