
Learning to quantify from images

Ionut-Teodor Sorodoc

Faculty of Information and Communication Technology

Department of Intelligent Computer Systems

UNIVERSITY OF MALTA

December, 2016

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Human Language Science and Technology (HLST)



FACULTY OF
INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITY OF MALTA

Declaration

Governing Conduct at Examinations, 1997, Regulation 1 (viii), University of Malta). The

dissertation submitted is my own work, except where acknowledged and referenced.

I understand that the penalties for making a false declaration may include, but are not

limited to, loss of marks; cancellation of examination results; enforced suspension of

studies; or expulsion from the degree programme.

Student Name: Ionut-Teodor Sorodoc

Course Code: CSA5310 HLST Dissertation

Title of work: Learning to quantify from images

Signature of Student:

Date:

i



Supervisor(s)

Raffaella Bernardi

Center for Mind/Brain Sciences

University of Trento

,

Aurelie Herbelot

Center for Mind/Brain Sciences

University of Trento

and

Michael Rosner

Department of Intelligent Computer Systems

University of Malta

Local Advisor

Michael Rosner

Department of Intelligent Computer Systems

University of Malta

ii



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Raffaella

Bernardi for her support. The research for this thesis could not have been carried out

without her guidance and encouragement.

I would also like to thank my co-supervisors Aurelie Herbelot and Michael Rosner for

their feedback and advice.

I am grateful for the opportunity that The European Masters Program in Language

and Communication Technologies gave to me. Thanks to them, I had the chance to learn

from the best professors and to have guidance from the best researchers in three of the

most beautiful places in the world.

I want to thank all my colleagues and friends from University of Trento for their

invaluable support and for creating some of the best moments in my life.

Last but not least, I would like to thank my parents for their constant love and support.

iii



Abstract

Combining visual understanding and natural language is one of the most important re-

seach problems in artificial intelligence. Recent research involving image captioning has

shown very good results in jointly learning from images and text using models such as

convolutional neural networks for object recognition and word embeddings extracted from

huge amounts of text. Visual Question Answering (VQA) adds an extra layer of com-

plexity because it has to pay attention to details, not just to give a vague description and

it is a challenging testbed for multimodal systems. On one hand, neural networks have

been shown to obtain excellent results on the task, using relatively simple systems which

learn correlations between linguistic and visual features. On the other hand, the same

systems have struggled with questions that require deeper reasoning. In particular, ‘num-

ber questions’ have been associated with low performance, and have only been studied

superficially.

In this thesis, we focus on questions which may be answered with a quantifier (e.g.,

Which proportion of dogs are black? Some/most/all of them, etc.) relative to an image.

We show that in order to learn to quantify, a multimodal model has to obtain a genuine

understanding of linguistic and visual inputs and of their interaction. We build a dataset

which is suitable for this task and we propose a model that extracts a fuzzy representation

of the set of the queried objects (e.g., dogs) and of the queried property in relation to

that set (e.g., black with respect to dogs), outputting the appropriate quantifier for that

relation. Our model outperforms a state-of-the-art VQA system on this challenging task.
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Chapter 1

Introduction

Computer Vision and Computational Linguistics are currently in a golden age. New

multimodal models are being built for challenging tasks which were still out of reach a

few years ago and can now be integrated in many end-user applications. Visual Question

Answering (VQAs) and caption generation are examples of such tasks which have seen

dramatic performance improvements. Beside having direct applications in the real world,

where visual media is extremely prominent, their performance measures to what extent

language and vision models capture meaning, giving us important theoretical insights.

The recent improvements observed in VQA applications are due to the new generation

of ‘deep learning’ Neural Network (NN) models, combined with the availability of large

image datasets. Such models have shown that even very simple NN structures can capture

complex interactions between the features of a data source in a way that outperforms more

complex models. For instance, [Zhou et al., 2015a] have recently demonstrated that a

simple bag-of-word baseline can achieve state-of-the-art performance on a major VQA

dataset [Antol et al., 2015a]. The authors argue that the performance of the model is

however only due to the excellent ability of the network to encode correlations, concluding

that there is a need to move from ‘memorizing correlations’ to ‘actual reasoning and

understanding’. Their work highlights how tricky it can be to evaluate whether a model

genuinely grasps the meaning of images and words. In the present paper, we propose a

task that we believe will help the community towards achieving this goal.

A Visual Question Answering (VQA) system receives as input an image and a free-

form natural language question about the image and it outputs a natural language answer
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which will reflect the information from the image relative to the question.

In the VQA task, current evaluations focus on questions about the properties of specific

objects (location, color, etc.) while in the caption generation task, it is the entire image

which is considered. In both cases, it is clearly possible to learn correlations between

the words in the question, the words in the answer, and parts or all of the image. For

instance, a picture of a person eating a cake, presented to the NN with the question what

is she eating? will reliably activate the association between the verb eat and food-related

word/visual features, producing the correct answer. In order to test a model beyond

this simple mechanism, we need a task where a particular association between query and

image does not always result in the same answer.

“Number questions” have only been marginally studied in the literature, and the per-

formance of VQA systems on those questions has proved to be rather poor [Ren et al., 2015,

Antol et al., 2015a]. Further, the literature has focused nearly exclusively on modelling

exact cardinals, giving a biased account of the quantification phenomenon. In this pa-

per, we investigate a new type of question, requiring some understanding of generalised

quantifiers (few, most, all, etc). We are interested in such questions because they cannot

be answered by simply detecting the area of an image that relates to the query. For

instance, the question which proportion of dogs are black? requires more than the iden-

tification of dog and black features in the image: the network must be able to reason

about the relationship between those features and to generate one of several potentially

similar quantifier words. The ability to identify the members of the set and their shared

properties demands some form of deeper reasoning which, we claim, cannot be achieved

by simple memorization.

In what follows, we look at the VQA task as a ‘fill in the blank’ problem and turn the

question which proportion of dogs are black? into the query: dogs are black.

The possible answers are selected from a range of linguistic quantifiers, namely no,

few, some, most, and all. In order to assign the correct quantifier, the model must be

able to focus on the relevant objects (the quantifier’s restrictor) and to quantify which

objects in this restricted domain have the queried property (the quantifier’s scope). We

show that a bag-of-word model is not sufficient for such a task, and propose an alternative,
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linguistically motivated NN model, which outperforms the state-of-the-art VQA model

of [Zhou et al., 2015a].
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Chapter 2

Related Work

Visual question answering involves a combination of Computer Vision and Natural

Language Processing and this topic received more attention since deep learning has showed

very good results. Both these fields are very challenging for different reasons.

In Computational Vision, if we have a small image with 256*256 resolution and with

256 pixel values, we have 2524288 possible images which is an incredible amount of pos-

sibilities. We have visual object variations (different viewpoints, scales, deformations),

intra-class variation, inter-class overlap. All these factors show that Computational Vi-

sion is a very challenging field.

Natural Language Processing(NLP) is an extremely complex task: it has to deal with

synonymy, ambiguity, it is very high dimensional. If we consider only English, we have

around 150000 words and we have to learn 150000 classifiers with a lot of sparse data.

It is impressive the amount of great results considering all the arguments presented

above, but VQA implies good models for both fields and also a good understanding of

the bridge between them.

2.1 Neural networks for Visual Question Answering.

A Visual Question Answering (VQA) system takes as input an image and a natural

language question about the image and generates a natural language answer as output.

This type of system requires different artifficial inteligence capabilities: object detection,

detail recognition, knowledge and commonsense reasoning.

Most of the deep learning innovations are because of three reasons: structured data
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availability, software creation and adaptation, and hardware evolution. The improvements

in all of these areas lead to the impressive results that we have nowadays.

The first step in the direction of VQA is exploring image captioning and description

[Karpathy and Fei-Fei, 2015], [Xu et al., 2015], [Vinyals et al., 2015], [Kiros et al., 2014].

For this task, the system receives a visual input and it has to produce a textual description

as output. This means that it has to map the visual information into a linguistic answer

which is the first step for a good VQA system.

A common approach which works very well for image description is presented in

[Vinyals et al., 2015]. They apply a Convolutional Neural Network(CNN) over the in-

put. The result of the CNN is a vector which will contain the visual features of the image.

In order to produce a textual answer, the output of the CNN is connected to a Sequen-

tial Neural Network like Recurrent Neural Network (RNN) or Long Short Term Memory

(LSTM). These networks are considered state of the art for language modelling and they

are the best fit to produce sentences which will reflect the information from the image.

Another important technique applied in state-of-the-art image captioning systems is

an attention module over the input. [Xu et al., 2015] adds a step to the previous models

which focuses in specific regions of the images which contain the important information

to formulate a correct answer. The results increased significantly with the addition of the

new module.

A step forward to challenge the artificial neural networks is Visual Question Answering.

This adds complexity to image description because it receives two types of input: textual

and visual, and they are in different spaces. Because of the rich information needed for

this task, the first challenge was developing and finding suitable datasets.

[Malinowski and Fritz, 2014] present the necessity of a visual turing test in order

to develop performant systems, and they introduce DAQUAR dataset which is a col-

lection of real images and a big variation of questions and answers. They also ex-

pose the biggest challenges of VQA: scalability, concept ambiguity, attributes, ambi-

guity in reference resolution, and common sense knowledge. The dataset created by

[Malinowski and Fritz, 2014] opened the ways to different systems and models to be

applied in visual question answering, but it also encouraged the development of other
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datasets which will challenge and increase the complexity of this task.

[Lin et al., 2014a] developed one of the most used datasets in computational vision

and multimodal applications: MS-Coco. This dataset is not specifically built for VQA,

but it makes available a lot of annotated data: 300000 images with 2 million of instances

and each image has 5 associated captions. The complexity and variation of the dataset

challenges the research in the field, but it helps also to generate other specific tasks

and datasets. [Antol et al., 2015b] uses a part of the information from MS-Coco and it

generates a VQA specific dataset with open ended questions which require a higher level

of understanding. Also, an interesting approach followed by [Antol et al., 2015b] is to

add abstract images which will show if there is a difference of the results if you analyze

different spaces.

An interesting approach for VQA is presented in [Xiong et al., 2016]: Dynamic mem-

ory networks. They show that these networks can be applied on different tasks: VQA,

textual question answering, sentiment analysis, pos-tagging. Their claim is that a system

able to solve general question answering is one of the most important steps now because

most of AI/NLP tasks can be transformed into QA tasks. Also, their model uses a module

called episodic memory which is a combination of an attention mechanism and a memory

update mechanism. The attention module is responsible for describing the context and

the memory update module is responsible to change the information from the memory

based on the context and previous memories. This design simulates on a simple level how

the human brain is processing this task which is following the claim that the ultimate

goal is to understand and replicate the brain mechanisms.

Even though the philosophy of creating a universal QA system is very appealing and it

has its justification, I consider that there are specific tasks which can not be incorporated

in an universal system. An example which is very different to the others is answering

questions which involve counting. When you have to answer questions which involve

counting, you can not focus only in a specific area of the input, but you have to find

relations beyond this. [Zhou et al., 2015b] show big differences in results between ’how

many’ questions and questions that involve ’yes/no’ which is caused by the different ways

to answer. Their analysis shows that you can answer the later class of questions with a
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very simple model, but you need reasoning for ’how many’ questions. Also, the task of

answering counting questions is challenging at a dataset level because it is harder to offer

a big variety of scenarios and answers.

2.2 Computational models of quantifiers

The goal of this thesis is to tackle the task of answering counting questions with a

visual input using a quantifier. An important part of the project is the interaction between

quantifiers and VQA. The problem of quantification is considered a theoretical subject in

comparison with the other parts of the project. A first attempt to go beyond theory in

the topic of quantification was made by Van Benthem [van Benthem, 1986] who describes

an implementation of logical quantifiers using automatas. Automatas are considered one

of the most flexible structures that can implement theoretical logic problems, but they

do not work with any linguistic or visual input and they lack any connection with the

pragmatic part of the task.

The appearance and evolution of neural networks opened the ways of different ap-

proaches for tasks which were treated only from a logical point of view. These new

architectures give a possibility to use the inputs in a natural way closing the bridge with

the human processing of the same tasks. Because of this, we can look at the task in a

different way and use also visual and linguistic information.

From their beginning, computational models were used for object enumeration and

[Rajapakse et al., 2005] shows that there is a strong connection between the features used

by these models for ’numerosity judgements’ and the features which play an important

role in the quantification processing at humans. They show that there are three ways

of dealing with counting: a fast and precised processing of small groups of less than five

objects (this process is called subitizing), a slow process of serial counting for groups of

objects with cardinality between 5 and 9, and an estimation process for larger groups of

objects. These processes are linked to each other, but they are different from the point of

view of processing.

[Dehaene and Changeux, 1993] and [Feigenson et al., 2004] present that there are dif-

ferent intervals in the human life when we learn the three ways of counting presented
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above. [Feigenson et al., 2004] show that we develop an approximate number system

(ANS) which gives an estimation of a large number of objects before we learn to count

precisely and we also tend to use ANS often when we deal with a big group of objects.

A good overview of the differences and similarities between counting and quantifica-

tion in the human brain is presented in [Hurewitz et al., 2006]. Their hypothesis is that

children see the number words as quantificational expressions without a strong connection

towards the cardinality of the set. This hypothesis is supported by behavioural exper-

iments where children with age between two and three can not understand cardinality,

but they can understand quantification like some and many. These experiments show not

only that we acquire quantification before counting, but also that we use our knowledge

of the semantics of the quantifiers to create the representations of the number semantics.

From another perspective, [Olm et al., 2014] present fMRI studies that show the regions

of the brain used for quantification and counting. There are clear differences between

these two processes: the number knowledge is processed using the parietal lobe and pro-

cessing quantifiers prompt activations in the prefrontal cortex which plays an important

role in simple decision making according to [Troiani et al., 2009].

There is also a lot of work about quantification from a theoretical point of view (

[Montague, 1973], [Cann, 1993], [Peters and Westerst̊ahl, 2006]) which analyses the log-

ical and linguistic aspects of this subject, but the important step in our work is the

transition from a theoretical space where quantifiers were described in most of the pre-

vious work to a distributional, computational space. [Herbelot and Vecchi, 2015] showed

that the transition between these two worlds is possible and that we can generate vector

representations with set overlap information which have high quality. Their experiments

prove that we can use distributional semantic models to encapsulate theoretical informa-

tion about quantifiers and that these two spaces are not independent. [Linzen et al., 2016]

uses the claims proved by [Herbelot and Vecchi, 2015] and it shows that logical proper-

ties like monotonicity or force of quantificational words are embedded in distributional

semantic representations with accuracy reaching almost 100%.

As we have seen in this chapter, there is a lot of work done for understanding the

quantification process, especially from a theoretical point of view, but the research from

14



the last few years shows that we have to use also the textual information surrounding this

process. We consider that the next step is to use multimodal information for quantification

(visual, textual).
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Chapter 3

Our Proposal

Our task is learning how to answer to questions which refer to an image with multiple

objects. The answer has to describe a vague quantity of objects with specific properties

with one of the quantifiers: ’no’, ’few’, ’some’ , ’most’, ’all’. As we have seen before, the

question is presented in a textual form and the scenario is presented through a visual

representation. The information is represented different in these two environments and it

is a hard task to close the bridges between them.

The approaches based on deep neural networks developed in the last five years showed

very promising results in computational vision in various applications. These results influ-

enced the usage of deep neural networks in computational linguistics and they increased

the performances for a big variety of tasks. The precisions of the new models are impres-

sive when we analyse the two different fields, but the next goal is to discover good models

which can work with information from both fields and understand the links between vision

and language. This would lead to systems closer to the human brain, which processes

and understands the information together, even if it comes from different sources.

The multimodal architectures are one of the most important research topics now and

they showed their impact in very different areas, as presented by

[Desmond Elliott and Lazaridou, 2016]: disambiguation, coreference resolution, visual lex-

ical entailment, predicting concreteness, metaphor detection, referential grounding.

[Desmond Elliott and Lazaridou, 2016] show that there are different embeddings suited

for these architectures and their combination lead to better results than considering them

separately. Because of the advancements in both fields, there are different choices for
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Figure 3.1: An artificial neuron: http://neuralnetworksanddeeplearning.com/

embeddings, but they should combine in a natural and intuitive way. This leads to the

fact that we have to choose the architectures which encapsulate the information better,

not the ones that perform better in their own independent task.

3.1 Background

The models and structures used for this project are different variations of neural net-

works. The concepts behind neural networks were descibed in the 1950s [Rosenblatt, 1958],

but they started to be used in the last decade because the development of more compu-

tational power.

The basic concept behind a neural network is an artificial neuron (Figure 3.1). An

artificial neuron is a structure which receives a series of inputs x1, x2 . . . xn and outputs a

value y calculated using the input. y is calculated applying a non-linear function over the

input and each input value is weighted by an associated weight w1, w2, . . . xn. For example,

the output of a sigmoid neuron is calculated using: 1
1+exp(−

∑
j wj∗xj+b

. Another important

non-linear function used for artificial neurons is the rectified linear unit function (ReLU):

max(0, x) which is a very simple and efficient function used mostly in computer vision.

The structure of an artificial neuron is simple which gives a lot of flexibility in the design

of the networks.

An artificial neuron is a simple structure which is not able to do complex decisions.

In order to increase the power of the model, we can use multiple artificial neurons which

will constitute an artificial neural network 3.2. As we can see, the neurons are structured

in different sets and the neurons in each set do not connect to each other. Each of these

sets is considered a layer. As we can see in Figure 3.2, the first layer receives as input
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Figure 3.2: A simple neural network: http://neuralnetworksanddeeplearning.com/

the raw information which leads to the fact that this layer extracts general information

about the input. Because the next layer receives as input the output of the first layer,

the patterns captured in the second layer will be more subtle. This is the reason that the

networks with more layers have better results.

Another important characteristic of the artificial neural network is the end-to-end

property of the network. A neural network is end-to-end if it receives the raw input (the

pixels of an image, the raw text) and it outputs the desired answer (sentence, category).

This implies that the network does not need any other external information and it can

work independently. This is an ideal scenario, but this requires a lot of computational

power and it increases the complexity of the model.

One of the most important steps for our task is finding how to learn semantic represen-

tations for visual and linguistic information because we want to compensate for the lack of

the end-to-end property using state of the art embeddings. Computers discriminate differ-

ent entities using their semantic representations. The semantic representations are called

word embeddings for textual information and image embeddings for visual information.

3.1.1 Distributional Semantics

Because of the importance of the topic, multiple methods to learn semantic infor-

mation were developed: feature-based models which capture some specific characteristics

using rules defined by humans [McRae et al., 2005], semantic networks which build graphs

where the vertices represent differenct concepts and the edges are semantic relations be-

tween these concepts [Miller, 1995] and semantic spaces, which encode the representations
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Figure 3.3: Example of distributional semantics vectors

using vectors. The last approach is based on the distributional approach: ”words that

occur in the same contexts tend to have similar meanings” [Pantel, 2005]. In the distri-

butional semantic spaces (DSM), concepts that are semantically related to each other will

be closer to each other in the semantic space. For example, we can visualize in Figure 3.3

that the vectors of ”sun” and ”moon” are closer than the vectors ”sun” and ”computer”.

This is the result of the fact that the words sun and moon tend to appear in the same

context, which is the basic concept of DSMs.

It was shown that raw cooccurrence counts do not give a good representation and

distributional semantic models achieve better results when different transformations are

applied to the cooccurrence counts. These transformations were mostly done unsuper-

vised, based on some independent considerations. In the last few years, it was shown that

a supervised approach where the weights maximize the probability of the contexts gives

very good results.

[Baroni et al., 2014] compares different distributional semantic models: methods based

on counting like: pointwise mutual information, local mutual information and methods

based on predicting. They show that the predicting models outperform the traditional

models on most of the tasks and they recommend using the predict vectors for future

experiments.

The state of the art predicting models are presented in [Mikolov et al., 2013]. These
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Figure 3.4: Models developed by [Mikolov et al., 2013]

approaches are based on previous neural network models [Bengio et al., 2003], but they

are trained more efficiently and this reduces the necessary time and computing power.

Because of these improvements, these models can be trained using more data and this

leads to an improvement in the results. Figure 3.4 shows the basic steps implemented for

the architectures from [Mikolov et al., 2013].

The continuous bag of words(CBOW) model projects all the words into the same

position and this leads to the fact that word order does not influence the final prediction.

Comparing with other approaches, CBOW also uses a symmetric window (the context)

around the target word for prediction which means that it uses words from the ”future”.

This approach is basicaly a log-linear classifier with a context including n previous words

and n future words and the training is based on the task of classifying correctly the word in

the middle. Also, because frequent words like ’the’, ’and’ do not carry a lot of contextual

information, they will not have a positive impact on the model and the ’word2vec’ toolkit

discards words in the training data proportional with their frequency.

On the other hand, the second approach, the Skip-gram model predicts the context

using the target word as input for the network.

As it was shown before by [Baroni et al., 2014], these methods manage to caption

different and complex relations between words and they reach state-of-the-art results in

different tasks:
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• semantic relatedness: how close are words like ’queen’ and ’king’ in the semantic

space.

• synonym detection.

• concept categorization: clustering the vectors in natural categories.

• analogy: answers to analogy questions: ”brother” - ”sister” + ”grandson” = ”grand-

daughter”

These models showed their power in a multitude of applications: topic modelling, named

entity recognition, discourse analysis, question answering. They have very good results

because they have an ability to encode the properties and characteristics of the target

entities. These arguments lead us to use the continuous bag of word model with the

parameters presented in [Baroni et al., 2014] to embed our linguistic input.

3.1.2 Visual embeddings

The previous section introduced different ways to represent linguistic information.

Different studies show that the human brain does not use only textual input to represent

the information, but it considers all the modalities when it builds lexical representations.

The representations extracted from images were mostly used in computational vision,

but in the last few years they showed very good results in multimodal applications. The

most successful approach for obtaining image emebeddings is by using Convolutional

neural networks (CNN).

A convolutional neural network is a feed forward artificial neural network which was

inspired by the structure of the visual cortex. The cells in the visual cortex are receptive

to a small portion of the visual field which is called the receptive field. These portions are

put together in order to cover the whole visual field. These cells behave as local filters

over the input image. The CNNs used this structure for its layers and that conducts to a

very good performance of CNNs in computation vision tasks.

The first successful applications of Convolutional Networks were developed by Yann

LeCun in 1990’s and the most well known is the LeNet architecture (Figure 3.5) that

was used to read zip codes, digits [LeCun et al., 1995]. The first work that popularized
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Figure 3.5: LeNet model used in [LeCun et al., 1995]

CNNs in Computer Vision was AlexNet, described in [Krizhevsky et al., 2012] which out-

performed significantly the runner up of ImageNet challenge ILSVRC 2012: an annual

challenge for object detection in images (with a top-5 error of 16% in comparison with

26%). It was based on the same principles used for LeNet, but it was bigger and deeper,

adding more layers and filters to the initial design (see Figure 3.6). These changes were

possible because the increase of computational power. The layers which constitute the

basics of CNNs are:

• Convolutional layers: each neuron of these layers is connected only with a rectan-

gular section of the previous layer and the weights of each section are the same.

• Pooling layers: compute the maximum or the average of the neurons in subregions.

Most of the time extracting the maximum value shows the best results and it leads

to dimensionality reduction.

• Fully connected layers: these layers connect every neuron with all the neurons from

the previous layer.

• Loss layer: it applies a softmax function most of the time to produce a distribution

over the categories used for classification.

The first part of the CNN simulates the visual cortex and it is constituted by multiple

pairs of Convolutional and Pooling layers. At the end, we have a series of fully connected

layers which ends with a loss layer. The technique used for training is backpropagation

which is a common method for artificial neural networks.
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Figure 3.6: AlexNet model used in [Krizhevsky et al., 2012]

Another important detail of the convolutional neural network is the activation function

used after each layer: ReLU (rectified linear unit) which is defined as: f(x) = max(0, x).

This function is very simple and it gives very good results. Because of its simplicity, it

leads to reduced computation power and time compared with other acitvation functions.

AlexNet opened the ways to other approaches with amazing results in computational

vision. The three most important systems developed using the concepts of AlexNet are:

GoogLeNet [Szegedy et al., 2015], VGGNet [Simonyan and Zisserman, 2014],

ResNet [He et al., 2015].

GoogleNet is the winner of ILSVRC 2014 and the innovation of this architecture is the

inception module which reduces the number of parameters compared to AlexNet (from

60 million to 4 million). Also another important modification is the change from fully

connected layers to pooling layers.

ResNet is the winner of ILSVRC 2015 and it is built using 152 layers, but the archi-

tecture is optimized with shortcut connections and extensive use of batch normalization.

As well as GoogleNet, it does not have any fully connected layers at the end.

VggNet is the runner-up of ILSVRC 2014 and the success of this model is based on the

depth of the network: 16 Convolutional/Fully Connected layers (19 in a later version) and

it is more expensive to evaluate because of the big amount of parameters (140 millions).

VggNet has slightly worse classification performance than GoogleNet and ResNet, but its

features outperform the others in multiple transfer learning tasks because of the presence

of the fully connected layers. Because of the last argument, VggNet is the most used

model for extracting features from images and it was our choice for embedding the visual
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information.

3.1.3 Memory Network

As I presented in the previous chapter, there are different architectures that are con-

sidered state-of-the-art methods for visual question answering. In previous works, it is

shown that a model based on memory networks aids spatial attention and object identifi-

cation. Another strong point of these models is that they are very flexible. They can be

easily adapted to different tasks.

Memory networks are recurrent neural networks with an explicit attention mechanism

that selects parts of the information stored in the memory [Xu and Saenko, 2015]. The

original model was developed by [Weston et al., 2014] and it was described as a very

good model for question answering. The model presented in this section is based on the

memory network presented in [Sukhbaatar et al., 2015b] which showed its good results

and flexibility in tasks such as: (synthetic) question answering and language modeling.

The approach presented by [Sukhbaatar et al., 2015b] is taking a discrete set of inputs:

x1, x2, . . . , xn which will be stored in the memory and a query q and outputs an answer

a.

Figure 3.7 shows the steps followed by the memory network. In the first part, it is

described how the simple model is behaving (without any recurrent steps):

• it calculates the similarity between the query and the embedding of each partition

from the input. This step has as output a probability distribution where each value

shows how related the query is to the corresponding sentence. The role of this step

is to calculate how close to the query is each part of the input separetely and to

determine where to focus for the next steps.

• the second step multiplies another embedding of the input (which can encode some

spatial or temporal information) with the weights calculated at the previous step.

These weighted embeddings are summed and this gives a single representation of

the input relative to the query. This part of the model is used to detect different

patterns in the structure of the input relative to the position of the information in

memory cells and it leads to a very good information gist.
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• the representation calculated before is summed with the initial query and a softmax

function is applied to the summed vector. The result of softmax is used to predict

the answer. The last vector is a representation of the input relative to the query

and this vector will lead to the correct answer.

Intuitively, the memory networks can capture different characteristics of the input.

This is facilitated by the fact that the input is split in the memory cells using diferent

criterions and the model will focus its ’attention’ more on some of the memory cells.

For example, if you have a long text as input, the memory wil be populated considering

a temporal variable, so the model will encode the information relative to the order of

the sentences. In the case of an image as input, the image can be partitioned and each

partition will be introduced in a different memory cell which will lead to a model which

will consider the position in the initial image as an important variable. Following the

previous examples, we can notice that the memory network is a model which analyses not

only the input, but also its structure. An important detail for this neural network is the

choice of the partition for the input data because this adds another layer of reasoning and

it should be specific for the task.

As we can see in Figure 3.7, this model offers the possibility of a model with multiple

hops. In this case, one hop is represented by the simple model presented above and

its output is used as input for a similar model. This step is recurrent which builds

a stack of simple memory networks that share the weights. This strategy leads to a

deeper understanding of the relation between the query and the input which will increase

performance for difficult cases. The stack of the simple models helps for discovering

more complicated patterns, but it has also the downside that it can propragate the error

generated in the first layers.

This model has behind the same strategy as recurrent neural networks, partitioning the

input, but the RNN and LSTM models are unstable over long timescales. In comparison,

the memory network uses a memory structure which shows more stability over the input

information. This stability is because of the clear partition of the input considering time

parameters which gives a consistency for the sequence analysis. [Sukhbaatar et al., 2015b]

showed much better results when it was compared with systems based on LSTMs and
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Figure 3.7: the model presented in [Sukhbaatar et al., 2015b]. a) presents a single layer
version of the model. b) presents a three layer version of the model.

Structurally Constrained Recurrent Nets (SCRN).

Applications of Memory Networks

Even though the work of [Sukhbaatar et al., 2015b] is very recent, it was already

applied in different topics of computational linguistics.

One of the applications of memory networks is learning from games

[Sukhbaatar et al., 2015a]. This variation uses reinforcement learning to test the perfor-

mance of memory networks on reasoning and planning in a newly developed environment.

The attention of the memory networks is one of the most important parts of the model

and this is shown by different research directions that prove the importance of a good

attention module inside neural networks. The attention module shows its contribution in

entity extraction [Verga et al., 2016] and deep generative models [Li et al., 2016] and it is

a primary key in understanding how and why the model works.

The most important adaptations of memory networks are applied to visual question

answering. The model presented in [Xu and Saenko, 2015] gives a good overview of how

the memory network is adapted for this task and why it is a suitable system. The attention

module plays an important role in understanding what the system focuses on when it

predicts an answer. This solves a problem that deep neural networks have: explaining
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the reasoning behind a prediction.

One of the most important models adapted from memory networks is the dynamic

memory network presented in [Xiong et al., 2016] which adds a mechanism similar to

RNNs to help the reasoning and a better understanding of the input. This architecture

shows very good results on different visual question answering scenarios, but it has an

architecture which is not suitable for the task presented in this thesis because it treats

the input sequentially and it loses the possible properties of the entire input.

Another recent application of memory networks is text understanding through a word

prediction task in a broad context [Paperno et al., 2016]. In this case, the results of the

memory network are not good and the reason for that is the limited capacity of the model

to remember from the past. It is a model which can capture the information in a narrow

context, but it can not find the connections in a broader context.

3.2 Our Model

The current task is to predict the correct quantifier when we have a visual scenario as

input and a linguistic query.

Compared with the models presented in the previous section, the system designed for

this task has to split its attention on different parts of the scenarios and it has to do

this for multiple features. If the query is How many dogs are black ?, the model has to

focus first on the parts of the scenario where there is a dog and on the second step to

focus on the black objects. The other systems used for visual question answering use their

attention module to focus on a primary region, relevant for the query. For this task, we

are using the attention module to find how spread are the positive matches and not the

exact position of the objects.

If we have a visual scene which contains different objects, we consider the images used

as input in Figure 3.8 the corresponding bounding boxes of each object. Each object will

be represented by a cell in the memory. A preliminary step is to find appropriate embed-

dings for the input and for the query. Because the input is a visual scenario, the approach

is to use visual features extracted with state of the art convolutional neural networks. In

this case, the visual features are extracted using VGG-19 [Simonyan and Zisserman, 2014]
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which showed very good results on visual object identification. The representation of the

linguistic query is generated using word2vec[Mikolov et al., 2013]. The arguments for

these choices are presented at the beginning of the chapter.

When the input is queried with the question How many dogs are black ?, the first

intuitive step is to focus and find the dogs. This is done in the first part of the model,

when it is calculated the similarity between the linguistic representation of the restric-

tor(dog) and each visual representation of the objects from the input. The model decides

if a bounding box contains a visual representation of the restrictor if the dot product

between the corresponding embeddings is high enough. The dot product values for each

bounding box are stored in the similarity vector 1 from Figure 3.8 after the whole vector

is normalized. The most used activation function after the dot product is softmax, but

this function spikes only for one value most of the time which means that the model would

focus only on one object and it will not detect multiple positive matches. This step is

similar to the initial design of the memory network, but it spreads the positive matches

more in order to focus on more than one areas.

After the step presented above, the model will know approximately which cells in the

memory contain the restrictor. This information is used in two different parts of the model.

The first part is building Gist 1 which is a sum of the input vectors weighted by the values

from similarity vector 1. This gives us the level of dog-ness in the visual scenario. The

second part multiplies the visual input vectors by their corresponding similarity values.

These new vectors (weighted vectors in Figure 3.8) will be used as visual input for the

second step of the model. By multiplying the vectors, the model will give more power to

the objects which were a positive match with the restrictor (if the restrictor is dog, the

images with dogs will have bigger values for this step). The second step calculates the

similarity between the scope (in the query used above, the scope would be black) and the

new visual vectors. The method used for this step is similar to the method presented for

extracting the images which contain the restrictor. After the dot product between the

linguistic embedding of the scope (in this case, the embedding of black) and the weighted

vectors, the model normalizes the vector and this result is represented by similarity vector

2 in Figure 3.8. The values of this vector show how much black dogness is in each memory
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Figure 3.8: Memory network adaptation for the quantification task

cell. Similar to the first part, the model calculates a summary. The second summary (Gist

2) is a sum of the weighted vectors multiplied by the values in the similarity vector 2.

This will represent the match between the visual input and the entire query.

This step is reflecting the power of the memory network to discover different variables:

in the original model, we can see that the second step is encoding a temporal variable in

its input, we are adapting the model and we encode the restrictor variable in the input

of the second part of the model.

It is intuitive that in order to choose the correct quantifier, humans tend to calculate

an approximate ratio between the objects that contain the restrictor (how many dogs are

in the scenario) and the objects that are a positive match for the entire query (how many

black dogs are in the scenario). The answer for the first question is stored in Gist 1 and the
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answer for the second question is in Gist 2. By concatenating these two gists and applying

a linear transformation + activation function(softmax) on top of the concatenation, the

model learns how to predict the correct quantifier by analysing the ratio between the two

gists. If they are not similar at all, it means that the dogs in the scenario are not black

and the correct answer would be no. If the gists are the same, this shows that all dogs

are black, so the correct prediction is all.

Even though the last part resembles the general structure of the memory network,

there is a slight change which is task specific: instead of summing the vectors, we are

concatenating them because we want to compare the information stored in them, not

only to merge them into a unified representation.

The model presented above is a general description of the system used for the visual

quantification task. This architecture is considered suitable because it does not depend

on an accurate counting method, which in most scenarios is a harder task. Also, it

uses an approach which is intuitively close to how humans solve a similar task. It has

been observed in children that they do not need to count in order to quantify. Another

important positive factor of this model is that it can be adapted to calculate the attention

in multiple hops (as shown in [Sukhbaatar et al., 2015b]) which might improve the object

and property identification.

30



Chapter 4

Experiments

In the setup presented in this chapter, the questions ask how many objects of a certain

type have a certain property, eg,. How many dogs are black?. The answers are selected

from a range of linguistic quantifiers, namely no, few, some, most, and all. In order to

assign the correct quantifier, the model must be able to focus on the relevant objects

(the quantifier’s ‘restrictor’) and to quantify which objects in this restricted domain have

the queried property (the quantifier’s ‘scope’). We show that a bag-of-word model is not

sufficient for such a task, and propose an alternative, linguistically motivated NN model,

which outperforms the state-of-the-art VQA model of [Zhou et al., 2015a].

The task of visual question answering is a very hard task, which requires a high level

of understanding and reasoning. On the other hand, this task is not as hard as a counting

task where the model should predict the correct number of objects with some specific

features. The quantification task is strongly related with the counting task, but it does

not require a precise counting module.

4.1 Dataset

One of the biggest challenges for this task is to find a suitable dataset.

Because of the nature of the task, the visual input has to follow some requirements:

• the visual scene has to contain a relative big number of labeled objects in order to

offer:

– variability of the objects (dogs, cats, and trees appear in the same image when
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Figure 4.1: Dataset example

we analyse real scenarios)

– variability of the properties of the objects (black, white, brown, and spotted

dogs appear in the same visual scene in real life)

• we need to have gold standard answers for each visual scenario. This requires

a correct quantifier relative to the restrictor (an object label) and the scope (a

property of the selected object).

There is no dataset which provides such a rich annotation so we chose to generate a

dataset which simulates visual scenes and it is easy to annotate with the correct answer.

Figure 4.1 presents a generated visual scene with some correct quantifiers relative to the

example. The next subsections will explain the resources used for creating the dataset

and the steps followed for this process.

4.1.1 Visual input

The central part of the dataset is the visual input. There are two different image

databases which are used as resources: ImageNet [Deng et al., 2009] and MS-COCO

[Lin et al., 2014b].
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ImageNet is the biggest image database and it gives the opportunity for a multitude

of breakthroughs in computational vision. It contains 14197122 images with labeled ob-

jects. It is organized according to the WordNet hierarchy [Miller, 1995]. Each meaningful

concept in WordNet, possibly described by multiple words or word phrases, is called a

”synonym set” or ”synset”. There are more than 100000 synsets in WordNet, the major-

ity of them being nouns. ImageNet contains images for 21841 synsets and it provides in

average 1000 images for each one of them.

Another important feature of ImageNet is that around 9600 images contain labels

for the properties of the objects. The properties are spread among different categories:

color (white, red, green, black, etc.), patterns (spotted, striped), shape (rectangular, long,

round, square), texture (wooden, shiny, metallic, etc.).

Considering the features presented above, ImageNet is a suitable database for our

task but the problem is that each image contains only one object. This can be solved by

putting together images from ImageNet to form an artificial visual scene. If the images

for a scenario are randomly selected, we can have a fish and an airplane appearing in

the same scenario, which is very improbable. MS-COCO will be used to calculate the

probability of two objects to be in the same visual scene.

MS-COCO is an image recognition, segmentation and captioning dataset. It gathers

complex everyday scenes containing common objects in their natural context. MS-COCO

contains more than 300000 images and each image has 5 written caption descriptions.

The number of objects in the same image is not big enough to be suitable for our task,

but we can use the captions to calculate what the probability of two objects is to appear

together in natural context.

The PMI distance between two objects is calculated as follows:

PMI(o1, o2) = log
f(o1, o2) ∗N
f(o1) ∗ f(o2)

(4.1)

where o1 and o2 are two objects, f(o1, o2) counts how many times the words o1 and o2

appear in the caption of the same image, f(o) counts how many times o appears in the

captions of MS-COCO dataset overall, and N is the number of words in all captions.

Labels that are not in the captions are assigned uniformly distributed values in relation
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to all other objects.

The most important detail related to the visual input is what we use as input for a

corresponding image. We considered that the best approach is to extract visual represen-

tations using a technique capitalizing on Convolutional Neural Networks

[Simonyan and Zisserman, 2014]. Specifically, we use the VGG-19 model pretrained on

the ImageNet ILSVRC data [Russakovsky et al., 2015] and the MatConvNet

[Vedaldi and Lenc, 2015] toolbox for features extraction. Arguments for this choice are

presented in Section 3.1.2. Each image is represented by a 4096-dimension vector ex-

tracted from the 7th fully connected layer (fc7) and it is subsequently reduced to a 400-

dimension vector by applying Singular Value Decomposition (SVD). These 400-dimension

vectors are the visual input for our models. This approach was chosen because it is not

computationally expensive and it still gives a good visual features representation.

4.1.2 Linguistic representation

Another important part of the dataset is to find a suitable embedding of the query.

As it is presented in Figure 4.1, the restrictor and the scope are represented by words.

Section 3.1.1 shows that context-based predicting models outperform all the other ap-

proach when they are used for generating linguistic embeddings. We follow this reasoning

when we choose the corresponding embedding for our queries.

As we presented before, the query is expressed as two words: word1, the restrictor of

the quantifier, and word2, the scope. Each word is represented by a 400-dimension vector

built with the word2vec CBOW architecture [Mikolov et al., 2013], using the parameters

that were shown to perform best in [Baroni et al., 2014]. The corpus used for building the

semantic space is a 2.8 billion tokens concatenation of the web-based UKWaC, a mid-2009

dump of the English Wikipedia, and the British National Corpus (BNC).

4.1.3 Scenario generation

We design a synthetic dataset using the resources presented in the previous subsections.

The dataset contains 10000 scenarios made up by 16 different images extracted from

ImageNet (see Figure 4.1). Each image used for the scenario has been annotated by
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humans with one label corresponding to an individual object (dog, wine, pizza, etc.) and

several properties associated with it (black, spotted, furry, etc.). The rationale for using

16 images per scenario is that this number allows us to have a fairly large amount of

variability with respect to both the number of different objects in the same scenario

(from 1 to 11) and the number of objects associated with each quantifier (e.g., some

can be associated with quantities ranging from 2 to 11). This prevents the model from

learning an association between a quantifier and a defined quantity instead of properly

quantifying.

As a first step, we select all images from ImageNet that were annotated with at least

one property associated with that object. In total, 9600 images representing 203 unique

objects and 24 unique properties are selected. As a second step, we carry out a filtering

of the objects based on both the number of images available for that object and the

frequency of the linguistic label in the UkWaC corpus [Baroni et al., 2009]. The way

we control for the variability of scenarios, queries and associated quantifiers depends on

having many different images for one concept. The viability of the system also depends

on having high quality linguistic vectors for each concept, which means discarding vectors

that were trained on a small amount of data. We end up keeping items that have at

least 150 occurrences in the corpus and at least 16 different images. This filtering process

results in 161 different objects associated with 7324 images. In order to generate scenarios

that are as realistic as possible, we use the PMI distance presented in 4.1.1 to decide if

two objects can appear in the same scene.

For generating a scenario, we go through the following steps:

1. We randomly choose a label l from the set of 161 objects (e.g. dog) and we make it

the restrictor of the quantification.

2. We choose a property p from the set of 24 properties (e.g. black) and we make it

the scope of the quantification.

3. We select n1 images that contain objects with label l and n2 images that contain

objects with the label l and property p, so that 6 ≤ n1 ≤ 16 and 0 ≤ n2 ≤ n1.
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4. We fill the empty ‘cells’ of the scenario (16−n1) with images not labelled l by using

the PMI distances as a proxy of their likelihood of co-occurrence with l.

5. Using the ratio between n1 and n2, we calculate which quantifier is applicable to

the generated scenario, following some predetermined rules. That is, we ignore any

semantic and pragmatic effects on the interpretation of quantifiers in context, and

assume that they can be expressed as a fixed relation between the cardinality of

their restrictor and scope. This is of course a simplification which will have to be

addressed in future work. We set no and all to be correct when, respectively, no

n1 objects or all n1 objects have the p property. For most and few we use preva-

lence estimates reported by [Khemlani et al., 2009] for majority and low-prevalence

predications: we assign the former to ratios equal or greater than 70%, the latter

to ratios up to 17%. All ratios falling between these two values are assigned to

some. To illustrate, out of n1 = 6 objects with label l, we assign no to cases with

n2 = 0, few when n2 = 1 (1/6 = 0.167), some when 2 ≤ n2 ≤ 4, most when n2 = 5

(5/6 = 0.833), and all when n2 = 6.

6. We generate a query from l and p (e.g., how many dogs are black).

When generating the scenarios, we constrain the number of n1 images labelled with

the restrictor to be equal or greater than 6. Based on the ratios we used for defining the

quantifiers, this number is the minimum for covering all quantification cases (see example

above). This means that models can not gain accuracy by simply learning a correlation

between low values of n1 and the unsuitability of few/most in the associated scenarios.

4.1.4 Dataset variations and statistics

Because we want to analyze the rationale behind the scenario generation and we want

to check the importance of the visual and the linguistic information in the system, we

design multiple variations of the dataset: one in which we check the system’s ability to

deal with new linguistic input, using the same visual scenarios at training and test time

(‘unseen queries’); one where new visual scenarios are associated with previously encoun-

tered queries (‘unseen scenarios’); and one ‘uncontrolled’, in which the model receives a
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mixture of seen and unseen material (both visual and linguistic).

All the scenarios and queries in these dataset variations are built with the procedure

described in the previous section. Each variation follows the same partition of the data:

7000 cases for training, 1000 for validation and 2000 for testing.

The characteristics of each setting of the dataset are:

Unseen queries: the queries in the test set are unseen, they are generated from

those in the training set by keeping the quantifier and its restrictor (object) and changing

its scope (property). That is, given a scenario and the query some dogs are black, we

generate the new query some dogs are furry – where furry does not appear in training

in combination with dog. This dataset consists of 10K scenarios, with an average of 2K

scenarios per quantifier (2054 for few, 1943 for most, 2054 for some, 1890 for all, and 2059

for no) and 754.4 object-property combinations per quantifier (866 for few, 497 for most,

648 for some, 478 for all, 1283 for no).

Unseen scenarios: the scenarios in the test set are unseen and the queries are in the

training set. The dataset consists of 10K scenarios with an average of 2K scenarios per

quantifier (1998 for few, 1957 for most, 1972 for some, 1991 for all, 2082 for no) and 684

object-property combinations per quantifier (751 for few, 469 for most, 570 for some, 454

for all, 1176 for no).

Uncontrolled: this dataset does not follow any constraint. It consists of 10K sce-

narios; 2K scenarios for each quantifier and on average 827.6 queries (object-property

combinations) per quantifier (905 for few, 508 for most, 665 for some, 517 for all, 1543 for

no).

Except for the unseen queries dataset, which uses in the test set, scenarios from the

training set, each query in the other datasets has a different test scenario.

The data used for dataset generation includes 161 unique concepts (e.g. dog, table)

and 24 unique properties (e.g. furry, red). The frequency with which each concept occurs

ranges from 1159 times (bonsai) to 8293 (table) (average 2981, standard deviation 1093).

For each unique concept, an average of 48 images (standard deviation 99) have been used,

with the distribution ranging from 13 (there are 13 unique images for the concept pasta)

to 1104 (1104 unique images for dog). For building the scenarios, a total amount of 7735
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unique images have been used. Each unique image can appear more than once in the

dataset. In particular, the frequency of unique images ranges from 1 to 596 (average

55, standard deviation 62), meaning that there are images that occurs only once in the

dataset, with other occurring up to 596 times in the full dataset.

Focusing on the annotation of unique images, the most used concept-property combi-

nation is furry dog (769 times), followed by brown dog (471) and white dog (464). It is

worth noting that the concept dog is represented by 1104 unique images in the dataset,

but only 769 out of them are annotated as furry. This means that more than 300 images

of dogs are not annotated as furry, even though it is likely that the depicted dogs are

furry as well. That is, in our setting we assume a property to be present in a given image

only if the image is annotated with that property. The frequency of concept-property

combinations ranges from 1 (e.g. pink salmon, white ape) to 769, with an average of 13.5

(SD 37). Focusing on properties only, furry is the most used one with 2936 unique images

being labeled with that property, followed by brown (2782), and smooth (2266). The less

frequent property is violet which occurs in 24 unique images. The average frequency is

801 (SD 837).

Each concept is associated with a different number of properties, with the number

ranging from 2 properties to 18 (average 8, SD 3.4). The former case is represented by

concepts as bonsai or lion, which are associated only with green, black and brown, furry,

respectively. The latter is represented by concepts like dog or filter, which are associated

with 18 unique properties. For example, dog is associated with furry, brown, white, black,

smooth, gray, long, spotted and 9 others.

Focusing on the three different settings described above, there is a small difference

regarding the number of unique images that have been used in testing data. For uncon-

trolled set we used 7124 unique images, 7171 for unseen scenarios set and 7125 for unseen

queries (Table 4.1).

When we generated the datasets, we controled the frequency of the quantifiers and

the structure of the scenarios. Other important parameters that can influence the final

results are the frequency of objects or properties in the query. We decided to not control

this because we wanted to create a more free environment.
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uncontrolled unseen scenario unseen queries total
scenarios 10,000 10,000 10,000 30,000
images (tokens) 160,000 160,000 160,000 380,000
unique images (types) 7124 7171 7125 7735
unique concepts (types) 161 161 161 161

Table 4.1: Dataset structure

information unseen unseen uncontrolled
queries scenarios

mean frequency 43.4 43.5 43.8
standard deviation 10.5 10.5 10.6
highest frequency rice - 68 boa - 69 wildcat - 67
lowest frequency manatee - 18 cheetah - 16 zebra - 16

Table 4.2: Statistics of the objects frequency in the queries for the training set

The dataset contains images that can be splitted in 161 object categories. The objects

can be very different (bat, fondue) or it can be very hard to distuinguish them (dog,

puppy). As we can see in Table 4.2, the frequencies are consistent over all the dataset

settings, so we can consider that this is not a reason for the higher performance. Also,

we can observe that all the objects appear at least 16 times in queries in the training

set which exposes each object for a fair amount of times to learn the mappings between

objects and images.

The second variable in the training set queries is the frequency of the properties. The

images are annotated with 24 properties in total, which behave as scope in the query.

Table 4.3 presents the statistics of the properties in the training data. As we have seen

in the previous table, the numbers are consistent over the different datasets which shows

that the variation of the components is constant in all the experiments. The big difference

information unseen unseen uncontrolled
queries scenarios

mean frequency 291.7 291.7 291.7
standard deviation 173.3 168.05 166.2
highest frequency brown - 718 brown - 704 brown - 704
lowest frequency violet - 94 violet - 91 violet - 80

Table 4.3: Statistics of the properties frequency in the queries for the training set
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property unseen unseen uncontrolled
groups queries scenarios
color 3672 3633 3602
pattern 303 321 315
shape 996 1026 1009
texture 2029 2020 2074

Table 4.4: The frequency of each property group in the training data

between the properties (’brown’ has 718 appearances and ’violet’ has 94 appearances) is

caused by the number of images that are annotated with the specific property: ’brown’ is

associated with 2782 images and ’violet’ is associated with 24 images. This big difference

is caused by the annotation of ImageNet and it is reflected in the dataset structure.

Another important fact is that the properties belong to four bigger categories:

• Color: black, blue, brown, gray, green, orange, pink, red, violet, white, yellow

• Pattern: spotted, striped

• Shape: long, round, rectangular, square

• Texture: furry, smooth, rough, shiny, metallic, wooden, wet

Table 4.4 presents the distribution of the queries from the training data over the four

property categories. There is a big difference between color and pattern, but this is

justified by the number of the properties in each category: we have 11 properties in the

color class and only 2 properties in the pattern class.

The statistics presented above show the consistency of the datasets and that the results

reflect the nature of the task and not the structure of the input.

4.2 Experimental setup

We experiment with three different models:

1. a baseline, iBOWIMG, which is a state-of-the-art VQA system;

2. our proposed architecture, the quantification memory network (qMN), dedicated to

quantification questions, described in Section 3.2.
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3. an implementation of qMN with multiple hops, presented in Figure 4.3.

The models are all implemented in Torch 7 using the neural network package (nn)

and the neural network graph package (nngraph). We chose Torch because it offers a very

good support for neural network models and it is very fast, a very important factor when

we train our models. The dataset is generated using Python 2.7 because of the simplicity

of the programming language and because it offers data structures which are suitable for

this task.

iBOWIMG

iBOWIMG is the visual QA model of [Zhou et al., 2015a]. In the original system,1 the net-

work is given as input an image and a user question, and must return a linguistic answer.

The question is first converted to a one-hot bag-of-words vector, which is further trans-

formed into a ‘word feature’ embedding. This linguistic embedding is concatenated with

an ‘image feature’ obtained from a convolutional neural network (CNN). The combined

features are sent to a softmax layer which predicts the answer by assigning appropriate

weights to an output layer, where each node corresponds to a word in the overall vo-

cabulary. The output step can be seen as a multi-class logistic regression model. The

adaptations made for our task are presented in Figure 4.2.

We modify the original system in different parts, but the rationale behind it is the

same.

First, our scenarios must be converted into a single image. The popular approaches in

related work for this operation are: average or concatenation. In order to not lose some

details regarding some parts of the input, we chose to define the input as a concatenaton of

the 16 image vectors corresponding to our individual entities which gives a 6400-dimension

vector. Also, we chose to use image embeddings and not one hot vectors because the input

has a high complexity which is better captured by the embeddings.

Second, the output vocabulary is set to five nodes, corresponding to our five quantifiers

of interest.

Quantification Memory Network (qMN)

This is the model we propose for the quantification task. The model and its structure

1Available from https://github.com/metalbubble/VQAbaseline/.
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Figure 4.2: iBOWIMG model diagram

is presented in Section 3.2 Our model aims at quantifying over a set of images (i.e. a

scenario like the one shown in Figure 4.1), given a linguistic query of the type How many

dogs are black?.

A graphic representation of the model is shown in Figure 3.8 and the general ideas of

the model are presented in Section 3.1.3. Specifically, in the model:

• both the visual and the linguistic vectors are linearly mapped to a 300-dimension

space, and then fed into 16 memory cells;

• we calculate the dot product between the visual vectors and the restrictor vector

(eg., dog) to obtain a 16-dimension vector that is further normalized using the

Euclidean norm (Similarity Vector 1 in Figure 3.8);

• Gist 1 is calculated by summing the visual vectors weighted by the similarity values

in Similarity Vector 1. Gist 1 represents how much ‘dogness’ is found in the given

scenario ;

• we then calculate the weighted vectors for each individual by multiplying the mem-

ory cells with the associated similarity values in Similarity Vector 1. This gives us

a representation of the amount of ‘dogness’ in each object;

• we calculate the dot product between the obtained weighted vectors and the scope

vector (eg., black). The resulting 16-dimension vector is further normalized using

the Euclidean norm; This vector is represented by Similarity vector 2 in Figure 3.8.
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• Gist 2 is obtained by summing the memory cells weighted by the similarity values

in Similarity Vector 2. Gist 2 represents how much ‘black-dogness’ is found in the

given scenario.

• Gist 1 and Gist 2 are concatenated in a single 600-dimension vector that is further

linearly transformed into a 5-dimension vector;

• we apply a softmax classifier on top of the resulting vector that returns the proba-

bility distribution over the quantifiers.

Quantification Memory Network with multiple hops

This approach is summarized by Figure 4.3 and it is based on the memory network

with multiple hops presented in Section 3.1.3.

The model calculates multiple times the gists. At each step, it uses the previous gists

as input and this approach should give a better understanding of the relation between

queries and images.

As we can see in Figure 4.3, this variation has some parts which are different compared

to the model presented in [Sukhbaatar et al., 2015b] because it calculates recurrently and

separately Gist 1 and Gist 2. Gist 1 should describe the relation between images and

restrictor and Gist 2 should describe the relation between images and query. Because

their role is different, we do not apply the recurrent steps on their concatenation and we

keep it separate.

This variation of the model should learn deeper relations, but it is also more sensitive

on the amount of data used for training. The model does not see an image so many times

(around 20 times during training) and this can cause more confusion if the complexity of

the model is increased.

The models are tested in all three different settings: ‘unseen queries’, unseen scenarios’

and ‘uncontrolled’, in order to analyse the task from different angles. In all cases, each

scenario-query combination has only one correct answer.

For each dataset, 70%, 10% and 20% of the data are used for training, validation, and

test, respectively.
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models unseen unseen uncontrolled
queries scenarios

iBOWIMG 46.5 36.4 30.8
qMN 54.1 44.0 38.9
qMN-2hops 58.1 44.0 35.0
qMN-3hops 52.7 43.6 36.5

Table 4.5: Results: all numbers are accuracy scores.

4.3 Results

The models analysed in this section are the models presented in the previous section

for all three settings of the dataset. This variation in model and dataset gives a better

understanding of the task and the suitable approach for it.

As it can be seen in Table 5.6, our qMN models significantly outperform the iBOW-

IMG baseline in all three datasets (it increases accuracy by around 8% in each setting).

When we compare the results of the simple qMN model with the results of qMN with

multiple hops, we observe that the precision drops few percentages for more complicated

datasets when the complexity of the model is increased. In the case of the unseen queries,

the precision for the model with 2 hops is higher with 4% compared to the simple qMN

model. Even though we have this fluctuation of the precision when we use different

variations of the model, all the variations have better results than the baseline.

As far as the unseen queries are concerned, qMN achieves an accuracy of 54.1%

against the 46.5% of the baseline. qMN with 2 hops reaches a precision of 58.1%

which is the best result obtained for this task. Overall, the correct quantifier is always

numerically prevalent over the others. In particular, the qMN models work very well in

predicting no and all, with the task becoming slightly harder for few (partly confounded

with no), most (partly confounded with all), and some (equally confounded with all

the other competitors). A more detailed distribution of the predictions can be seen in

Table 4.6.

This trend can be further understood by looking at the percentages of quantifiers

which are correctly predicted by each model, reported in Table 4.7. The baseline model,

in contrast, is effective in predicting all and no (for the latter, it achieves an accuracy of
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Table 4.6: Confusion matrices for the Unseen queries test
Unseen queries

qMN iBOWIMG
some all no few most some all no few most

some 187 71 53 51 72 some 112 139 60 64 59
all 33 226 27 13 38 all 34 207 61 4 31
no 27 8 334 52 10 no 4 8 416 1 2
few 61 43 129 165 36 few 87 77 128 104 38

most 52 107 23 11 171 most 56 148 49 19 92
qMN-2hops qMN-3hops

some all no few most some all no few most
some 203 36 56 53 86 some 142 82 53 62 95

all 28 224 26 18 41 all 28 221 33 11 44
no 11 22 373 19 6 no 6 1 424 0 0
few 58 43 119 156 58 few 71 58 128 131 46

most 37 81 23 17 206 most 49 122 31 26 136

96%), but the performance for the other quantifiers is very bad, since the model predicts

more wrong answers than correct ones for some, few, and most. This means that the

overall accuracy is biased by the extremely good performance on all and even more on

no, but the model does not work properly for the other quantifiers, where the percentages

of correctly guessed answers are significantly lower compared to the qMN model (see

Table 4.7). Also, we can see the same behavior for the qMN with 3 hops model, but

the results are more uniform.

In the unseen scenarios dataset, the qMN models and the baseline model achieve

an overall accuracy of 44.0% and 36.4%, respectively. The simple qMN is very effective in

predicting no and all, whereas it has some confusion with both some (partly confounded

with most) and most (partly confounded with all). For the cases where few is the target

quantifier, instead, the model predicts more no than few answers, and the percentage

of correctly predicted few is indeed lower compared to the other cases, as can be see

in Table 4.7. The other two variations of qMN show a more uniform distribution of the

results over the 5 quantifiers, with lower precision for all and no, but with higher precision

for the others. The baseline model, in contrast, always assigns more correct answers to

the target quantifier than to the competitors. However, a general confusion is in place
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for all the quantifiers, with no and all achieving significantly lower accuracy compared to

the qMN models.

In the uncontrolled dataset, the simple qMN achieves an overall accuracy of 38.9%

against the 30.8% accuracy of the iBOWIMG baseline and it is also better with 2-3%

compared with the models with multiple hops. The qMN model is again very accurate

for no and all and it works fairly well for both few and most. But the accuracy drops for

some (18.16%), where the model assigns more answers to other quantifiers than to the

target, and whose low accuracy probably affects the overall performance of the model. A

different pattern of results is achieved by the baseline, which is fairly accurate in predicting

both no and all, but works quite badly in all other cases. That is, few, some and most are

equally hard to be predicted. Even though the results for the models with multiple hops

are worse than the simple model, they are more uniformly distributed over the quantifiers.

For these models, the precision for some increases which leads to a smaller gap between

the precision of different quantifiers.

Notably, the iBOWIMG baseline performs particularly badly on the quantifiers few

and most in all setups. We believe that this shows the limits of a network without rea-

soning abilities. Those cases require fine-grained decisions to be made about the extent

to which the restrictor and scope of the quantifier overlap. In contrast, all and no (the

‘easiest’ cases for the baseline across setups) do not require any hard reasoning: the

composition of the linguistic query words (e.g. black + dog) can be straightforwardly

matched to the presence or absence of the corresponding visual feature (‘black-dogness’).

The qMN models, in contrast, turns out to be generally effective in predicting all quanti-

fiers across the different datasets. That is, the overall accuracy is equally distributed over

all quantifiers. By focusing on the errors the model makes across the datasets, moreover,

it can be seen that it ‘reasonably’ confounds, for example, few with no but not with some,

most and all, thus indicating that it is learning to quantify rather than simply keeping

track of the correlations in the dataset. The same is not true for the baseline model,

where the errors are much less interpretable (for example, few is confounded with no and

all to almost the same extent).

The higher accuracy obtained on the unseen queries with respect to the other two
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Table 4.7: Percentages of target quantifiers correctly predicted by each model
Unseen queries

qMN qMN-2hops qMN-3hops iBOWIMG
some 43.08 46.77 32.72 25.8

all 67.06 66.5 65.57 61.42
no 77.5 86.54 98.3 96.52
few 38.01 35.95 30.2 23.96

most 46.97 56.6 37.36 25.27
Unseen scenarios

qMN qMN-2hops qMN-3hops iBOWIMG
some 32.62 41.97 33.69 39.83

all 50.51 41.28 48.97 34.1
no 67.99 60.7 58.5 50.33
few 25.86 32.75 33.74 26.84

most 39.25 40.58 40.58 29.17
Uncontrolled

qMN qMN-2hops qMN-3hops iBOWIMG
some 18.16 25.37 27.36 22.13

all 52.22 39.6 38.11 40.34
no 59.7 53.23 58.46 49.5
few 32.25 24.3 27 21.25

most 32.14 32.14 31.37 20.4

tests confirms the need of reasoning required by the proposed task. As the baseline shows,

NNs do quite well at capturing correlations, in other words they perform well at matching

a word and a picture, which is what the models need for the unseen queries. Changing

the scenario (unseen scenario and uncontrolled tests), instead, means changing the

reasoning needed to answer the question.

When we analyze the results for the variations of the qMN model, we see that they

do not follow the same pattern. In Table 4.7, we can see that the best precisions are

reached by the qMN models. Another important fact is that for each dataset, each model

has at least one quantifier where it reaches the best precision. This shows that different

variations of the model manage to learn other relations. Even though the structure is

the same, the differences between the distribution of the results show that another type

of reasoning is reached when the model increases the complexity. Still, the best results

are achieved by the simple model which can be explained by the difficulty to train a
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more complex model with a relatively small dataset (7000 complex scenarios, each image

appears around 20 times). Intuitively, the results should increase more for the complex

models when the dataset size is increased. This is also suggested by the fact that the the

best precision is achieved by qMN with 2 hops when is is exposed to a simpler dataset.

4.4 Conclusions

Following the results presented in the previous section, we show that visual question

answering for quantification questions is a hard task which can not be solved just by

memorizing correlations from the dataset.

The model proposed in this chapter achieves good results on all the setups used for

experiments relative to a state-of-the-art model, but there is a lot of improvement that can

be made. Also, the more complex qMN models do not show a significant improvement

compared to the simple model. Intuitively, they will perform better with a bigger dataset

because they need to be exposed to more information in order to develop deep reasoning.

The multiple hops qMN was inspired by [Sukhbaatar et al., 2015b] and adapted for

the current task, but there are some variations of the hops which can lead to different

results. These variations do not change the idea behind the model, but they combine the

information in different ways and this can give us other insights into the task.

As we have seen in the previous section, the models have better results for no and all.

This can be caused by how we define the quantifiers, and how we place the boundaries

between them. We consider that the quantifiers are exclusive (we can not have two

quantifiers for the same scene), but this is not how quantifiers are used by humans. The

boundaries between them is more blurry and this should be another change for future

works.

The generated dataset is as close as possible to real scenarios, but we can not say

that it reflects real visual scenes. This change can go smoothly because each cell in the

memory can be associated with a bounding box and there are algorithms which extract

the bounding boxes from an image with high precision. The challenging part of this

change is dataset generation, which requires a lot of resources: we need a lot of visual

scenes, but they must be manually annotated with the correct quantifier.
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The experiments and the results presented in this chapter open the studies for VQA

on quantifier questions, but as presented above, there are still a lot of open questions for

this task. They are very challenging, but they can lead to a better understanding of the

relations between linguistic and visual information.
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Figure 4.3: qMN model with multiple hops
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Chapter 5

Analysis

As we have seen in the previous chapter, the proposed model shows better results than

a simple neural network model.

This chapter gives an in-depth analysis of the predictions of the system and it gives a

different, more theoretically focused perspective on the task in the second part.

5.1 Qualitative analysis

This section presents more details about the results, and it checks if the models learn

specific patterns and if they are more biased to specific cases.

5.1.1 Predictions analysis

More information and insight about the results can be discovered when the predictions

are analyzed from multiple points of view.

The results in the previous chapter were presented using the precision overall and

over the quantifiers, because this is the main goal of the task. But we can see other

characteristics when we analyze the precision for each object, property or property group.

First of all, the diagrams 5.1, 5.2, 5.3 present the frequency of the objects in the test

data for all three datasets. We can observe that even though we have restrictions for two

of the datasets, the distribution remains the same. Also, this shows that all 161 objects

were used in the test data. Ideally we would want all the objects to appear 12 or 13 times

in the test data to give a uniform image, but this can not be done due to the different

amount of images for each object label.
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Figure 5.1: The distribution of the objects in the test set for the uncontrolled dataset

Figure 5.2: The distribution of the objects in the test set for the ’unseen scenarios’ dataset

An interesting piece of information is if there are objects that tend to give good results

independently from the rest of the information. A scenario like this can be caused by the

power of the embedding or by the quality of the images for a specific object label. Table

5.1 presents the best 5 objects for each dataset. The objects show a very good variation,

only orangutan appearing in two of the lists. Also, we can see that we have animate and

as well as inanimate objects. The list contains animals, objects and food.

On the other hand, Table 5.2 presents the worst 5 objects for each dataset. Comparing

with the previous table, the results seem to belong to the same classes, with only one

exception. We can see that we have in the rankings, objects that are liquid, like lemonade,

wine and syrup, which is an interesting result, but it is expected to have more noise when

you deal with images that are annotated with these labels.
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unseen unseen uncontrolled
queries scenarios

panther - (15, 15, 100%) cheetah - (5, 5, 100%) bonsai - (8, 8, 100%)
lion - (7, 7, 100%) manatee - (10, 9, 90%) bottle - (8, 7, 87.5%)

panda - (6, 6, 100%) sofa - (6, 5, 83%) orangutan - (5, 4, 80%)
key - (11, 11, 100%) buckle - (12, 10, 83%) ferret - (8, 6, 75%)

orangutan - (5, 5, 100%) wombat - (11, 9, 81%) fondue - (7, 5, 71%)

Table 5.1: Objects with good results for each dataset - the tuples are (total number,
correct predictions, precision)

unseen unseen uncontrolled
queries scenarios

cow - (11, 0, 0%) lemonade - (9, 0, 0%) wine - (8, 0, 0%)
gnu - (9, 1, 11%) deer - (14, 1, 7%) syrup - (16, 1, 6%)

rodent - (14, 2, 14%) squirrel - (12, 1, 8%) salad - (12, 1, 8%)
marimba - (6, 1, 16%) goat - (7, 1, 14%) bench - (12, 1, 8%)
sunflower - (5, 1, 20%) bread - (12, 2, 16%) basketball - (9, 1, 11%)

Table 5.2: Objects with bad results for each dataset - the tuples are (total number, correct
predictions, precision)

unseen unseen uncontrolled
queries scenarios

green - (20, 14, 70%) metallic - (40, 32, 80%) violet - (26, 18, 69%)
spotted - (427, 294, 68%) violet - (34, 27, 79%) square - (30, 19, 63%)

orange - (35, 24, 68%) pink - (37, 24, 65%) spotted - (42, 25, 59%)
yellow - (127, 84, 66%) square - (25, 16, 64%) pink - (28, 16, 57%)
wooden - (31, 20, 64%) green - (86, 51, 59%) striped - (35, 19, 54%)

Table 5.3: Properties with good results for each dataset - the tuples are (total number,
correct predictions, precision)

unseen unseen uncontrolled
queries scenarios

pink - (36, 7, 19%) rough - (94, 30, 32%) shiny - (99, 24, 24%)
long - (132, 42, 31%) shiny - (89, 29, 33%) brown - (186, 49, 26%)
blue - (38, 9, 32%) brown - (183, 60, 33%) gray - (112, 33, 29%)

shiny - (33, 13, 39%) white - (173, 58, 34%) yellow - (68, 21, 30%)
red - (20, 8, 40%) black - (148, 54, 36%) white - (184, 60, 33%)

Table 5.4: Properties with bad results for each dataset - the tuples are (total number,
correct predictions, precision)
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Figure 5.3: The distribution of the objects in the test set for the ’unseen queries’ dataset

Similar to the best and worst object categories presented above, I also extracted the

best and the worst properties from the test data. The top five list of each dataset is

presented in Tables 5.3 and 5.4.

These tables show some consistency in the rankings, which is important when you

analyze the results. First of all, it seems that properties that have more associated images

give lower precisions. We can see that brown, shiny and white appear constantly among

the worst properties, and these are the labels with the biggest number of images. On

the other hand, properties like violet or square have a low quantity of images, and they

give the best precisions. These statistics can be explained by the fact that if you increase

the number of images associated with a property, that property will become more noisy

and it will be more difficult to map the visual and the textual information. Interestingly,

these tendencies are nullified in the unseen queries dataset which can be a reason for

the higher precision.

Another interesting fact that can be extracted from Tables 5.3 and 5.4 is that the

precision of the extremes does not increase when the general perfomance is increasing.

For example, the unseen queries dataset has a precision 20% greater than the uncon-

trolled dataset, but the best properties have the same precision. This means that the

bigger performance of the unseen queries closes the gap between the best and the worst

properties, an encouraging phenomen.

Another statistic covers the precision for each property group. As we have seen before,
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property unseen unseen uncontrolled
groups queries scenarios
color (659, 337, 51%) (1002, 428, 42%) (989, 350, 35%)
pattern (454, 307, 67%) (99, 52, 52%) (77, 44, 57%)
shape (285, 131, 46%) (303, 142, 49%) (304, 123, 40%)
texture (602, 289, 48%) (596, 268, 45%) (630, 244, 38%)

Table 5.5: The precision of each property group in the test data the tuples are (total
number, correct predictions, precision)

the properties are split into four different categories. We can see in Table 5.5 that the

results are close to each other with a higher precision for the pattern category. This

category has only two instances, and neither has many associated images. So these results

reflect the claim from the previous paragraphs that properties with a lower number of

images perform better.

In the diagrams presented in Figures 5.4, 5.5, 5.6, we show the precision of the simple

model(qMN) relative to the frequency of the images that are correct compared with the

query. This information is key to understanding the rationale behind our model and to

verifying if it is treating the task as a problem of matching the quantifier with specific

numbers or rather if it is developing a deeper understanding of quantification.

As we can see in Figure 5.4, the precision for the uncontrolled dataset does not follow

specific patterns. We can see an increasing precision for most and for all when the number

of the correct matches is larger, which we can say happens intuitively to humans. It is

easier to say that all dogs are black when all images are black dogs, compared with the

scenarios in which only half of the images are black dogs and there is more noise around

the target. This is a behaviour that it is reflected by the diagram but that is not very

powerful, which shows that the model’s learning is not limited to some basic associations.

Also, the precision does not increase constantly relative to the frequency.

The diagrams for the unseen queries dataset (Diagram 5.5) and for the unseen sce-

narios dataset (Diagram 5.6) reflect the increased precision overall, but they show im-

provements for all the frequencies, which indicates that the model is not biased for specific

cases and that it has a generally better behaviour. These facts show again that our results

reflect the initial premise and that the proposed model is suitable for the task.
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Figure 5.4: Precision on the uncontrolled dataset relative to the frequency of the correct
match
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Figure 5.5: Precision on the unseen queries dataset relative to the frequency of the correct
match
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Figure 5.6: Precision on the unseen scenarios dataset relative to the frequency of the
correct match
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Figure 5.7: Input example

5.2 Experiments on logical quantifiers

Because the previous task is dependent on learning the relations between visual input

and a linguistic query, we decided to conduct an experiment which analyses the problem of

quantifiers from a more theoretical point of view. For this study, we also fix the restrictor

and we focus on the scope.

In this case, the input is a set of circles with different colors (see Figure 5.7). The

query is a visual representation of a circle with a specific color. The answers can be only

no/some/all in this setup. We design this setup to test different models which are easier

to adapt for this task, compared with the previous one. The models developed for this

chapter were previously presented in [Sorodoc et al., 2016].

This chapter presents a simpler setup which shows different insights on quantifiers.

The main hypothesis analyzed in this chapter is that a quantification model does not

need to rely on exact number information, but it can predict the correct answer using the

gist of the queried property in the image, thus simulating the human ANS.

5.2.1 Artificial dataset

Images. In order to focus on the quantification task, barring any effect from data

preprocessing, we create an artificial dataset with clear visual properties (see Figure 5.7).
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This dataset consists of images with 1 to 16 circles of 15 different colors, and we generate

all possible combinations of different numbers of circles (from 1 to 16) with all possible

combinations of colors. Figure 5.7 presents one of the images in the dataset.

Image representation. In order to avoid effects from visual pre-processing, the

dataset is presented to the quantification network with (automatically produced) gold

standard information about image segmentation and object identification. Each scene is

represented by a grid with 16 cells and each cell can contain a circle (see Figure 5.7).

Instead of calculating a visual vector of a circle with a specific color (the approach

described in the previous chapter), we chose to associate each circle-color combination

with 20-dimension vectors that are randomly generated and normalized to unit norm. The

circles are identical in shape and size, and this means that the differences between vectors

express the color property of the objects. The dataset should not include ’confusable’

objects and this requirement is solved by constraining the vectors to have a low pairwise

similarity. The cosine similarity between the vectors of two different circles does not

exceed 0.7. On the other hand, to prevent overfitting, we add a small amount of noise to

all vectors, generated for each dimension from a Gaussian distribution with mean 0 and

variance 1/5 of the original variance of that dimension. Intuitively, the Gaussian noise

simulates natural variations in a given property, e.g., two lemons being of slightly different

shades of yellow. This is applied to both training and test data.

Finally, we can have empty cells in a visual scene, viz. parts of the image with no

object in it (e.g., in Figure 5.7 there are 5 empty cells.) These are similarly represented

by a vector, randomly generated so that it is orthogonal to all the other object vectors.

The chosen vector is orthogonal because we consider that there is no similarity between

an empty cell and a cell with a circle. The dot product between the corresponding vectors

is zero, which will not influence our models.

Queries Each image in the dataset is associated with a query, i.e., the property we

want to quantify over, and the task of the model is to associate the correct quantifier with

the query for the image. For instance, the query associated with the image in Figure 5.7

is green and the correct quantifier is some.

Some encodes “at least one but not all circles have color X”, all encodes “all cir-

60



Figure 5.8: Quantification Memory Network model

cles have color X” and no “no circle has color X”. Our dataset contains 5000 <image,

query, quantifier> datapoints split equally amongst the three quantifiers. Although the

all quantifier generates fewer images than no and some, it is possible to create balanced

data by producing noisy variations of a same image. This dataset will be used to evaluate

our models and analyze their behavior.

5.2.2 Models

We experiment with a variety of models, described below.

Quantification Memory Network (qMN):

This model is a simple version of the model presented in Section 3.2 and used in the

previous chapter. The changes of the model are caused by the different datasets and by

the different task. On the other hand, the model follows the same principles, and it is

based on the same ideas.

As shown in Figure 3.8, the model consists of a memory with 16 slots, one for each

image cell. It computes the dot product between each memory slot and the vector query,

obtaining 16 scores, which are then fed into a softmax classifier to derive a valid probability

distribution. These normalized scores are used to derive the “gist” of the image (a 20-

D vector), by computing a weighted sum over cell vectors in the memory slots, where

the weights are taken from the probability distribution that is output by the softmax

classifier. Finally, a non-linear transformation with a ReLU activation is applied over
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the concatenation of the “gist” and query vectors. The vector dimensionality is reduced

to 3 by linear transformation and a softmax classifier is applied on top of that, deriving

a probability distribution over the three quantifiers. The “gist” vector is an aggregate

of the memory, and information about individual objects is lost, such that the model is

not able to count. However, the similarity between the “gist” and the query reflects the

ratio (rather than the exact number) of objects of that color in the image. To make this

explicit, in the case of ‘all’ , the gist and query vectors will be almost identical, in the

case of ‘no’ there will be hardly any trace of the query in the gist, making them different,

and in the case of ‘some’ query and gist will be somewhat similar.

Counting model:

The complexity of the task is not very high and we can predict that a simple rule-based

counting model will reach 100%.

Instead, we try to define a neural network model, which can be compared more easily

with qMN and has a design based on counting.

Despite the logical interpretation of quantifiers as ratios between two magnitudes, it is

unclear whether this logical operation is easily learnable in a visual model. In this setup,

we build for each image a 16-D feature vector, one dimension for each of the 15 colors plus

one for the empty cell. To each dimension we assign a value encoding the frequency of the

color in the image scaled by the similarity of that color to the query (recall that, because

of the added Gaussian noise, a given yellow circle may not be identical to the query

yellow). This way, the quantity of objects of a given color is encoded in the dimensions

of the vector as if the model were counting.

The query is represented by a one-hot 16-D vector, encoding the color the model is

asked to quantify over.

The feature and query vectors are concatenated. As in the qMN model, we then apply

a linear transformation followed by a ReLU activation and a softmax classifier.

Recurrent Neural Network (RNN):

As an alternative model with a visual memory, we also implement an RNN that uses

the hidden state to encode information about the image’s gist. At each timestep, the

RNN receives as input first the query vector followed by each of the 16 objects vectors.
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At the last timestep, the hidden layer is fed to a linear transformation, reducing its size

to 3, on top of which a softmax classifier is applied to obtain a probability distribution

over the quantifiers. As opposed to the qMN, the RNN does not explicitly model the

similarity between the query and the color of the objects in the image.

We further present a small ablation study to track the effect of the various components

of qMN.

To analyse the effects of the MN components, we have evaluated two other versions

of it: the simplest version qMN-softmax/gist and the version without SoftMax qMN-

softmax (Highlighted in Figure 3.8.)

qMN-softmax/gist is designed to show if a model can learn only from the simi-

larities between the query and the the image without being exposed again to the query

and without building a generic representation of the input. The input for the nonlinear

transformation is a vector which represents the similarity between each cell and the query

vector and it has a dimension equal to the number of slots in the memory. Due to the

nature of the input, we can not expose it to the query again in a meaningful way as is

done for qMN.This model should learn how to count the positive matches relative to the

negative matches.

qMN-softmax skips the softmax activation function over the dot products. We made

this change because we wanted to observe what is happening if we are not so drastic with

the dot product. This variation is not so biased towards the positive matches and the

results of the dot product are not transposed in a probability distribution vector (which

is done by the softmax classifier in the first model).

All models are trained with cross-entropy to predict the correct quantifier.

5.2.3 Setup

We divide the 5K data points into training, validation and test set (70%, 10% and

20%). We test the models in 3 experimental setups. In all setups, given a datapoint

<image, query, quantifier>, the models receive the image and the query and are evaluated

in terms of accuracy in predicting the quantifier.

The first setup, familiar, is the simplest, and tests whether models are able to quantify
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previously observed (“familiar”) colors and quantities. In the unseen quantities setup,

we create training and test sets so that there is no overlap with respect to the number of

objects in the image: 4, 9 or 13 objects are used at test time and all other quantities at

training/validation time (i.e., 1-3, 5-8, 10-12, 14-16). Finally, in the unseen colors setup,

we make sure training and test sets differ with respect to objects’ color: The models are

trained/validated on 10 colors and tested on 5 additional, unseen colors.

We expect that the use of the gist in our model, which implements global quantifica-

tion over objects of a certain property, will allow it to generalize well when tested against

unseen quantities.

In addition to these three experimental setups, we tested both a linear and non-linear

version of the Counting and qMN models. We wanted to verify the hypothesis that

non-linearity is crucial to classifying some, by virtue of its similarity to the XOR operator.

(To see the analogy between the two operators, consider the simplest case of having just

two objects: then some is true iff the two objects are different.) Indeed, we found that

the linear versions were outperformed by the non-linear ones, and the results presented

in the next section were calculated using non-linearity.

5.2.4 Results

As shown in Table 5.6, having exact number information is not necessary for learning

to quantify: The qMN model, which does not explicitly count, is more accurate than the

Counting model in all test conditions. Even though both models outperform the RNN

model when tested on unseen number of objects, only the qMN model truly generalizes

the learnt quantification operation.

The performance of all models drops when tested on unseen colors, though qMN still

performs best and the decrease in performance in Counting is much worse than in the

qMN model (-53.7 vs. -34). The results for the ablation models in Table 5.6 show that

both the softmax and the “gist” are crucial elements of the model and removing them

causes significant performance drop in all test conditions.

By looking at the confusion matrices for the qMN model (Table 5.7) we observe that

there is generally more confusion between no and some than in pairs involving all ; the gist
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Models familiar unseen unseen
quantities colors

RNN 65.7 62.0 49.7
Counting 86.5 78.4 32.8
qMN 88.8 97.0 54.9
-softmax 85.9 66.6 54.4
-softmax/gist 51.4 51.8 44.4

Table 5.6: Model accuracies (in %).

familiar
some all no

some 255 1 62
all 0 335 0
no 49 0 298
unseen quantities

some all no
some 321 8 5

all 0 333 0
no 6 0 327

unseen colors
some all no

some 115 13 206
all 64 166 103
no 63 2 268

Table 5.7: Confusion matrices.

for some is an average of potentially several different colors, and thus less straightforwardly

interpretable. In the ‘familiar’ test, most of the errors come from situations in which the

model confused “some” with “no” (see Table 5.7) and the image contains just one or at

most two occurrences of the queried color. Hence, the increase in performance from the

familiar to the unseen quantity test (+8.2) is due to the absence of very small cardinalities

in the image (the least is four items.)

As for all, in both the ‘familiar’ and the ‘unseen quantities’ conditions it is nearly

always classified correctly. This is to be expected because in this case, the “gist” compu-

tation produces a vector which should be almost equivalent to the query (minus the effect

of noise).

When moving to unseen properties, the performance decreases, which is expected be-
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cause of the increasing complexity of the dataset, but the proposed model still outperforms

the other models by a large margin.

5.2.5 Conclusions

Compared with the experiments presented in 4, this chapter presents an analysis at

a more theoretical level of quantification questions. Even though the experimental setup

is different, the results show that models based on memory networks are suitable for

this task because they reach the best performances compared with other state-of-the-art

models.

Furthermore, we were able to tentatively replicate results in Cognitive Science showing

the primacy of ANS over counting for quantifier learning in humans, with a computational

model learning the meaning of some, no, and all from visual scenes. We show that

counting is not necessary in order to reach a high precision for quantification questions.

Because of the reduced complexity of the experimental setup, we can afford to check

if there are some redundant parts in the proposed model by ablation. The results show

that all the components are important and that by eliminating the gist, the model no

longer gives the expected predictions.

Moreover, we aim to study whether NN models can provide us with vector representa-

tions of quantifiers needed in many NLP and CV tasks. Furthermore, though we believe

the model can scale to larger magnitudes since the number of memory cells is parametric,

we will test our conjecture to find evidence for it.
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Chapter 6

Conclusions and further work

The work presented in this thesis represents the first study on visual question an-

swering with quantification questions. This is a very challenging task and it requires an

architecture which is capable of reasoning and not just finding correlations in the dataset.

An important result of this study is the creation of two viable datasets which can be ap-

plied for different tasks: prediction of the correct number of objects, object identification,

property identification, etc.

This study shows possible directions, but the topic is open and it can show very

important insights which will make the gaps between linguistics, computational vision

and neuroscience smaller.

There are two directions for improvement on this task, but they are very related. The

first direction is to improve the dataset. The final goal is to work with real visual scenes,

annotated by humans because this will eliminate any doubts regarding the dataset. It

can lead also to a better comparison with the human experience on this task because

we are exposed to real-world scenes, not to bounding boxes. The second direction is to

implement different models that can be applied to the task. There is a lot of work on the

field of deep learning and especially on visual question answering and it is interesting to

check if the state-of-the-art models can be adapted for this task and, if not, what is the

reason behind it.

The qMN model and its variations presented in this thesis show that they are built

following a good philosophy, but because of their flexibility some parts can be changed

and this might increase the performance. Also, a better understanding of the complex
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models used in Chapter 4 can lead to a complex architecture that manages to find more

non-superficial relations in the dataset.

Another goal of this task is to generate a quantifier representation with visual and

linguistic input. The human representation of the quantifiers is not based only on linguistic

information and this encourages a multimodal model that can generate this representation.

Another research direction worth exploring and very related to this study is how to

predict quantifiers using grounded knowledge (we know that most dogs have four legs

without seeing all the dogs in the world). This direction involves a better understanding

of the reasoning behind semantic memory and how it combines with episodic memory.
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Chapter 7

Appendix

7.0.1 Objects

The list of the 161 objects we have used in our dataset is below.

acorn, antelope, ape, baboon, backboard, badger, bag, ball, basketball, bat,

bathtub, bear, bench, bird, bison, blackboard, boa, bonsai, bottle, bovine, box,

bread, bridge, buckle, building, button cabinet, cake, cat, cavy, chair, cheese,

cheetah, chili, chimpanzee chinchilla, civet, cocktail, comb, cow, cross, daisy,

deer, dog, drawer, drum, ferret, ferris wheel, field, filter, flag, flan, fondue,

fork, fox, frog, fruit, gazelle, gerbil, giraffe, gnu, goat, gorilla, grass, grassland,

hamster, hare, hominid, honey, hoop, horse, hyena jaguar, kangaroo, ketchup,

key, keyboard, koala, lamp, lemming, lemonade, lemur, lion, liqueur, live-

stock, lizard, lollipop, macaque, mallet, manatee, margarine, marimba, mink,

monkey, mouse, mousse mule, orangutan, orca, otter, panda, panther, par-

fait, pasta, paste pizza, platypus, pony, pool, porpoise, porridge, possum, pot

pudding, puppy, rabbit, raccoon, rack, racket, rat, rice, rodent roller coaster,

ruler, sail, salad, salmon, sauce, sauerkraut, saute sheep, simian, ski, skunk,

sofa, spider, squirrel, stew, stick strawberry, sugar, sunflower, syrup, table,

tea, tiramisu toilet seat, towel, tower, transporter, van, vegetarianism, weasel,

whale, wildcat, window, wine, wombat, yolk and zebra.

7.0.2 Properties

The 24 ImageNet properties we have used are the following:
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Color: black, blue, brown, gray, green, orange, pink, red, violet, white, yellow

Pattern: spotted, striped

Shape: long, round, rectangular, square

Texture: furry, smooth, rough, shiny, metallic, wooden, wet
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Figure 7.1: Scenario 1 No porpoises are gray - correct

7.0.3 Examples of some scenarios with good and bad predictions
for each dataset
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Figure 7.2: Scenario 2 Some forks are long - correct
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Figure 7.3: Scenario 3 No pots are spotted - correct
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Figure 7.4: Scenario 4 Some ferris-wheel are red - wrong prediction few
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Figure 7.5: Scenario 5 Few platypuses are spotted - wrong prediction no

75



Figure 7.6: Scenario 6 Some windows are yellow - wrong prediction few
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