
Charles University in Prague

Faculty of Mathematics and Physics

M.Sc. THESIS

Lasha Abzianidze

An HPSG-based Formal Grammar of

a Core Fragment of Georgian
Implemented in TRALE

Institute of Formal and Applied Linguistics

Supervisor: Ing. Alexandr Rosen Ph.D.

Co-Supervisor: Prof. Patrick Blackburn

Study program: European Masters Program in

Language and Communication Technology (LCT)

Prague 2011

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature

Název práce: Formálńı gramatika jádra gruźınštiny
podle teorie HPSG, implementovaná v systému trale
Autor: Lasha Abzianidze
Katedra: Ústav formálńı a aplikované lingvistiky,
Matematicko-fyzikálńı fakulta, Univerzita Karlova v Praze.
Vedoućı diplomové práce: Ing. Alexandr Rosen Ph.D.,
Ústav teoretické a komputačńı lingvistiky,
Filozofická fakulta, Univerzita Karlova v Praze.
Abstrakt: Gruźınština se výrazně odlǐsuje od indoevropských jazyk̊u. Vyznačuje
se řadou jazykových jev̊u, které jsou obt́ıžné pro lingvistickou teorii i poč́ıtačové
zpracováńı. Nav́ıc patř́ı mezi jazyky, u kterých nelze plně využ́ıt existuj́ıćı zdro-
je, a neńı ani dostatečně prozkoumána z hlediska matematické lingvistiky. Ćılem
této práce je vytvořit formálńı gramatiku morfologie a syntaxe jádra gruźınštiny.
Tato formálńı gramatika vycháźı z teorie HPSG, která je v současnosti jedńım
z nejúspěšněǰśıch rámc̊u pro formálńı popis jazyka. Gramatiku implementujeme
v systému trale, který umožňuje věrné zachyceńı ručně psaných gramatik za-
ložených na HPSG. Tato práce je prvńı aplikaćı teorie HPSG na gruźınštinu.
Kĺıčová slova: gruźınština, HPSG, TRALE, formálńı gramatika, komplemen-
tace, adjunkce, lexikálńı pravidla, logická deklinačńı paradigmata, polypersonálńı
konjugačńı paradigmata

Title: An HPSG-based formal grammar of
a core fragment of Georgian implemented in trale
Author: Lasha Abzianidze
Department: Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University in Prague.
Supervisor: Ing. Alexandr Rosen Ph.D.,
Institute of Theoretical and Computational Linguistics,
Faculty of Arts, Charles University in Prague.
Abstract: Georgian is remarkably different from Indo-European languages. The
language has several linguistic phenomena that are challenging both from the-
oretical and computational points of view. In addition, it is low-resourced and
insufficiently studied from the computational point of view. In the thesis, we
model morphology and syntax of a core fragment of the language in a formal
grammar. Namely, the formal grammar is written in the HPSG framework –
one of the most powerful grammar framework nowadays. We also implement the
grammar in trale – a grammar implementation platform, which is faithful to
“hand-written” HPSG-based grammars. Note that this is the first application of
HPSG to Georgian.
Keywords: Georgian, HPSG, TRALE, formal grammar, complementation, ad-
junction, lexical rules, logical declension paradigms, polypersonal conjugation
paradigms

Contents

1 Introduction to Georgian and its Grammar 8

1.1 The Georgian language and its script 8
1.2 Introduction to the Georgian grammar 9

2 HPSG Formalism and Its Implementation in TRALE System 18

2.1 Typed feature structures . 19
2.1.1 Feature structures . 19
2.1.2 Type hierarchy and signature 22
2.1.3 Typed feature structures 24
2.1.4 Subsumption order and unification operation 26

2.2 Head-driven phrase structure grammar 29
2.2.1 Main principles of HPSG 29
2.2.2 The HPSG framework . 30

Signature . 30
Lexicon . 32
lexical rules . 33
Principles . 34
Grammar rules . 34

2.3 TRALE – an HPSG-based grammar implementation platform . . 36
2.3.1 TRALE system . 36
2.3.2 Signature . 36

Syntax of the signature . 37
Subtype covering . 38

2.3.3 Theory . 39
Descriptions and macros 39
Lexicon . 42
Lexical rules . 43
Principles . 44
Grammar rules . 44
Test suite . 44
Test suite . 45

3 Modeling the syntax of Georgian 46

3.1 Simple declarative sentence and logical case 48
3.1.1 Simple declarative sentence and the declarative verb 48
3.1.2 The notion of logical case 50

3.2 Getting started with
an HPSG-based grammar for Georgian 54
3.2.1 Complementation of verbs with nouns 54
3.2.2 Verb complementation – polypersonal agreement 58

3.3 The noun phrase –
Adjunction and complementation of the noun 64
3.3.1 Adjunction by adjectives and quantifiers 64

Adjunction by adjectives 65
Adjunction by quantifiers 66

1

Revision of the formal grammar 66
3.3.2 Possessive nouns and pronouns 68

Possessive nouns . 69
Possessive pronouns . 72

3.3.3 Noun complementation and
several readings of noun phrases 73
Adjunct nouns vs complements noun in noun phrases . . . 73
Noun complementation . 75

3.3.4 The grammar and its implementation 76
Signature . 76
Theory . 78
Implementation . 79
Demonstration . 80

4 Towards a realistic grammar –

modeling the morphology of Georgian 83

4.1 Lexical rules for nominals . 84
4.1.1 Logical declension of the noun 84
4.1.2 Logical declension of the adjunct 85
4.1.3 Pluralization and possession rules 85
4.1.4 Nominalization of adjectives and quantifiers 87
4.1.5 Putting all together in the formal grammar 87
4.1.6 Implementation . 89

4.2 Lexical rules for the verbs . 92
4.2.1 The verb and its conjugation 92
4.2.2 The verb conjugation paradigms 93

The conjugation paradigm 1 93
The conjugation paradigm 2 94
The conjugation paradigm 3 95

4.2.3 Implementation . 97

References 98

A GeoGram ver.1 101

B GeoGram ver.2 106

C GeoGram ver.3 113

D Lexical rules for nominals 119

2

List of Figures

1.1 Left-branching in the noun phrase 15

2.1 Examples of feature graphs . 20
2.2 Examples of AVMs . 21
2.3 Example of equivalent AVMs . 21
2.4 Examples of AVMs of abstract feature structures 21
2.5 Invalid and valid type hierarchies 22
2.6 Fixing the invalid signature . 24
2.7 Elimination of the loop from the signature 24
2.8 Examples of typed feature graphs 25
2.9 Examples of typed AVMs . 25
2.10 Signature 1 . 26
2.11 (Totally) well-typed AVMs . 26
2.12 Examples of alphabetic variant AVMs 27
2.13 Examples of the unification . 28
2.14 A toy HPSG signature . 31
2.15 An AVM for the lexicon entry loves 32
2.16 The Word Principle . 33
2.17 Head Feature Principle . 34
2.18 Head-Specifier Rule . 35
2.19 The sample TRALE signature . 37
2.20 Multiple inheritance and a /1 atom in TRALE 38
2.21 Subtype covering for English verbs 38
2.22 Signature showing sub-type covering 39
2.23 An AVM for book . 40

3.1 The first part of signature1 of GeoGram1 55
3.2 The second part of signature1 of GeoGram1 55
3.3 A lexical entry for ‘man’ in Geogram1 56
3.4 A lexical entry for ‘sends’ in GeoGram1 56
3.5 Head-Initial Phrase Rule ver.1 . 57
3.6 Head-Final Phrase Rule ver.1 . 57
3.7 Head-Feature Principle . 57
3.8 Valency Principle . 57
3.9 The AVM parse tree for the simple sentence 59
3.10 The first part of signature2 of GeoGram2 61
3.11 The second part of signature2 of GeoGram2 61
3.12 Valency Principle v.2 . 62
3.13 A lexical entry for the verb form 62
3.14 The AVM parse tree of the saturated sentence 64
3.15 case type in signature3 of GeoGram3 66
3.16 head type of signature3 of GeoGram3 67
3.17 The preliminary version of AdjN Rule 67
3.18 Verb-Initial Phrase Rule . 68
3.19 Verb-Final Phrase Rule . 68
3.20 Verb Valency Principle . 68

3

3.21 The AVM parse tree of the sentence 69
3.22 Two syntactic readings of the noun phrase 74
3.23 nominal type and its subtype hierarchy 77
3.24 val and spec types . 78
3.25 The final version of AdjN Rule . 78
3.26 The final version of Complement-Noun Rule 79
3.27 The first parse tree from three . 81
3.28 The second parse tree from three 81
3.29 The third parse tree from three 81

4.1 The revised sign type with its subtypes 88
4.2 Schemata of the lexical rules on nominals 89
4.3 A lexical entry produced by lexical rules 91

4

List of Tables

1.1 The IPA and Transliteration chart for Georgian 8
1.2 Traditional 11 screeves grouped in 3 series 13

3.1 The list of logical case . 51
3.2 The list of adjunct logical cases 65
3.3 Possible specification values for the head noun ver.1 71
3.4 Possible specification values for the head noun 72

4.1 Four declension paradigms for nouns 84
4.2 Two declension paradigms for adjuncts 85
4.3 Pluralization and declension paradigms for nouns 86
4.4 Inflection for the possessive case 86
4.5 Part 1 of the conjugation paradigm 1 93
4.6 Part 2 of the conjugation paradigm 1 94
4.7 Part 1 of the conjugation paradigm 2 95
4.8 Part 2 of the conjugation paradigm 2 95
4.9 Part 1 of the conjugation paradigm 3 96
4.10 Part 2 of the conjugation paradigm 3 96

5

List of Codes

2.1 The description for book . 40
2.2 The economic description for book 40
2.3 the description including variables and structure sharing 41
2.4 Defining a macro for nouns having complements 41
2.5 Usage of the macro as a description 42
2.6 Defining a lexical entry for book 42
2.7 Defining a lexical entry for book using the macro 42
2.8 The macro for nouns without complements 42
2.9 The pluralization lexical rule for English nouns 43
2.10 Head Feature Principle in TRALE 44
2.11 Head-Specifier Rule in TRALE 44
2.12 The list append predicate in TRALE 45
2.13 The functional description append 45
2.14 The format of the TRALE test 45
3.1 The functional description Delete 58
3.2 The functional description Append 63
3.3 The functional description specify 79
3.4 The functional description mod case 80
4.1 The lexical rule for logical declension 90

6

1. Introduction to Georgian and

its Grammar

In this chapter, we shortly introduce the Georgian language. As the language has
its own script, we show its IPA chart along with two transliteration systems, and
also explain conventions used in glosses. Then we shift to the Georgian grammar
and discuss its basic properties and interesting phenomena, list Georgian-specific
challenges for computational linguistics and briefly overview research done on the
language so far. Finally, we characterize the current position of the language from
the point of view of computational linguistics.

1.1 The Georgian language and its script

The Georgian language is a native language for Georgians and the official language
of Georgia. It has about 5 million native speakers. The language belongs to the
Kartvelian (also know as South Caucasian) language family, which is indigenous
for the Caucasus – the region between Europe and Asia. Note that there is no
known relation between the Kartvelian and other language families.

Georgian uses its own unique alphabet for writing. It is called Mkhedruli
(“cavalry” or “military”) and consists of 33 letters: 28 consonants and 5 vowels.
The direction of reading and writing is from the left to the right and the reading
rules are trivial – phonemes and graphemes are into one-to-one correspondence.

Geo IPA Tra Lat Geo IPA Tra Lat Geo IPA Tra Lat

ა A a a მ m m m ღ G ḡ gh
ბ b b b ნ n n n ყ q’ q y
გ g g g ო o o o შ S š sh
დ d d d პ p’ p. p ჩ tSh č ch

ე E e e ჟ Z ž zh ც tsh c c

ვ v v v რ r r r ძ dz ǰ dz
ზ z z z ს s s s წ ts’ c. ts
თ th t th ტ t’ t. t ჭ tS’ č. tch
ი i i i უ u u u ხ x x x
კ k’ k. k ფ ph p f ჯ dZ j j
ლ l l l ქ kh k q ჰ h h h

Table 1.1: displays the IPA and two transliterations: a letter-to-letter and a
letter-to-sequence transliterations.

The table 1.1 shows characters of the Georgian script and their representa-
tion in the international phonetic alphabet (IPA), and by a letter-to-letter and a
letter-to-sequence transliterations. This is the first and last time we are writing
these ”weird and round” Georgian letters – throughout this work Georgian will be
written with the letter-to-letter transliteration. The letter-to-sequence translit-
eration will be used in the source code of the implemented formal grammar in

7

order to facilitate the implementation of the code.
While using examples of Georgian words or sentences, we will write analytical

glosses of the expression in English below. What we mean by the analytical gloss
is that words or sentences will be rendered word by word, preserving their order
and (word boundary) spaces between words. On the other hand, the word-to-
word translation will be done morpheme by morpheme in the following way: if
the translation of a morphemes is available in English, the morpheme will be
translated, otherwise it will be shown as abbreviation of the grammatical feature
expressed by this morpheme. Everything that is a part of the translation of a
certain word will be connected by hyphens like beads on a string. Often words
in Georgian correspond to sentences in English – wherever a strict morpheme-to-
morpheme translation will be unnecessary or complex (requiring details irrelevant
for the discussion) we will try to translate it using English words. Although the
morpheme-to-morpheme translation will not be prefect, the composition of such
translation will be for the most part identical to the Georgian word. Also, when
the order of morphemes is not relevant we will ignore it. All these simplifications
will be done without missing anything important for the discussion and for the
reader. If the example includes a sentence, we will write the most adequate
translation of the sentence in English below the analytical gloss.

1.2 Introduction to the Georgian grammar

In this section we are going to briefly characterize the Georgian grammar, to
underline its significant syntactic and morphological properties. Why briefly?
Because we will introduce the grammar in the standard manner, as it is com-
monly done by both computational and non-computational linguists working on
Georgian. In the next chapters, where we will be constructing the formal gram-
mar, some points of the grammar will be revisited, providing arguments to agree
or disagree with the standard views on these points.

The first thing to note about the language – it is considered to be an ag-
glutinative language, which means that morphemes are simply concatenated (or
“glued”) with roots:

(1) sa-avad-mqop-o-eb-ši
for-ill-being-pl-in
In hospitals

In (1), several instances of “gluing” of morphemes in the Georgian word are
exemplified. Each “gluing” has its position in the process: first, the stem1 avad-
mqop (ill2) is created by compounding the words avad (ill) and mqop3 (being).
Then the word sa-avadmqop-o ‘hospital’ is derived by the affixation of the stem

1As the notion of stem is often used with slightly different meanings, we specify its meaning.
In this work, stem will be understood as the part of the word that is common to all inflected
variants of the word.

2In English, ill is not understood as a noun referring to smb./smth. who/what is ill. On
the other hand, Georgian avad-mqop-i can be understood as a noun or an adjective. At this
moment the nature of the word is not relevant and will be discussed in the later chapters.

3In order to simplify things, we do not go further and analyze the morphology of the words
avad and mqop.

8

avadmqop with the circumfix sa- -o, which – after its application – derives a
new lexical word (hospital), denoting something which is intended for things
(e.g. ill people) denoted by the original word (ill). Then the inflection, namely
pluralization, is applied by “gluing” the plural suffix -eb to the stem saavadmqopo4

and we got the stem saavadmqopo-eb. In the end, the suffix, namely postposition
-ši ‘in’ is “glued” to the stem saavadmqopoeb. The process of “gluing” is shown
by the parenthesis in (2):

(2) ((sa-(avad-mqop)-o)-eb)-ši

In addition to the simple “gluing” property of the Georgian morphology, we read
the following in the Wikipedia’s topic Agglutinative language:

“Agglutinative languages tend to have a high rate of affixes/morphemes per word,
and to be very regular[citation needed]. ... Georgian is an exception; not only is it
highly agglutinative (there can be simultaneously up to 8 morphemes per word),
but there is also a significant number of irregular verbs, varying in degrees of ir-
regularity.”

Moreover, some linguists consider the Georgian language to be an inflectional-
agglutinative language (Butskhrikidze, 2002), having both inflectional and agglu-
tinative properties. To continue talking about the Georgian morphology, we will
characterize the morphology of the main word classes (i.e. parts-of-speech).

Traditionally, Georgian nouns are assumed to have 7 cases: nominative, erga-
tive, dative, genitive, instrumental, adverbial and vocative. Cases are marked
with suffixes, but at the same time, noun suffixes can express postpositions. So,
distinguishing the case inflection from the postpositional inflection is a tricky part
of Georgian grammar.5 Similarly to nouns, adjectives also have cases. Georgian
adjectives can stand alone or modify nouns in the sentence, so depending on their
status they have fewer number of cases (we can also look at this fact in the way
that the number of cases is the same, but some cases exhibit syncretic forms).
The same can be said about the case inflections of quantifiers. It is also possible
to decline pronouns and non-finite verbs by case.

The syncope and apocope (the loss of sounds in the middle or at the end of the
word respectively) are common phenomena during declension and pluralization.
In (3) and (4), there is an example of both syncope (the loss of e) and apocope
(the loss of a) at the same time in the word stem. When it is important, we
encode the lost letters in the superscript:

(3) p. ep. ela
butterfly-NOM

(4) p. ep.
ela-eb-i

4In general, there are many derived nouns in Georgian and their morpheme by morpheme
translation will be often irrelevant for some discussions, so we will simply translate the referent
with the grammatical features. E.g. in case of saavadmqopo we will simply write hospital-nom
in the analytical gloss.

5Moreover, there were/are several discussions about the number of cases. In addition to
these 7 standard cases some linguists consider other noun inflections as case inflections and
some oppose the standard list of cases by arguing that the particular inflection is not a case
inflection. We will revisit this issue when we start building a formal grammar for Georgian.

9

butterflies-NOM

There are also some irregular alternations occurring rarely in the word stems,
they will be explored in the later chapters.

Now it is time to introduce the verb – the key word class in the Georgian lan-
guage. What is special to the Georgian verb? The verb often serves as a “back-
bone” (the fundamental component to which other components are attached) of
a sentence from the semantic and morphosyntactic points of view. The former
view is the common one in most (probably in all) languages, but the latter one
is not quite obvious and we are going to demonstrate it now.

The point is that Georgian verbs are able to encode the information about
their subjects, objects, indirect objects,6 tense, aspect, mood, and direction of
the action in their morphology. The best way to understand this fact is to give
examples:

(5) ča-g-i-qvan-e
down-2sing-take-1sing-pst-ind-pfv
I took you down to

(6) ča-g-e-qvan-e
down-1sing-take-2sing-prs-sjv-ipfv
If you took me down to

In (5), the prefix ča- is called a directional preverb and shows the direction of
the action or state expressed by the verb. Note that it is difficult to translate the
verb morpheme by morpheme7 as some morphemes often give specific information
in combination with other morphemes. For example, (6) shows how the change
of one morpheme has reversed the subject-object pair and totally changed the
tense-aspect-mood (tam).

(7) m-a-dar-eb
1sing-compare-2sing-3-prs-ind-ipfv
You are comparing me to her8/them

(8) m-a-dar-eb-s
1sing-compare-3sing-3-prs-ind-ipfv
She is comparing me to her/them

Moreover, the omission of the morpheme can serve as a marker of a different
(opposite to what is expressed by the omitted morpheme) grammatical category,
as there are some grammatical categories (e.g. in some cases 2nd person sin-
gular) without corresponding morpheme in certain environments. This fact is
demonstrated in (7) and (8), when the 3rd person morpheme -s is omitted.

(9) mo-g-a-bar-eb-d-e-t
to-2pl-hand-1sing-3-fut-sjv-pfv ;

6At this point we are using common notions of syntactic functions, but as we will see later
these notions will not be as relevant as they are e.g. in Indo-European languages.

7So, the glosses are not flawless but they are organized in a way that they show the discussed
phenomena adequately.

8Since there is no gender in the Georgian grammar, the reader should ignore the information
about gender provided by the English personal pronouns in English translations.

10

to-2pl-hand-1pl-3-fut-sjv-pfv ;
to-2sing-hand-1pl-3-fut-sjv-pfv
I/We would hand you her/them

Often the number of the subject, object or indirect object is not explicitly ex-
pressed in the morphology of the Georgian verb. The reasons are the following:
non-existence of the specific morpheme in certain environments (for indirect ob-
ject in (7) and (8)), or the coincidence of the morphemes of different grammatical
functions (in (9), plural morpheme -t can express the number of the subject and
the object).

One of the features of the verb we have just demonstrated is called polyper-
sonal agreement. The morphological feature of the verb to express (agree with)
more than one of the arguments9 is called polypersonal agreement or polyperson-
alism. Polypersonal agreement in actual sentences allows the omission of most
pronouns without losing any information (demonstrated in (10) and (11)), in oth-
er words the pronoun-dropping is allowed and this fact categorizes Georgian as
the pro-drop language.

(10) me
1sing-nom

mo-g-a-bar-eb-d-e
pvb-2sing-hand-1sing-3-fut-sjv-pfv

šen
2sing-dat

mat
3pl-dat
I would hand you them

(11) mo-g-a-bar-eb-d-e
pvb-2sing-hand-1sing-3-fut-sjv-pfv

mat
3pl-dat

I would hand you them

While talking about tam grammatical features of the verb, we have to men-
tion their specific representation suited for the Georgian verb. Traditionally the
Georgian grammar uses the notion of row (mc.k. rivi, adopted in English as screeve)
to describe the verbs according to the tam feature. There are 11 screeves assumed
in the traditional grammar. Each screeve represents the set of 6 word forms of
the verb.10 Table 1.2 shows how these 11 screeves are grouped in series and what
the possible values of the tam grammatical features are.

Note that Series I is divided into two subgroups – present and future. Linguists
often include the 12th screeve in Series II, which stands for the imperative screeve
with the imperative mood. Also, there were attempts by some linguists to argue
for decreasing the number of screeves to 8 or increasing their number up to 16
based on some views.

It is common in Georgian that some verbs cannot have corresponding word
forms in some screeves or even in some series. There are different rules of word-
formation for different kinds of verbs inside the screeves. The latter fact makes
it difficult to guess what kind of inflection a certain verb will have in a certain

9By argument we mean a phrase (or a word) which is in a syntactic relation with the verb.
10Why 6 word forms? Because of the argument of the verb, there are 6 possible combinations

of grammatical features of person and number. However, we have seen a polypersonal agreement
feature of the Georgian verb, which implies that some verbs can agree with more than one
argument, therefore sometimes it should have more than 6 word forms. This is a reasonable
point for discussion and it will be discussed in the later chapters.

11

Series Screeves Tense Mood Aspect

I

Present Present (Future, General) ind
ipfvImperfect Past ind

Present Subjunctive Present (Future) sjv
Future Future ind

pfvConditional Past ind
Future Subjunctive Future sjv

II
Aorist Past ind

(i)pfv
Optative Present / Future sjv

III
Perfect Past ind
Pluperfect Past ind
Perfect Subjunctive Past / Future sjv

Table 1.2: Traditional 11 screeves grouped in 3 series. For each screeve, possible
values of the tam grammatical features are indicated.

screeve. Moreover, different kind of verbs are conjugated differently inside some
screeves.

Georgian verbs are traditionally divided into four classes. The division is
based on features such as: having word forms for a certain set of screeves or se-
ries, how the stems of different series are related to each other and the transitive
or intransitive property of the verb. The verbs in the same classes are supposed
to conjugate similarly according to number and person or to screeves. Unfortu-
nately, there are many irregular verbs which do not fall in any of these classes.
The following citation from Wikipedia emphasizes the same problem:

“Georgian verb conjugation remains a tough subject even for the people who
have been studying the language for a while. Even after studying over hundreds of
verbs, one may still encounter a new verb whose conjugation deviates from what
the person has learnt. This is not to say that the verbs are irregular, rather, to
state that verbs in Georgian do not tend to conform to a ‘universal’ conjugation
system like in most other languages.”

The Georgian verb is a good example of morphology interfacing with syn-
tax. As we have mentioned, the verb already encodes the information about
syntactic functions of its arguments – subject, object and indirect object – in its
morphology. Moreover, the verb governs11 these syntactic arguments by marking
them with grammatical cases. In traditional Georgian grammar, it is assumed
that subjects, objects and indirect objects are marked with three cases: nomina-
tive, ergative12 and dative. Here, we show some examples of case alignment in
sentences:

11For readers who are not familiar with syntactic relations, governing is used to express
the specific relation between two word class (or phrases) – when a (main or so-called head)
word marks another (dependent) word with some grammatical features, which the former does
not show. E.g. prepositions mark nouns with cases, or verbs mark nouns with case, though
prepositions and verbs do not show the case feature.

12This grammatical case is sometimes referred to as narrative or aorist case. In general, the
ergative case is used to mark subject or agent of transitive verbs.

12

(12) st.udent.-i k. itx-ul-ob-s c. ign-s
student-nom reads-prs-ipfv-1sing book-dat
The student reads / is reading the book

(13) st.udent.-ma c.a-i-k. itx-a c. ign-i
student-erg pvb-read-pst-pfv-1sing book-nom
The student read the book

In (12), there is nominative-dative case alignment in present (screeve 1) while in
(13), for the lexically identical verb the case alignment has changed to ergative-
nominative in Aorist (screeve 7). This kind of behavior is characteristic to most of
so-called dynamic verbs – verbs whose subject is the agent of the event expressed
by the verb.

(14) ǰaḡl-i mi-h-qv-eb-a p. at.ron-s
dog-nom pvb-3-follow-prs-textscipfv-3sing master-dat
The dog follows the master

(15) ǰaḡl-i ga-h-qv-a p. at.ron-s
dog-nom pvb-3-follow-pst-pfv-3sing master-dat
The dog followed the master

But in (14) and (15), the alignment nominative-dative remains constant with
respect to screeve 1 and screeve 7 (indeed to all screeves). There is one more
interesting alignment in (16) and (17), where the traditional subject of the verb
is marked with dative case and the traditional object with nominative case, unlike
in the Indo-European languages. Note that the above-mentioned alignment also
holds in all screeves.

(16) ǰaḡl-s u-qvar-s p. at.ron-i
dog-dat 3-love-prs-textscipfv-3sing master-nom
The dog loves the master

(17) ǰaḡl-s e-qvar-eb-a p. at.ron-i
dog-dat 3-love-fut-pfv-3sing master-nom
The dog will love the master

Based on the discussed examples, the language is considered as having the split
ergativity property meaning that the language partially (un)satisfies the ergative-
absolutive property.13

In Georgian, case alignment is defined mainly by the lexical semantics of the
verb rather than by other information. In addition, application of a certain pre-
verb to the verb is also guided by lexical semantics of the verb. In cases where the
verb expresses action having a direction feature (e.g. to go, to send, to hand, etc.),
the applicable preverbs can serve as directional markers, otherwise they serve as
tense and aspect markers. Therefore we believe that lexical semantics of Geor-
gian verbs are the main reason for all irregularities related to their conjugation
according to person-number and screeves.

13The property says that the language maintains a syntactic or morphological equivalence
(such as the same word order or grammatical case) for the object of a transitive verb and
the single core argument of an intransitive verb, while treating the agent of a transitive verb
differently [Wikipedia].

13

As the verb agrees with and governs subjects, objects and indirect objects,
there is no need to recode the same information by word order – the language is
considered a free word order language at the phrase level. We show this property
on the example (18), where any subject-verb-object order is acceptable14.

(18) deda-m bavšv-s sat.amašo u-qid-a
Mother-erg child-dat toy-nom 3-buy-3sing-3-pst-pfv
The mother bought the toy to the child

(19) deda-m bavšv-s sat.amašo u-qid-a
deda-m u-qid-a sat.amašo bavšv-s
sat.amašo bavšv-s deda-m u-qid-a
bavšv-s sat.amašo u-qid-a deda-m

In (19), we give some licensed word orders in the sentence. The free word order
property will be revisited during modeling the Georgian syntax.

Above we emphasized the free word order on the phrase level – in general
the word order is fixed inside the phrases. In noun phrases, adjectives precede15

nouns. The same kind of precedence exists between determiners (demonstra-
tives, possessive determiners, or quantifiers) and nouns. The noun phrase has the
property of left-branching. The example of left-branching is shown in (20):

(20) čem-i megobar-is col-is mankan-is gasaḡeb-i
my-nom friend-gen wife-gen car-gen key-nom
The key of the car of the wife of my friend

NPNOM

keyNPGEN

car’sNPGEN

wife’sNPGEN

friend’smy

Figure 1.1: Left-branching in the noun phrase

In figure 1.1, a simplified parse tree demonstrates the left-branching property.
In the top-to-bottom direction, the tree is “growing” on the left hand side. The
head of the noun phrase (key) is the first right-branch of the tree.

In noun phrases, adjectives and possessive pronouns agree with heads only in
case, while quantifiers apply to the noun phrase whose head is only in singular.
Adjectives cannot modify the noun after determiners are applied to it, hence
adjectives following determiners is the only licensed word order in noun phrases.

14Maybe some orders are rarely used, hence traditionally some of them are considered un-
grammatical but in the examples all orders make clear sense.

15The precedence of nouns to adjectives is not common for Georgian, but this phenomenon
is observed in Georgian lyrics. In the thesis, we are only considering the common case.

14

There is no grammatical gender distinction in Georgian, there is even just
one kind of pronoun referring to the 3rd person (unlike in English), but there is
the animacy feature, categorizing nouns on whether their referents are animate
or inanimate. The animacy grammatical feature plays a role on the syntax level.
While nouns agree with verbs in the number feature, inanimate nouns cannot
agree with verbs in plural number, but animate ones can:

(21) adamian-eb-s s-č. ir-d-eb-a-t c. qal-i
Humans-dat 3-need-prs-ipfv-3pl water-nom
Humans need water

Example (21) shows the licensed agreement in number between the plural ani-
mate(!) subject (humans) and the verb with the plural(!) subject marker. On
the other hand, (22) shows the licensed agreement in number between the plural
inanimate(!) subject (trees) and the verb with the singular(!) subject marker. If
we substitute the plural feature of the subject for the singular feature the sentence
(23) will still remain grammatically correct.

(22) xe-eb-s s-č. ir-d-eb-a c. qal-i
Trees-dat 3-need-prs-ipfv-3sing water-nom
Trees need water

(23) xe-s s-č. ir-d-eb-a c.qal-i
Tree-dat 3-need-prs-ipfv-3sing water-nom
The tree needs water

(24) *xe-eb-s s-č. ir-d-eb-a-:t c. qal-i
Trees-dat 3-need-prs-ipfv-3

::

pl water-nom

But (24) example is not grammatically correct because inanimate subject cannot
agree with the verb with the plural(!) subject marker16. According to this exam-
ples, one can say that there is no syntactic distinction between inanimate nouns
with the singular and the plural number features, but this is not true. There are
some verbs in Georgian which change their stems according to the number feature
of the grammatical function governed by them. We use examples to demonstrate
this phenomenon:

(25) sat.amašo gd-i-a magida-ze
toy-nom lie-prs-ipfv-3sing table-dat17-on
The toy lies on the table

(26) *sat.amašo-
:::

eb-i gd-i-a magida-ze
toy

::

s-nom lie-prs-ipfv-3
:::::

sing table-dat-on

As it is shown in (25) and (26), the substitution of the singular number of the
subject for the plural number makes the sentence ungrammatical. The sentence
(27) will be grammatical again if we substitute the verb gd-i-a for its semantically
almost equivalent verb qr-i-a. The difference between these verbs is that the

16Though, some authors treat inanimate objects as animate. Therefore if we considered the
tree as animate object, then (24) and (23), but (22), would be grammatical sentences.

17In traditional Georgian grammar, it is assumed that the postposition -ze (in) governs the
noun in dative case and at the same time dative suffix -s is lost due to the apocope.

15

former one governs the subject in singular and the later in plural, there are no
other differences on the syntactic or semantic level between them.

(27) sat.amašo-eb-i
::

qr-i-a magida-ze
toys-nom lie-prs-ipfv-3

:::

pl table-dat-on
Toys lie on the table

We tried to give an introduction to the basic word classes and their gram-
matical categories in Georgian, and briefly present their morphological and mor-
phosyntactic features. Then we discussed Georgian syntax and showed on exam-
ples some of its important properties, such as polypersonal agreement, case align-
ment (split-ergativity), free word order on the phrase level and fixed word order
inside the phrase (left-branching). The reader can find more information about
the Georgian language and its (traditional) grammar in English at Wikipedia18

and (Hillery, 2006).

18The information about the language and its grammar at http://en.wikipedia.

org/wiki/Georgian_grammar and about the verbs at http://en.wikipedia.org/wiki/

Georgian_verb_paradigm.

16

http://en.wikipedia.org/wiki/Georgian_grammar
http://en.wikipedia.org/wiki/Georgian_grammar
http://en.wikipedia.org/wiki/Georgian_verb_paradigm
http://en.wikipedia.org/wiki/Georgian_verb_paradigm

2. HPSG Formalism and Its

Implementation in TRALE

System

We introduce the HPSG formalism, which will be our framework for a formal de-
scription of Georgian grammar. In our opinion, the best start for the introduction
to the HPSG formalism is a formal one with suitable examples.

First, we introduce the basic elements of the formalism – typed feature struc-
tures. We start with a formal introduction to the (untyped) feature structures
and provide several examples. Then we introduce the type hierarchy and the
signature. Along with the formal definitions and properties, we give illustrative
examples of the type hierarchy and the signature. After presenting the points
above, we are ready to define typed feature structures over the signature. Fea-
ture structures are also illustrated by examples. Next we give formal definitions
for the relations of subsumption and equivalence – alphabetic variation, over
the typed feature structures. We give a concise and intuitive definition for the
abstract typed feature structures and introduce the operation of unification em-
ploying those structures.

We start our introduction to the HPSG formalism with a list of its main
principles along with their brief explanations. We proceed with a description
of components of the formalism: signature, lexicon, lexical rules, principles and
grammar rules.

At the end of the chapter, we present TRALE – an implementation platform
for HPSG-based grammars. We briefly introduce the architecture of a TRALE
grammar and give implemented samples of some components of the HPSG for-
malism. In this way, we try to make it easy for the reader to read the source code
of a simple TRALE grammar.

17

2.1 Typed feature structures

We introduce typed feature structures, which play crucial role in modeling of
linguistic objects in the HPSG formalism. First, we introduce the notion of
feature structures and several equivalent views on it; then the notions of type
hierarchy and signature will be discussed, followed with typed feature structures.
In the end, subsumption order and the operation of unification will be introduced.

2.1.1 Feature structures

Feature structure is a broad concept and – as the name suggests – it rests on the
notion of feature. Feature structures are used in many theories and application.
The idea behind them is to model any object in terms of a set of features and
their corresponding values (feature-values), where the value of the feature (i.e.
some object) is also represented as a set of feature-value pairs. As you can see
feature structures have a recursive structure.

There are different views on feature structures, such as feature graphs (aka
concrete feature structures), feature structures, attribute-value matrices or ab-
stract feature structures. But in the thesis, we will work only with feature struc-
tures viewed as attribute-value matrices, as this representation is originally used
in the HPSG formalism and is common in linguistics. On the other hand, repre-
sentation of feature structures as graphs is attractive from the theoretical point
of view, as it is easy to give formal definitions of the feature structure and its
properties in terms of theoretically well studied mathematical objects.

Below, we give definitions for the unordered signature1 and untyped feature
structures (simply, feature structures) according to (Carpenter, 1993).

Definition: the unordered signature Σ is a pair of non-empty finite sets:
Σ = 〈A,F〉

where A is a set of atoms and F is a set of features.

The signature simply represents a fixed set of several kinds of symbols, which is
used in formal definitions.2

Definition: With respect to the unordered signature Σ = 〈A,F〉, a feature
graph 〈Q, q0, δ, θ〉 is a finite, rooted, directed, connected, labeled graph:

Q (Q ∩A = Q ∩ A = ∅) is a finite set of nodes,
q0 ∈ Q is the root node,
δ : Q × F → Q is a partial function such that for any q′ ∈ Q, there exists a

sequences of nodes 〈q0, q1, . . . , qn, q
′〉 and a sequence of features 〈f1, . . . , fn〉 that

δ(qi, fi+1) = qi+1, (i = 0, . . . n), where qn+1 = q′,
θ : QA → A is a total3 function, QA = {q ∈ Q | δ(q, f) ↑ for any f ∈ F}.

Simply saying, for any node δ function defines its outgoing arcs (features) and
their destination nodes. The condition on the δ function requires that any node
of the feature graph is reachable from the root node. At the same time θ function
assigns labels to the sink nodes (nodes without outgoing arcs). For better under-

1We conventionally call it unordered, to distinguish it from another kind of signature, which
will be introduced later.

2Strictly speaking, a signature contains the non-logical symbols of a formal language.
3Sometimes assumed as a partial function which allows some features without any values

18

standing, in Fig.2.1 we give some examples of feature graphs with corresponding
parameters:

q0

q1

1990

q2

q3

Kia

q4

1986

born in
have

mark

prod. in

q0

q1

feat1

feat2feat1

q0 q1

female

q2

q3

1986

ha
ve

sex

born
in

p
r
o
d
.
in

(a) (b) (c)

Q = {q0, q1, q2, q3, q4}, Q = {q0, q1}, Q = {q0, q1, q2, q3},

〈q0, have〉
δ
7→ q2, 〈q2,mark〉

δ
7→ q3, 〈q0, feat1〉

δ
7→ q0, 〈q0, have〉

δ
7→ q2, 〈q0, sex〉

δ
7→ q1,

〈q0, born in〉
δ
7→ q1, 〈q0, feat2〉

δ
7→ q1, 〈q0, born in〉

δ
7→ q3,

〈q2, prod. in〉
δ
7→ q4, 〈q1, feat1〉

δ
7→ q0, 〈q2, prod. in〉

δ
7→ q3,

q1
θ
7→ 1990, q3

θ
7→ Kia, q4

θ
7→ 1986. θ : ∅ → A. q1

θ
7→ female, q3

θ
7→ 1986.

Figure 2.1: Examples of feature graphs5 with the unordered signature
Σ = 〈A,F〉, where A = {1996, 1990, female,Kia} and
F = {feat1, feat2, born in, have,mark, prod. in, sex}

In Fig.2.1, the root nodes are in darker colors. In feature graphs, it is allowed
ingoing arcs in the root node (b). Loops (b) and multiple (c) ingoing arcs in the
node are also possible. The later fact is called a reentrance. Note that there is at
most one outgoing arc with a certain feature label from every node, but several
ingoing arcs with the same feature label are allowed (b). In feature graphs,
important is to reach every node from the root node and to label all sink nodes.

It is simple to represent a feature graph as a attribute-value matrix (AVM).
AVM represents the nodes of the feature graphs as structures in such way that
non-sink nodes are enclosed in square brackets, but sink nodes are simply rep-
resented with their labels. The information about features (outgoing arcs) and
values (destination nodes) are structured like a matrices with two columns, the
first column stands for the attribute6 list and the second one for list of the cor-
responding feature values. In AVM, each structure is labeled similarly (up to
isomorphism) to the names of the corresponding nodes7 in the feature graph. It
is common to use natural numbers for labeling the structures in AVMs. Reen-
trance and loops are expressed in terms of labels. There are examples of AVMs
(in Fig.2.2) corresponding to the feature graphs in Fig.2.1:

6We will make no difference between attributes and features while talking about the feature
structures.

7There is one-to-one mapping between the nodes of the feature graph and structures of the
corresponding AVM.

19

0

born in 1 1990

have 2

[

prod. in 4 1986
mark 3 Kia

]

 0

[

feat1 0

feat2 1
[

feat1 0
]

]

0

born in 3 1986

have 2
[

prod. in 3
]

sex 1 female

(a) (b) (c)

Figure 2.2: Examples of AVMs corresponding to the feature graphs

In AVMs, the order of the features for each structure is irrelevant as there is no
order between outgoing arcs of a certain node in feature graphs.

From AVMs it is easy to see that it models a set of all objects which have
some feature-values and those values are also modeled in terms of feature-values,
etc. But the representations in terms of AVMs and feature graphs are depended
on some irrelevant specific details of a set of labels (in AVMs) or names of nodes
(in feature graphs). For example, in AVMs, the value of each label is irrelevant as
the AVMs in Fig.2.3 describes the equivalent objects and the AVM (c) in Fig.2.2:

3

born in 0 1986

have 1
[

prod. in 0
]

sex 2 female

 4

born in 1 1986

have 2
[

prod. in 1
]

sex 3 female

 1

born in 7 1986

have 2
[

prod. in 7
]

sex 3 female

(a) (b) (c)

Figure 2.3: Example of equivalent AVMs

The reason is that the set(!) of labels of each AVM give the same information
about the (equality and inequality) relations between the structures of AVMs.
In other words, there are isomorphisms between the set of labels of the AVMs.
The isomorphic relation satisfies properties of a equivalence relation, hence, in
order to abstract from the irrelevant specific details we can partition the set of all
concrete feature structures into equivalence classes. Resulted equivalence classes
are called abstract feature structures or simply feature structures (for more details
see (Moshier, 1987), (Moshier, 1988)).

born in 1990

have

[

prod. in 1986
mark Kia

]

 0

[

feat1 0

feat2

[

feat1 0
]

]

born in 0 1986

have
[

prod. in 0
]

sex female

(a) (b) (c)

Figure 2.4: Examples of AVMs representing abstract feature structures

In Fig.2.4, we give examples of AVMs representing the feature structures. In
AVMs, the structural equalities are explicit with the help of labels8 and structural
inequality are represented implicitly - if two structures do not have the same labels
then they are unequal. In the later chapters we will be using feature structures9

representing in terms of AVMs.

8It is assumed to use the least unused natural numbers whenever we need to labels the
structures with the same label.

9The introduction of the subsumption relation and unification operation (in terms of mor-
phisms) on the (concrete) feature structures are out of the scope of this thesis. Instead, we will
introduce them on the typed feature structures.

20

2.1.2 Type hierarchy and signature

A type hierarchy is introduced in order to type the feature structures. It is nat-
ural to think about types and the type hierarchy as concepts and the concept
hierarchy, respectively; where the hierarchy is an inheritance hierarchy meaning
that the subconcepts (subtypes) will inherit all the properties from their super-
concepts (supertypes).

Definition: A type hierarchy 〈T ,⊑〉 is a finite10 bounded complete partially or-
dered (BCPO) set.

The type hierarchy is also referred as the inheritance hierarchy or the sort hierar-
chy. ⊑ relation is called a subsumption relation and when t1 ⊑ t2 we say that t2
subsumes (is greater than or is supertype of) t1, or t1 is subsumed by (less than
or subtype of) t2. Bound complete property of a partial order means that any
low-bounded (aka consistent) subset S ⊆ T , i.e., there exists an element t ∈ T
such that t ⊑ s for every s ∈ S, has the (unique) greatest lower bound (glb)11

denoted as ⊓S. The existence of the maximum (aka top) element in 〈T ,⊑〉 is
implied from BCPO property: ∅ ⊆ T is consistent as any element of T is less
than any element of ∅, therefore there exists ⊤ = ⊓∅, which is the greatest el-
ement, i.e., the maximum element, in T . Also note that for a S ⊆ T the least
upper bound (lub) is defined in the following way:

⊔S = ⊓{t | s ⊑ t for everys ∈ S}
only if the glb, i.e., the right part of the equality, exists. In Fig.2.5, there are
examples of the valid and invalid type hierarchies. If sqcapT is defined than it
represents the minimum element and is denoted as ⊥. For S ⊆ T , if ⊓S = ⊥,
than S is called inconsistent. In the thesis, we assume that ⊥
notinT .

⊤

ba

c d

⊤

ba

e

c d

(a) (b)

Figure 2.5: Examples of the invalid (a) and valid (b) type hierarchies

The type hierarchy (a) is invalid because S = {a, b} is consistent as there
exists an element (e.g. c) which is less than each element in S, but ⊓S is not
defined as c and d are not in subsumption relation. The type hierarchy (b) is
valid and represents the ”fixed” version of (a). In (b), ⊓S is defined for every
consistent subset S ⊆ T .

10Sometimes this restriction is not required, but as we are going to talk about its implemen-
tation, we assume that the set if finite.

11In other words, the type hierarchy is a finite meet semilattice, where the meet of two
elements is glb.

21

In order to specify the set of appropriate features for each type in the hierar-
chy, the appropriateness specification is introduced. We assume that F is a set of
features and F ∩ T = ∅. The expression f(x, y) ↓ means that f(x, y) is defined.

Definition: The appropriateness specification on the type hierarchy 〈T ,⊑〉 and
the set of features F is a partial function Approp : F ×T → T such that satisfies
two properties:

a) Maximal introduction of features:
For every f ∈ F , Tf = {t ∈ T | Approp(f, t) ↓} 6= ∅, where ⊔T is defined and
⊔T ∈ Tf ;

b) Downward closure / Right monotonicity:
If t2 ⊑ t1 and Approp(f, t1) ↓ for some f ∈ F ; then Approp(f, t2) ↓ and
Approp(f, t2) ⊑ Approp(f, t1).

Note that these properties require that (a) every feature is introduced by some
unique most general type, (b) the feature is appropriate to all subtypes of this
most general type and the type of the feature at the subtype is at most as general
as it is for the same feature at supertypes. If Approp(f, t1) = t2, we say that
the feature f is appropriate to the type t1 and the type t2 is appropriate to the
feature f at the type t1.

Definition: The appropriateness specification contains a loop if there exists a
sequence (ti)

n+1
i=1 of types and a sequence (fi)

n
i=1 of features such that for every i,

1 ≤ i ≤ n, Approp(fi, ti) = ti+1, where tn+1 = t1.

The type t1 is called a cyclictype and features (fi)
n
i=1 a cyclic features [Penn, 2000].

The types with cyclic appropriate features do not have finite totally well-typed
most general satisfiers, and (Carpenter, 1992) excludes them by prohibiting ap-
propriateness loops. As our aim is to give the foundation of the HPSG formalism,
which is based on the totally well-typed feature structures, we will also exclude
the appropriateness loops in the general definition of the signature.

Definition: The signature is tuple 〈T ,⊑,F ,Approp〉, where 〈T ,⊑, 〉 is a type
hierarchy, F is a set of features, Approp is an appropriateness specification func-
tion on 〈T ,⊑, 〉 and F and has no appropriateness loops12.

There are examples of invalid signatures in Fig.2.6. In the type hierarchy
appropriateness specification is expressed by the labels attached to the types in
such way, that the fact Approp(f, t1) = t2 corresponds to attaching f : t2 label to
the type t1, where the feature names are in uppercase. The feature in bold face
denotes its maximal introduction. In the signature (a) (Fig.2.6) h feature has no
maximum introduction. In Fig.2.6, (b) represents one of the solutions of (a), but
now the downward closure property is violated at type f . In Fig.2.7, (a) meets all
requirements to be valid signature except having no appropriateness loops. The
sequences (a, f, a) and (g,h) form the loop in (a). The signature becomes valid
after adding the extra type k, see (b).

More advanced information about the signature and its influence on theoret-
ical and practical sides of the operations on typed feature-structure are available
in (Carpenter, 1992) and (Penn, 2000).

12Sometimes loops are not forbidden in the signature but here we forbid as they are not
allowed in the implemented signature.

22

⊤

ba G:f

e G:f
H:a

c G:f d H:e f

⊤

b H:aa G:f

e G:f
H:a

c G:f d H:e f

(a) (b)

Figure 2.6: Gradually fixing the invalid signature: (a) violates the maximum
introduction of features and downward closure, while (b) violates only the later.

⊤

b H:aa G:f

e G:f
H:a

c G:f d H:e f H:a

⊤
a

b H:ak G:f

e G:f
H:a

c G:f d H:e f H:a

(a) (b)

Figure 2.7: Elimination of the loop from the signature: (a) includes the loop, but
after adding the new type the loop is eliminated in (b).

2.1.3 Typed feature structures

We introduced feature structures, the type hierarchy 〈T ,⊑〉 and the signature
〈T ,⊑,F ,Approp〉. We fix an infinite set of nodes Q disjoint from T and F , each
element of which is typed by the typing function θ : Q → T . Also, for every
t ∈ T , {q ∈ Q | θ(q) = t} is infinite. Now we introduce typed feature structures,
which the HPSG formalism is based on. A typed feature structure is defined
formally as a typed feature graph.

Definition: A typed-feature structure (TFS) over 〈T ,⊑〉 and F is a tuple
〈Q, q0, δ〉:

Q ⊂ Q is a finite set;
q0 ∈ Q is the root node;
δ : Q×F → Q is a partial feature value function such that for any q′ ∈ Q, there

exists a sequences of nodes 〈q0, . . . , qn, q
′〉 and a sequence of features 〈f1, . . . , fn〉

that δ(qi, fi+1) = qi+1, (i = 0, . . . n), where qn+1 = q′.

The definition simply says that a TFS is a finite, rooted, directed, connected,
labeled graph. The nodes and arcs are labeled with types from T and features

23

from F , respectively. q0 is a root node and every node of the graph is reachable
from it. The type of the TFS is the type of the root node t = θq0. We fix the set
of all TFSs and denote it by TFS. The examples of the TFSs (viewed as feature
graphs) are given in Fig.2.8, where (a) and (c) are of type human, and (b) is of
type a.

q0

human

q1

1990

q2car

q3

Kia

q4

1986

born
inha

ve

mark

prod. in

q0 a

q1

b

feat1

feat2feat1

q0human q1

female

q2 car

q3 1986

ha
ve

sex

born
in

p
r
o
d
.
in

(a) (b) (c)

Figure 2.8: Examples of typed feature graphs on 〈T ,⊑〉, where T =
{1990, 1986, a, b, car, female, human,Kia}, ⊑ is equality relation and F =
{feat1, feat2, born in, have,mark, prod. in, sex}

The AVM representations of the same TFSs are given in Fig.2.9. Comparing
to the untyped AVMs, the types of non-sink nodes are placed in the upper left
corner and the types of sink ones substitute for atoms. Since now, we will use
AVMs representations for drawing TFSs.

0

human
born in 1 1990

have 2

car
prod. in 4 1986
mark 3 Kia

0

a
feat1 0

feat2 1

[

b
feat1 0

]

0

human
born in 3 1986

have 2

[

car
prod. in 3

]

sex 1 female

(a) (b) (c)

Figure 2.9: Examples of typed AVMs

Definition: A TFS 〈Q, q0, δ〉 with respect to the signature 〈T ,⊑,F ,Approp〉 is
well-typed iff δ(q, f) ↓ implies Approp(f, θ(q)) ↓, and δ(q, f) ⊑ Approp(f, θ(q)).

i.e., well-typed TFS do not ”contradict” the signature: for any arc, the feature
(label) of the arc is appropriate to the type (label) of the source node and the
appropriate type for the feature at the type of the source node subsumes the type
of the target node. The examples of well-typed TFS are given in Fig.2.11 with
respect to signature1 (Fig.2.10).

Definition: A TFS 〈Q, q0, δ〉 with respect to the signature 〈T ,⊑,F ,Approp〉 is
totally well-typed iff it is well-typed and Approp(f, θ(q)) ↓ implies δ(q, f) ↓.

i.e., totally well-typed TFS ”completely follows” the signature: for each type, all
appropriate features are labeling the outgoing arcs of each node labeled with this
type.
The examples of totally well-typed TFSs are given in Fig.2.11. (a) and (b) are
not totally well-typed as the types f and e lack the appropriate features H and

24

⊤

b H:⊤a G:f

e G:f
H:⊤

c G:f d H:e f H:⊤

Figure 2.10: The signature: signature1

0

e
g 1 f
h 2 ⊤

 0

a

g 1

f

h 2

[

e
h 3 a

]

0

e

g 1

[

f
h 2

]

h 2 ⊤

0

k

g 1

f

h 2

e

g 4

[

f
h 3

]

h 3 ⊤

(a) (b) (c) (d)

Figure 2.11: (Totally)well-typed AVMs wrt signature1; all (a)-(d) are well-typed,
while only (c),(d) are totally well-typed.

G, respectively. (c) and (d) represent totally well-typed versions of (a) and (b),
respectively.

2.1.4 Subsumption order and unification operation

The partial order on the type hierarchy induces the partial subsumption order
on the set of TFSs. The subsumption order is introduced in terms of morphisms
(structure-preserving maps) on TFSs.

Definition: a TFS F1 = 〈Q1, q1, δ1〉 subsumes a TFS F2 = 〈Q2, q2, δ2〉 (denoted
as F2 ⊑ F1) if there exists as total function h : Q1 → Q2 such that:

h(q1) = h(q2);
for every q ∈ Q1, θ(h(q)) ⊑ h(q);
for every q ∈ Q1 and every f feature, if δ1(q, f) ↓, then δ2(h(q), f) ↓ and

h(δ1(q, f)) = δ2(h(q), f).

The h function is called subsumption morphism and it ”embeds” F1 into F2 pre-
serving the structure of F1: h maps a source node from F1 to the target node of
F2 which has at least as specific type as the source node has; and if there is a
labeled f arc from q to q′ in F1, then there is the f labeled arc from h(q) to h(q′)
in F2. In Fig.2.11, (c)⊑(a) and (d)⊑(b) the sumsumption morphism in both case
is the identity function h(n) = n. Note, that there is no subsumption relation
between (c) and (d), though (c) represents the substructure of (d). The reason
is that the root nodes have different types. As you see the subsumption relation
does not employ appropriateness specification.

Definition: TFSs F1 and F2 are alphabetic variants (denoted as F1 ∼ F2) iff

25

F1 ⊑ F2 and F2 ⊑ F1.

The alphabetic variation relation is not necessarily equality relation. Two TFSs
can be alphabetic variants13, but different; e.g., (a)∼(b) but (a) 6=(b) (in Fig.2.12).
The reason is that they have different nodes, though they are typed in the same
way and have the same structure. The alphabetic variation relation is an equiv-
alence relation over the TFSs. In order to abstract from the identities of nodes
in the TFSs and keep the information only about types of nodes, feature labels
of arcs and their structure, the abstract TFSs are introduced. An abstract TFS
simply represents the equivalence class [tfs]∼ = {t ∈ TFS | t ∼ tfs}, therefore
the set of all abstract TFSs is a quotient set of TFS modulo ∼, denoted by
ATFS = TFS/∼ = {[tfs]∼ | tfs ∈ TFS}. In Fig.2.12, (a)-(c) are elements of the
same equivalence class represented by the (d) abstract AVM (i.e., an AVM of an
abstract TFS), which is not any more depended on identities of nodes14.

0

e

g 1

[

f
h 2

]

h 2 a

1

e

g 2

[

f
h 0

]

h 0 a

0

e

g 2

[

f
h 3

]

h 3 a

e

g

[

f
h 0

]

h 0 a

(a) (b) (c) (d)

Figure 2.12: Examples of alphabetic variant AVMs: (a)-(c) are alphabetic vari-
ants and (d) is an AVM of the abstract TFS representing the equivalence class of
(a)-(c).

Note that, the notions of well-typedness and totally well-typedness, and the sub-
sumption relation are correctly transfered from TFS to ATFS (for formal proves
see (Carpenter, 1992, chap.3). Namely, for every atfsi ∈ ATFS and tfsi ∈ TFS,
the following facts hold15:

atfs1 is (totally) well-typed iff every tfs1∈atfs1 is (totally) well-typed;
atfs1 ⊑ atfs2 iff for every tfs1∈atfs1 and tfs2∈atfs2, tfs1 ⊑ tfs2.
atfs1 ⊑ atfs2 and atfs2 ⊑ atfs1, iff atfs1 = atfs2

Finally, now we are at the point to define one of the most important operation
on abstract TFSs, namely unification operation. After the subsumption relation
is defined on ATFS, it make sense to talk about glb of bounded set of abstract
TFSs in 〈ATFS,⊑〉.

Definition: if A ⊆ ATFS is lower bounded in 〈ATFS,⊑〉, then the unification16

of A, denoted by ⊓A, is defined ⊓A ∈ ATFS, and is the glb of A17.

Definition: for A ⊆ ATFS, if ⊓A is defined, we day that A is consistent,
otherwise it is inconsistent.

13The alphabetic variation, in other words, is the isomorphism between TFSs
14It is assumed to use the least unused natural numbers whenever we need to labels the

reentrant structures with the same label.
15For simplicity, we keep the same symbols for the subsumption relation on the abstract

TFSs.
16We use unification to refer to the operation or its result.
17In some literatures, ⊔ is used for the unification operator. Here, we support

specific ⊑ general subsumption relation, hence the unification (resulting the specific values) is
denoted as ⊓

26

The idea of the unification operation is to combine information from the TF-
Ss18, while the subsumption relation compares the informations of two TFSs.
Unification is used for enriching the already existing knowledge with some new
knowledge via the efficient procedure.

We gave formal definition of the unification operation but it does not say
anything how to compute the result of the operation. The unification is recursive
procedure and to unify (find glb of) two abstract TFSs, we first unify their types
if they are consistent, otherwise the unification fails. Then we unify (here is
recursion!) the values of features occurring in both TFSs, otherwise we simply
copy a feature with its value. Note also, that we have to take care of the reentances
(structure sharing) during the unification. The examples of the unifications of
well-typed abstract TFSs wrt signature1 (Fig.2.10) are given in Fig.2.13:

a

g

f

h

[

a

g f

]

⊓

e

g

[

f

h e

]

h e

=

e

g

f

h

[

e

g f

]

h e

;

a

g

f

h

[

a

g f

]

⊓

e

g

[

f

h d

]

h e

=⊥;

a

g 0

f

h

[

a

g 0

]

⊓ 0

e

g 1

[

f

h 0

]

h 1

= 0

e

g 1

[

f

h 0

]

h 1

Figure 2.13: Examples of the unification of well-typed abstract TFSs

In Fig.2.13, the second example, the abstract TFSs are inconsistent as the unifica-
tion fails due to the inconsistence of types a and d. The third example shows how
the structure sharing makes the unification ”harder” in contrast with the first
example. Also, the same example shows the absorbing property of the unification
which occurs when one operand is subsumed by another.

For more details about the unifications of TFSs can be found in (Carpenter,
1992), where the author discusses the type inference of TFSs and well-typed TFS
wrt the signature, the variants of unifications on set of TFSs, well-typed TFS and
totally well-typed TFS, and necessary conditions to guarantee that the unification
is in the same domain as the operands (closure under the unification).

18Note, that the unification operator is also defined for untyped feature structures, but we
skip this part here.

27

2.2 Head-driven phrase structure grammar

First, we list and explain the main characteristics of the grammar formalism.
Then we introduce the grammar framework by describing its components – the
signature, the lexicon, lexical rules, principles and grammar rules.

2.2.1 Main principles of HPSG

The Head-driven Phrase Structure Grammar (HPSG) formalism was introduced
by Carl Pollard and Ivan Sag in their work Information-Based Syntax and Se-
mantics (Pollard & Sag, 1987). It evolved directly from attempts to modify
another grammar formalism – Generalized Phrase Structure Grammar (GPSG),
but became much more popular than its ancestor formalism. A revised and more
complete theoretical framework of HPSG, along with attempts to model a broad
range of phenomena in the English grammar, was given in (Pollard & Sag, 1994).

The characteristics of the HPSG formalism you hear first about are that it
is a generative but non-derivational grammar formalism, founded on the typed
feature structures, that heavily employs the unification operation, has the declar-
ative property, uses a constraint-based and monostratal approach, and is highly
lexicalized. Here, we will try to briefly characterize all these properties:

• HPSG (like other generative grammar formalisms), is based on a set of
rules, attempts to distinguish word combinations constituting grammatical
sentences from those constituting ungrammatical ones.

• It is non-derivational, as it employs no destructive transformations (unlike
transformational grammars), it does not derive sequentially one structure
(or representation) from another, but it gradually builds a single large struc-
ture.

• The formalism is founded on the logic of typed feature structures. We can
talk about linguistic objects in terms of descriptions (i.e., formulas) of the
logic, interpretations of which are TFSs. This makes HPSG attractive from
the computational point of view.

• The unification operation on the TFSs (i.e., linguistic objects) serves as
a combining operation on the linguistic objects in HPSG. Unifying two
linguistic objects results in the larger object containing all the information
from the operand objects. In this way, sentences and phrases represent the
unification of their lexical constituents.

• HPSG-based grammars are written in a declarative way, like a knowledge
base of the actual grammar of the language. They license linguistic expres-
sions without detailed instructions about the flow of the licensing process
– how to behave in some specific cases.

• The formalism employs constraints to forbid ungrammatical expressions.
The constraints are expressed in terms of descriptions in the logic of TFSs.
If a linguistic expression conforms to all appropriate constraints then it is
licensed by the grammar.

• It is considered as monostratal as there is only one level for representing
the information from different levels of the linguistic structure (phonology,
morphology, syntax, semantics and pragmatics), although all these pieces of

28

information are structured differently in TFSs. Monostratal representation
makes the interaction between these linguistic levels easy.

• HPSG is highly lexicalized – lexical entities are represented by information-
rich structures having all the information about different levels of linguistic
structure organized in TFSs, here the information and its geometrical struc-
ture is determined by the empirical considerations.

All the above-mentioned and other properties made the HPSG formalism one
of the most influential grammar formalism among computational linguists: “there
are more people working on and with implemented head-driven phrase structure
grammars than with any other linguistic grammar model” (Uszkoreit, 1996).

Moreover, several notable approaches and theories to the language-universals
are developed in the framework of HPSG (Uszkoreit, 1996): head-driven approach
to valency and phrase structure; binding theory based on obliqueness; different
theories on long-distance dependencies; theory of complementation including a
theory of raising; theory on agreement; approach to semantics, etc.

Also, some language-specific analyses, that are less naturally described in oth-
er grammar formalisms, are implemented successfully in HPSG-based grammars
(Uszkoreit, 1996), e.g. parasitic gaps, raising in English, French clitics, German
phrase structures including fronting, etc.

There is a substantial volume of research done on the HPSG framework.
(Levine & Meurers, 2006) provides an aerial view of the linguistic approach
of HPSG, summarizes its formal foundations, and characterizes computational
work developed based on the HPSG paradigm; (Uszkoreit, 1996) and [HPSG
page] briefly lists the main contributions and ideas of HPSG; short explanations
of wide range of characteristics of the formalism are given by the co-founder of
HPSG in (Pollard, 1997).

2.2.2 The HPSG framework

Here we introduce the HPSG framework. The modularity of its architecture
makes it possible to describe each component of the framework separately: sig-
nature, describing the structure of TFSs allowed in the formalism and used in
the grammar; lexicon, including basic lexical entries; lexical rules, generating de-
rived lexical entries from basic ones; principles applying to words and phrases,
having the ability to express dominance relations; grammar rules similar to those
of context-free grammars.

Signature

As we already mentioned, the HPSG formalism is founded on the logic of typed
feature structures. Hence, one of the components of the formalism is the signature
(i.e., the type hierarchy, the sort hierarchy or the system of signs (Pollard & Sag,
1994), where all these names unambiguously refer to a signature in the confines of
HPSG). The HPSG signature exactly represents the signature we have formally
introduced in the previous chapter. So, the appropriateness loops are not allowed
in the HPSG signature too19.

19From the computational point of view, the loops prevent the termination of the typing
process of the feature structures

29

The signature uses Ferdinand de Saussure’s notion of the linguistic sign,
where sign represents the most general type containing information mostly about
phonology, syntax, semantics and sometimes pragmatics. word and phrase types
are two immediate subtypes of sign and they inherit features from their super-
type. The Fig.2.14 demonstrates a toy HPSG signature,20 where sign has infor-
mation only about phonology (phon) and grammatical category (cat),21 which
are inherited by its subtypes:

top

string

MarryJohn

list(σ)

ne list

hd σ

tl list(σ)

e list

gend

femalemale

[

cat

gend gend

]

sign
phon list(str)

cat cat

word

phrase
h dtr sign
nh dtr sign

Figure 2.14: A toy HPSG signature

The phon feature stores the string representation of words or phrases, that is
why its type is list of strings. The list type (along with the set type) is one of
the recursive types of the signature, which is claimed to be needed for linguistic
descriptions. list has two subtypes: e list (an empty list) and ne list (a non-
empty list), which itself has two features: hd (the head – the first element of the
list) and tl (the tail - a list without the head element). The grammar writer can
define a list of some specific types or the most general list type list(bot).

Two features – h dtr (the head daughter constituent) and nh dtr (the non-
head daughter constituent) of type sign are appropriate for the phrase type.
These features encode the information about the immediate dominance (ID) re-
lation (a linguistic object of type phrase immediately dominates the values of
type sign of its “daughter” features) and the syntactic dependency relation be-
tween the constituents of the phrase (the value of h dtr depends on the value
of h dtr). The information about daughter constituents can be organized in
different ways within structures.

There are also other common language-universal and language specific types
in the HPSG signature. We will deal with those types in the later chapters.
Meanwhile, note that the hierarchical organization of linguistic information plays
a significant role in predicting the impossibility of certain kinds of linguistic phe-
nomena, thus makes grammar writing easier. It is also worthwhile to emphasize
that grammar writers are free to introduce new types and features in the signa-
ture, modify the type hierarchy or the appropriateness function, or discard some

20The signatures of powerful grammars are much more rich with types and features associated
with each type.

21It is common to use the same name for the feature and its type.

30

types and features to get the valid signature in the end.22

Lexicon

The lexicon in the HPSG framework is a set of lexical entities representing de-
scriptions of the logic of the typed feature structures. As we already mentioned
in the principles of HPSG, lexical entries encode rich lexical information in their
structure. The fashion of information organization in the structures can be dif-
ferent in different HPSG-based grammars.

word
phon loves

synsem

synsem

cat

cat

head verb

val

val

subj 〈 1
nom 〉

comps 〈 2
acc 〉

gap 〈 〉

arg-st 〈 1 NPi
3sing , 2 NPj 〉

sem

sem

mode prop

index s

restr 〈

pred-love

sit s

lover i

loved j

〉

; NPi
agr,case =

synsem

cat

cat

head

noun

case case

agr

agr

pers pers

num num

val

val

subj 〈 〉

comps 〈 〉

sem

sem

mode ref

index i

restr list(pred)

Figure 2.15: An AVM corresponding to the lexicon entry loves, where NP rep-
resents the shortcut for the AVM corresponding to the noun phrase

For the demonstration we give an AVM,23 corresponding to the lexical entity
loves (Fig.2.15). The way of organizing the information in the AVM is based
on the English grammar developed in (Sag et al., 2003). The AVM includes
information about phonology, syntax (cat) and semantics (sem). The syntax is
expressed by the cat structure, containing information about the part of speech
(POS), syntactic valency and syntactic gaps, where 〈 and 〉 are delimiters of the
type list. The POS information is a value of the feature head, as the value of
head is percolated along the head projection (due to Head Feature Principle), the
POS information is also available on the phrase level. Structure sharing between
the semantic section (the value of sem), the argument structure (the value of
arg-st) and valency val can be viewed as a syntax-semantic interface, which
is easily achieved in the monostratal grammar framework. Note that the type
of values of arg-st, subj, comps and gap is list(synsem). The list value of
arg-st is a concatenation of the list values of subj, comps and gap features.24

NP represents a shorthand of the AVM of the noun phrase, which itself contains
the information about the grammatical case, person and number categories. In
the grammar of (Sag et al., 2003), the situation semantics are used to encode
the semantic information. Therefore, the semantics of loves is a propositional

22Though some implementation platforms may insist on the existence of some universal types
like list and top

23A slightly simplified version than in (Sag et al., 2003).
24The feature is used to cover the gaps phenomena in the grammar, for details see (Sag et al.,

2003).

31

situation identified with the index. The situation contains the information about
the situation, in which the referent i is in the love relation with the referent
j. Note that on the semantic level, the noun phrase is expressed as a reference
situation having the index and the predicate restriction on this index. More
detailed explanation of each feature and type can be seen in (Sag et al., 2003).

word → Lexical–Entry1 ∨ Lexical–Entry2 ∨ . . . ∨ Lexical–Entryn

Figure 2.16: The Word Principle

The basic HPSG lexicon can be defined by the Word Principle given in
Fig.2.16, where each Lexical–Entry is a description of the kind we saw in Fig.2.15
(Levine & Meurers, 2006).

Deciding how to organize the information in the lexical entity is up to grammar
writer, as it depends on the structure of the signature.

Lexical rules

It would be quite redundant if we had to declare all lexical entities in the lexicon,
like love, loves, loving, loved, etc, in the fashion shown in Fig.2.16. Lexical rules
represent a mechanism which allow us to add just one lexeme25 for love and the
applicable lexical rules will produce all necessary inflected (or also, derived) word
forms of the lexeme.

The HPSG architecture supports two kinds of lexical rules and they serve for
different goals. The first kind of lexical rules can be viewed as principles having
the format of the implication between two descriptions. The lexical rule applies
to all TFSs satisfying the antecedent description and they are required to satisfy
the implied description of the rule. By satisfying the implied description, the
TFSs become more specific, hence resolving some of their general types to more
specific types. For example, according to this kind of lexical rule, nominative
case is assigned to the subject of all finite verbs in (Pollard & Sag, 1994). The
lexical rules of this kind are used to encode the vertical generalizations (according
to (Flickinger, 1987)) between the words, i.e., to modify similarly some class of
lexical entries sharing some general properties. As the rules have a format of
principles (see the next section) we call them lexical principles.

Lexical rules of another kind are used to express the (asymmetric) relation
between sets of lexical elements. Unlike the vertical lexical rules, these rules
produce new lexicon entries. They behave like a functions on some specific domain
of TFSs which satisfy the input description of the lexical rule. The rule also
contains the instructions how to create the new TFSs using the input. So, this
kind of rules would generate the inflected or derived word forms from the input (in
our case, for love). We will refer to such kind of rules as horizontal lexical rules,
as they are capturing the horizontal generalizations between the word forms.
The final lexicon, which will contain the initial lexicon and all lexical entries,
resulting from the application of the vertical and horizontal lexical rules on the
initial lexicon, is called the Full Lexicon.

25We call this kind of lexical entity lexeme (opposed to lemma, which represent canonical
form of the lexeme) as it potentially represent the linguistic lexeme – a set of inflected word
forms of the same word

32

Further formal details about lexical rules in HPSG and their implementation
can be found in [Meurers, 1994, 1995, 2000, 2001] and [Meurers & Minnen, 1997].
[Briscoe & Copestake, 1999] gives a different view on the lexical rules; the authors
formulate both types of lexical rules as TFSs and hence there is no need of
introducing a new device.

Principles

We have already mentioned lexical principles and their format in the previous sec-
tion. Another kind of principles of the HPSG framework will be discussed in the
section. Both kinds of principles are commonly referred as grammar principles,
but in this work we distinguish these two principles and call grammar principles
those which are beyond lexical principles (i.e., apply not to lexical entries, but to
phrases).

Like lexical principles, grammar principles also have the form of implication.
In general, they apply to a phrase (i.e. TFS of type phrase) which satisfies the
constraints of the antecedent of the principle and force it to satisfy the consequent
of the principle too. If a phrase satisfies the antecedent and fails the consequent
of the grammar principle, then the phrase is not licensed by the grammar.

There are several common grammar principles for HPSG-based grammars.
One of the most important ones is the Head Feature Principle (HFP), which
ensures that in a headed phrase (i.e., a phrase having a head daughter), the head
feature of the phrase and the head daughter are identical. In other words, HFP
percolates the head information along the head projection (Fig.2.17):

[

phrase
dtrs headed-structure

]

−→
[

synsem | cat | head 0

dtrs | head-dtr | synsem | cat | head 0

]

Figure 2.17: Head Feature Principle

The HFP principle makes it easy to check the agreement between constituents.
Because of the importance of this principle and the head information, the gram-
mar formalism obtained the prefix head-driven in its name.

From other principles, it is worthy to mention the immediate dominance prin-
ciple (IDP), which expresses the immediate dominance relation between nodes of
the phrase structure trees; the Valency Principle and the Argument Realization
Principle (ARP).

Grammar rules

The HPSG grammar rules are used to express the Linear Precedence (LP) relation
between the nodes of the phrase structure trees. Grammar rules represent the
context-free rules, where they rewrite descriptions instead of symbols. On the
left-hand side of the rule, there is a description for the mother category and on
the other side the sequence of descriptions of daughters. For example, Fig.2.18
shows the the Head-Specifier Rule (HSR) for English:
In case of the strict word order, the grammar rules are used, otherwise grammar
principles are preferable. Note that, unlike context-free grammars, HPSG dis-
tinguishes the ID and LP relations and it took this property from the ancestor
GPSG formalism.

33

phrase

synsem|cat|val|spr 〈 〉
dtrs|h dtr 0

−→
[

synsem 1
]

0

[

synsem|cat|val

[

spr 〈 1 〉

comps 〈 〉

]

]

Figure 2.18: Head-Specifier Rule

In the end, we can say that an expression is licensed by HPSG if it satisfies all
principles and represents a lexicon entry or is resulted by some grammar rule
application.

In short, we can express this fact as a formula:

licensed expressions → P1 ∧ . . . ∧ Pi ∧ (L1 ∨ . . . ∨ Lj ∨R1 ∨ . . . ∨ Rk)

The uniform structure and the formal foundation of the formalism makes it
easy to understand how the grammar works. Its expressiveness keeps itself at-
tractive to the computational linguists. There are different approaches developed
within the HPSG framework for different languages. Wide coverage HPSG-based
grammars are written for the languages: English, German, Japanese, Mandarin
Chinese, Maltese, Persian, etc. and several platforms were created for implement-
ing these HPSG-based grammars.

34

2.3 TRALE – an HPSG-based grammar imple-

mentation platform

The purpose of this section is to provide basic information about the TRALE
system. We start out with an overview on how to run TRALE and get started,
then introduce the syntax of the signature and descriptions, how to write a simple
HPSG lexicon, lexical rules, principles and grammar rules.

2.3.1 TRALE system

TRALE is a grammar implementation platform that was developed as a part of
the MiLCA project in 2003 (Meurers et al., 2002). It is an extension of the At-
tribute Logic Engine26 (ALE) system written in SICStus Prolog 3.8.6. and based
on the logic of (Carpenter, 1992). TRALE has all of the functionality of ALE
plus some extras (most importantly, complex-antecedent constraints). The main
goal of this system is to be as faithful as possible to “hand-written” HPSG, and,
yet, to incorporate maximally efficient processing “behind the scenes” (Melnik,
2007).

For the grammar development we use the beta version of 2003, so called “old
TRALE”27. The recent version of the TRALE (“new TRALE”) is released in 2008.
There are two major factors made us to choose the old version of TRALE. First,
the SICStus Prolog which is required to run “new TRALE” is not available for
free and second, the newer version is not documented28. On the other hand, there
is a standalone version of “old TRALE”29, which does not require the SICStus
Prolog and it is documented. One drawback of the standalone version is that it
needs to be restarted after some specific errors arise. The main difference between
new and old version is the speed, which is not our main goal in the implantation
of the grammar.

The TRALE grammar is physically divided in two parts – the signature and
the theory, where the former simply represents the signature of the TFSs and
later is remaining part of the grammar. First, we introduce the signature and
then the theory of the TRALE grammar.

2.3.2 Signature

TRALE physically separates the signature, where types are listed and appropri-
ateness conditions are stated, from the theory. Under TRALE’s approach the
signature defines the domain of the linguistic objects and the theory distinguish-
es between those objects that are admissible in the language, and those that are
not (Melnik, 2007).

First, we describe the syntax of the TRALE signature and other specifica-
tions, then the subtype covering property, which is characteristic for the HPSG
framework. This is done in the way of (Penn & Abdolhosseini, 2003a).

26ALE is one of the oldest systems still being used for the implementation of HPSG grammars:
http://www.cs.toronto.edu/~gpenn/ale.html

27http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
28According to developers, the changes are minor, but they can be quite confusing if you are

unaware of them, and there is no easy way to find out.
29http://hpsg.fu-berlin.de/Software/Trale/

35

http://www.cs.toronto.edu/~gpenn/ale.html
http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
http://hpsg.fu-berlin.de/Software/Trale/

Syntax of the signature

TRALE signature is equivalent to the formal signature (hence, to the HPSG
signature too). To recall from the previous sections, signature is a finite BCPO
set, with the appropriateness function without loops. There are two ways of
declaring the signature in TRALE. One is in the style of ALE and another in the
style of TRALE. We will introduce the latter as its is very intuitive and intended
to resemble the HPSG signature.

The TRALE signature is declared in the separate text file with the default
name signature. In Fig.2.19, the TRALE signature corresponds to the one of
HPSG from Fig.2.14. It is mandatory to start the signature with type_hierarchy

and finish with (.) on the new line. The most general type have to be declared
with the name bot30, hence the TRALE signature supports the top-down orga-
nization of the type hierarchy. Each type is defined on a separate line following
the feature-value pairs in the style feature:type, separated by whitespace. The
indentation of subtypes should be consistent in the whole signature, i.e., for any
type starting at the column C, all its immediate subtypes should start at the
column C+n, where n is the constant for the signature (n = 2 is a common
value). Types and features represent the atoms in the Prolog’s sense, meaning to
start with a lower-case letter and contain only letters, digits and the underscore
character. As you see, the same string can be used as a type and as a feature,
TRALE will treat them properly.

type_hierarchy

bot

sign phon:list cat:cat

phrase h_dtr:sign nh_dtr:sign

word

cat gend:gend

gend

male

female

list

e_list

ne_list hd:bot tl:list

.

Figure 2.19: The TRALE signature corresponding to the HPSG signature in
Fig.2.14

In the TRALE signature, the appropriateness specification is expressed in
terms of attaching the feature to the most general type which the feature is
appropriated (the maximal introduction property). The subtypes inherit the fea-
tures and their type restrictions from their supertypes (the right monotonicity
property). A type may never occur more than once as the subtype of the same
supertype. It can, however, occur as a subtype of two or more different super-
types, i.e., multiple inheritance, it is advised to prefix the second appearance of
the type with (&), in order to prevent unintended multiple inheritance (Fig.2.20).

30The most general type is called bottom in fashion of (Carpenter, 1992).

36

The signature allows the special kind of types called a_/1 atoms. These types
are implicitly declared by TRALE. They are featureless types and can be viewed
as Prolog terms.

type_hierarchy

bot

answer phon:(a_ _)

yes

no

undef

bool

true

false

&undef

.

Figure 2.20: Use of multiple inheritance and a /1 atom in TRALE

a_/1 atoms are used to prevent the signature from redundant types. For example,
we avoid defining Marry and John subtypes of string type (Fig.2.14) in the
signature (Fig.2.19). The kind of types and word tokens in general will be defined
in the lexicon and they will be automatically interpreted by TRALE as types of
a_Marry, a_John and a_any_word_token. a_ _ atom stands for the most general
type subsuming all a_/1 atoms and directly subsumed by bot. a_/1 atoms are
often put in parentheses for better reading (Fig.2.20).

Subtype covering

TRALE assumes that subtypes exhaustively cover their supertypes, i.e., that ev-
ery object of a non-maximal type, t, is also of one of the maximal types subsumed
by t. This is only significant when the appropriateness conditions of t’s maximal
subtypes on the features appropriate to t do not cover the same products of values
as t’s appropriateness conditions (Penn & Abdolhosseini, 2003a).

This property of the typing is taken from HPSG, where it is called the
closedworld assumption. This assumes that every object’s type should be explic-
itly defined in the type hierarchy. For better understanding we give the example
from HPSG given in (Penn & Abdolhosseini, 2003a). English verbs are typically
assumed to have the following two features in order to distinguish auxiliary verbs
from main verbs and also to show whether a subject-auxiliary inversion has taken
place Fig.2.21.

verb
aux bool
inv bool

=

{

verb
aux plus
inv plus

;

verb
aux plus
inv minus

;

verb
aux minus
inv minus

;

verb
aux minus
inv plus

}

Figure 2.21: Subtype covering for English verbs

The values for the aux and inv features are taken to be of type bool (a).
However, note that there cannot be any verbal type like (e). That is, there are no
verbs in English that can occur before the subject and not be auxiliaries. With

37

the help of the subtype-covering property we can prevent (e) with the following
type hierarchy (Fig.2.22):

type_hierarchy

bot

bool

plus

minus

verb aux:bool inv:bool

aux_verb aux:plus inv:bool

main_verb aux:minus inv:minus

.

Figure 2.22: Signature preventing the undesired types via sub-type covering

The support for the subtype covering is one of the distinguishing property
of TRALE from ALE. The reader can find more information about the TRALE
signature and its types in (Penn & Abdolhosseini, 2003a).

2.3.3 Theory

Theory is the name for the “real” grammar – all components of HPSG, except
Signature. TRALE defines Theory in the separate file text file (with default name
theory.pl31). In Theory, it is possible to declare the following components of
HPSG: macros for descriptions on TFSs, lexical entries of the lexicon, lexical
rules, grammar rules, principles, functional descriptions, definite clauses and few
other constructs.

Though Theory is defined in the separate file, TRALE allows us to break up
it in several files (e.g. separate file for each component of the grammar,) and,
in the style of Prolog, import these files in the main file representing the theory
file. So, we will also break the introduction to TRALE Theory into several
brief descriptions of the individual components. Here, we will not give formal
syntax of TRALE Theory, only give the intuition on the format demonstrated
with examples. For further details, we refer readers to the user’s guide (Penn &
Abdolhosseini, 2003a).

Descriptions, variables and macros

Descriptions of the TFSs have simple intuitive representation in TRALE. The
best way to explain their syntax is to give the example. TRALE description of
the lexical entry book (Fig.2.23) is given in List.2.1:
We break the description into lines and indent its features for better readabil-
ity so that it resembles the TFS. The given description simply represents the
conjunction of the constraints on the TFSs. As in Prolog, (,) is a conjunction
operator in TRALE. The type is conjugated with its constrained features and
features are delimited by (:) from their type constraints. Descriptions end with
(.) in the end.

31Theory is written in the Prolog file with the file extension .pl.

38

word
phon book

cat

cat

head

noun

case case

agr

agr

pers per3

num sing

val

val

subj 〈 〉

comps 〈 〉

Figure 2.23: An AVM for the lexicon entry book

Listing 2.1: The description for book

(word ,
phon : (a book) ,
synsem : (synsem ,

cat : (cat ,
head : (noun ,

case : case ,
agr : (agr ,

per s : per3 ,
num: s ing)) ,

va l : (val ,
subj : e l i s t ,
comps : e l i s t)))) .

As in HPSG, all TFSs are totally well-formed, TRALE instantiates all descrip-
tions to the most general totally well-typed TFSs satisfying the description32.
Hence, some redundant constraints can be skipped in the description without
loosing any information. List.2.1 and List.2.2 express equivalent descriptions,
but the latter is more economic one. Constraints synsem, cat, case:case, agr,
val were redundant.

Listing 2.2: The economic description for book

(word ,
phon : (a book) ,
synsem : cat : head : (noun ,

agr : (per s : per3 ,
num: s ing)) ,

va l : (subj : e l i s t ,
comps : e l i s t)) .

TRALE allows the use of variables over the descriptions. They start with an

32This is done by the type inference function. For more theoretical details about it, see
(Carpenter, 1992)

39

uppercase letter. As you see in List.2.3, variables are available on a_/1 atom level
too, but you need to prefix the variable with a_. TRALE instantiates the variables
to the most general TFSs satisfying all constraints. Therefore, in List.2.3, vari-
ables S and N will be instantiated to synsem and num types, respectively. TRALE
will instantiate Y to e_list (opposed to list), because the second occurrence
of the variable is constrained by e_list type in the value of comps. TRALE
does structure sharing in TFSs by using several occurrences of the same variable,
like in the case of variable Y. Note that due to the difference between structure
sharing and token identity, the value of val in our recent example (List.2.3) is
not the same as the one in List.2.1 or 2.2.

Listing 2.3: the description including variables and structure sharing

(word ,
phon : (a X) ,
synsem : (S ,

cat : head : (noun ,
agr : (per s : per3 ,

num:N)) ,
va l : (subj :Y,

comps : (Y, e l i s t))) .

Macros are shorthands of the descriptions and are useful not only as short-
hands. They are very handy during grammar writing as they save the grammar
writer from writing whole descriptions. Note that macros can be used within the
definition of other macros. An example of a macro definition is given in List.2.4:

Listing 2.4: Defining a macro for nouns having complements

noun word comp (Num, Case , Comps−n e l i s t) :=
(word ,

synsem : cat : head : (noun ,
case : Case ,
agr : (per s : per3 ,

num:Num)) ,
va l : (subj : e l i s t ,

comps :Comps)) .

The macro name is on the left-hand side of (:=) and its description is on the right-
hand side. In our example, macro noun word comp abbreviates the description on
the right-hand side. Moreover, a description can have variables inside and they
will be instantiated to the arguments of the macro. Note that the order of the
arguments in the macro does not depend on their positions in the description.
When using a macro as a description, it should be prefixed with (@). For example,
the description expressed by the defined macro (List.2.5)
corresponds to the TFSs for the 3rd person, singular, noun word with non-empty
complement list and in any grammatical case. Also, it is possible to restrict
the arguments of macros to more specific types than they are inferred from the
description (like Comps to ne list, otherwise it would be restricted to list).

40

Listing 2.5: Usage of the macro as a description

@noun word comp (sing , case , n e l i s t) .

We stop our introduction here. The reader can find the complete syntax of
the descriptions described in Backus Normal Forms (BNF), macro hierarchies,
automatic generation of macros and other details about these in (Penn & Abdol-
hosseini, 2003a).

Lexicon

The structure of the lexicon is very simple. It represents a collection of lexical
entries. In TRALE, lexical entries are simply listed in the lexicon file. The
example of declaring a lexical entry is given in List.2.6.

Listing 2.6: Defining a lexical entry for book

book ˜˜> (word ,
synsem : cat : head : (noun ,

agr : (per s : per3 ,
num: s ing)) ,

va l : (subj : e l i s t ,
comps : e l i s t)) .

Using this instruction, TRALE automatically adds a TFS (List.2.1) to the lexicon.
There is a shorter way to declare lexical entries using macros. The underlying
declaration (List.2.7) would give the same result like the one in List.2.6.

Listing 2.7: Defining a lexical entry for book using the macro

book ˜˜> @noun word (s ing ,) .

where, noun_word macro is defined as in List.2.8 and _ is an anonymous variable
(like in Prolog). In this context, it would have the same result if we gave case

type as an argument instead of _.

Listing 2.8: The macro for nouns without complements

noun word (Num, Case) :=
(word ,

synsem : cat : head : (noun ,
case : Case ,
agr : (per s : per3 ,

num:Num)) ,
va l : (subj : e l i s t ,

comps : e l i s t)) .

41

Lexical rules

TRALE supports lexical rules. The format of the rules are simple and resembles
the “hand written” rules, i.e., re-writing rules. The given example (List.2.9) of
the pluralization lexical rule for English nouns (a little bit modified version than
in (Penn & Abdolhosseini, 2003a, chap.6)) completely demonstrates the format
and the capabilities of lexical rules in TRALE.

Listing 2.9: The pluralization lexical rule for English nouns

p l u r a l n l e x r u l e
@word noun (s ing , Case)
∗∗>
@word noun (pl , Case)
i f Case = nom
morphs
goose becomes geese ,
[k , e , y] becomes [k , e , y , s] ,
(X,man) becomes (X,men) ,
(X,F) becomes (X,F , es) when f r i c a t i v e (F) ,
(X, ey) becomes (X, [i , e , s]) ,
X becomes (X, s) .
% pro log p r e d i c a t e s f o r f r i c a t i v e s
f r i c a t i v e ([s]) .
f r i c a t i v e ([c , h]) .
f r i c a t i v e ([s , h]) .
f r i c a t i v e ([x]) .

lex_rule is a keyword for defining the lexical rules and it follows directly to the
name of the lexical rule. **> stands for the implication between the input and
output descriptions. It is optional to define an extra condition for the lexical rule
application. Extra conditions are preceded by if keyword. morphs keyword indi-
cates the start of the morphing phase of the phonology, where becomes indicates
the direction of the morphing procedure and when puts Prolog conditions on the
morphing.

The rule applies to lexical entries, TFSs of which satisfy the input description.
After satisfaction of the input description, the condition of the rule is checked
and the output description is generated. Note that during these procedures some
variables (if there are any) are instantiated (like the variable Case to the nomina-
tive case type nom). In the morphing part, atoms, sequences, lists and variables
on atoms can be used. It is important to mention that lists have to contain only
single character atoms or variables.

Note that this format of lexical rules is adopted from the ALE system. In
TRALE, another format of lexical rules is also available and it is intended for the
lexical rule compiler. More details about TRALE lexical rules are available in
(Penn & Abdolhosseini, 2003a, chap.6,7). Unfortunately, the part of lexical rules
are not documented as well as it should be. (Melnik, 2007) compares TRALE
lexical rules to “hand-written” ones and talks about information “carry over”
issue.

42

Principles

TRALE (unlike ALE) provides a natural way of defining principles, i.e., they are
defined as implications between two descriptions, and they are called complex
antecedent constraints. For completeness, we give an example of HFP (Fig.2.17)
in TRALE (List.2.10):

Listing 2.10: Head Feature Principle in TRALE

(phrase ,
d t r s : headed−s t r u c tu r e)

∗>
(synsem : cat : head :X,
d t r s : head−dtr : synsem : cat : head :X) .

For more details about complex antecedent constraints, we refer the reader to
(Penn et al., 2003) and (Penn & Abdolhosseini, 2003a).

Grammar rules

TRALE uses ALE’s grammar rules. The rules have a form of implication, where
the antecedent description represents the mother category and the consequent is
a list of daughter categories with possible procedural attachment (see (Penn &
Abdolhosseini, 2003a, chap.6.4)). The implemented version of HSR (Fig.2.18) is
given in List.2.11:

Listing 2.11: Head-Specifier Rule in TRALE

h e a d s p e c i f e r r u l e ##
(phrase ,

synsem : cat : va l : spr : e l i s t ,
d t r s : h dtr :X)

===>
cat> (synsem :Y) ,
cat> (X, synsem : cat : va l : (spr : [Y] ,

comps : e l i s t)) .

cat> is used for single daughters and cats>, for a list of daughters whose length
is not determined until run-time. Procedural attachments are preceded by goal>.
Grammar rules are also involved in the generation process. Further details about
the syntax of grammar rules and ALE generator can be read in (Penn & Abdol-
hosseini, 2003a).

Definite clauses and functional descriptions

TRALE allows the use of ALE’s definite clauses and functional descriptions.
TRALE’s definite clauses are similar to those in Prolog. The only significant
difference is that first-order terms are replaced with descriptions of feature struc-
tures. List.2.12 demonstrates the definite clauses for the simple list append pred-
icate.

43

Listing 2.12: The list append predicate in TRALE

append (e l i s t , (L , l i s t) , L) i f true .
append ((hd :H, t l :T1) , (L , l i s t) , (hd :H, t l :T2)) i f append (T1 ,L ,T2) .

The predicate is true iff the third argument is a list concatenation of the first
and the second arguments. The similar relation to the append relation can be
encoded in terms of functional descriptions (List.2.13). Functional descriptions
simply represent functions mapping description to descriptions.

Listing 2.13: The functional description append

fun append (+ ,+ ,−).
append (e l i s t , (L , l i s t) , L) i f true .
append ((hd :H, t l :T1) , (L , l i s t) , (hd :H, t l :T2)) i f append (T1 ,L ,T2) .

The grammar writer should be careful while defining definite clauses or func-
tional descriptions in the grammar, as they can cause non-terminating processes.
For further details, we refer the reader to (Penn & Abdolhosseini, 2003a).

Test suite

A test suite is used to check how completely the grammar covers some language
phenomena. A test suite is a sequence of tests. It can be defined in a separate
file and imported in Theory. The test has the following format (List.2.14):

Listing 2.14: The format of the TRALE test

t (Nr , ”Test Item” , Descr ipt ion , So lut ions , ’Comment ’) .

where arguments of t/5 are: the ID number of the test item, the string cor-
responding to some linguistic object (in double-quites), the description (often
left unspecified, in order to get all possible parses) for the test linguistic object,
expected number of solutions and comment.

Quick and compact introductions to installing and running TRALE, and writ-
ing TRALE grammars can be found in (Rosen, 2010b) and (Rosen, 2010a), re-
spectively. For more details about TRALE’s syntax, components and various
software tools linked to it, the user’s guide (Penn & Abdolhosseini, 2003a) is the
only choice. (Penn et al., 2003) represents a short guide to TRALE specific func-
tionalities apart from ALE. TRALE reference manual (Penn & Abdolhosseini,
2003b) contains a specification of the data structures and algorithms of TRALE.

44

3. Modeling the syntax of

Georgian

In this chapter, we model the syntax of the core part of Georgian in the bHPSG
framework. The chapter is organized in a step-wise fashion. We gradually model
some phenomena of the syntax and hence gradually develop the formal grammar
for Georgian. Each stage of modeling starts with the analysis of the language
phenomenon – considering examples covering the phenomenon and designing a
system of rules describing it. Then we describe this system of rules in the HPSG
formalism and integrate it with the already existing formal grammar, presenting
revised components of the grammar. After the HPSG-based grammar is “writ-
ten”, we implement it in trale and explain some implementation issues. At the
end of the modeling stage, we demonstrate the implemented grammar at work
using the example.

We start the chapter by introducing the concepts of simple declarative sen-
tence, declarative verb and logical case, since our approach to model the syntax
adopts the methods of formal semantics introduced by (Pkhakadze, 2005) and
treats these notions as fundamental.

The first steps in modeling the syntax of Georgian is to describe the simple
declarative sentence and its constituents – the verb and its noun argument(s). We
model the verb complementation and free word order on the phrase level. After
that we discuss the feature of polypersonal agreement of the verb – the ability to
encode the information about several persons on the syntactic level, and model
its information in the formal grammar. We also model the pronoun and finish
the verb complementation with modeling the polypersonal agreement.

We start modeling the noun phrase by adjunction of the noun by the adjective
and the quantifier.1 In this part we also adopt the formal analysis of adjectives
and quantifiers introduced in (Pkhakadze, 2005).

The topic of adjunction of the noun is continued by describing the adjunction
by possessive nouns and pronouns. We introduce the possessive case (contrary
to the traditional Georgian grammar) and contrast it with the genitive case. For
modeling different syntactic relations between adjuncts – adjectives, quantifiers,
possessive nouns and pronouns, and the head noun we introduce the degree of
specification.

We continue the discussion about possessive nouns and show that they repre-
sent just one of two roles of the noun in possessive. We contrast these two roles
– possessive (i.e., adjunct) and complement role using examples and show how
these two roles cause syntactic (and semantic) ambiguities of the surface struc-
ture of the noun phrase. Note that the formal analysis of the possessive adjuncts
along with capturing and distinguishing possessive nouns from the complements
in possessive are original contributions of this thesis. These contributions can be
considered as a continuation of the formal research started by (Pkhakadze, 2005)

1In this way our formal grammar will cover the same range of phenomena as (Pkhakadze,
2005) and our implemented parser will parse the same range of sentences (and not only sen-
tences) as systems (Abzianidze, 2008) and (Chikvinidze, 2010) based on (Pkhakadze, 2005)
do.

45

in Georgian syntax-semantics.
We finish the chapter by giving the “hand-written” formal grammar modeling

the syntax of the simple declarative sentences consisting of the verb and its com-
plement noun phrases – the head possibly complemented and possibly modified
by adjectives, quantifiers or possessives. The source code of the implemented
trale grammar is also provided.

46

3.1 Simple declarative sentence and logical case

For modeling the syntax of Georgian, we base on the theory of simple declarative
sentences and logical cases presented in (Pkhakadze, 2005) for Georgian.

We start with introducing the notion of simple declarative sentence and its
key constituent – declarative verb, then continue with the notion of logical case
naturally induced by former notions. At the end, the complete list of logical cases
will be given and shown for each case its logicality. Note that these notions are
the fundamental ones in the logical grammar of the Georgian language.1

3.1.1 Simple declarative sentence and the declarative verb

The approach we will use for the formal analysis of Georgian is mainly guided
by semantics, specifically, by lexical semantics. This solution is justified from
the fact that lexical semantics plays a crucial role in any grammar of Georgian,
starting from morphology to semantics. While writing the formal grammar for
Georgian, we build on the idea of K. Pkhakadze to view the Georgian declarative
verb as a formal n-ary predicate with cases assigned to each position (Pkhakadze,
2005) (or (Pkhakadze, 2009a) in English). But the analysis of the declarative verb
starts with the analysis of the Georgian simple declarative sentence. Below, we
briefly explain the notion of simple declarative sentence and declarative verb in
Georgian2. Also, for brevity, we often skip the word Georgian while talking about
Georgian language.

In (Pkhakadze, 2005), the simple declarative sentence is defined as an atomic3

formula of some mathematical language formalizing the Georgian thinking lan-
guage.4 A simple declarative sentence states some atomic and complete proposi-
tion via the predicate word on some noun phrases marked by cases and the stated
proposition has a truth value. The unique predicate word (formally, predicate
symbol) in the simple declarative sentence (formally, in an atomic formula) is
(formally, is interpreted as) the Georgian declarative verb.5 Therefore, the sim-
ple declarative sentence is a n-ary declarative verb applied to n number of terms,
namely, noun phrases (hence, verbal forms like infinitives and gerunds are not
allowed). Note that the verbal form can not be the declarative verb predicate
since it can not form the simple declarative sentence.

After this, the following question arises: how is the arity of the Georgian
declarative verb determined? The placeness of the declarative verb (simply, verb)

1The grammar is elaborated in the Open Institute of Georgian Language, Logic and Com-
puter (GLLC). It represents the first Montagovian theory for Georgian.

2Further details about the research on Georgian done by K. Pkhakadze and the Open In-
stitute of the Georgian Language, Logic and Computation (whose member the author of the
thesis is) is beyond the thesis. The reader can find more details about the simple declarative
sentence and verb in Georgian in (Pkhakadze, 2005) or in (Pkhakadze, 2008b), (Pkhakadze,
2008a), (Pkhakadze, 2009b), (Pkhakadze, 2009a) along with other related research topics.

3Atomic formula is commonly understood as in mathematical logic – a formula containing
no logical connectives, thus having no subformulas. E.g., in first-order logic, an atomic formula
is a n-ary predicate applied to n number of terms.

4The approach distinguishes three kind of languages, namely, the Georgian written language,
the Georgian spoken language and the Georgian thinking language (Pkhakadze, 2009b).

5For simplicity, we will not distinguish the predicate symbol from its interpretation – the
declarative verb.

47

is the number equal to the least number of different noun phrases necessary
to completely understand the semantics of the proposition stated by the verb.
Moreover, each place of the verb has its own domain. If we cannot define correctly
the placeness of a particular verb and a domain of each place, this means that
we do not understand completely the semantics of the verb (Pkhakadze, 2005).
For better understanding of the above-mentioned notions, we explain them on
several examples. We will use the superscript to indicates the placeness of verb
predicates.

In (1), the predicate gzavn-i-s(3) states the proposition which talks only about
three entities: a sender, an entity which is sent, an entity towards whom the
sender is sending the thing. Note that the latter entity is only expressed by the
semantics of the root of the verb (it is not explicitly expressed in the analytical
gloss of the verb, but implicitly in the ‘send’ morpheme).

(1) k.ac-i švil-tan gzavn-i-s(3) c. eril-s
Man-nom son/daughter-dat-to6 3sing-send-prs-ind-ipfv-3 letter-dat
The man is sending7 the letter to the son/daughter

Another good example is v-u-k.et-eb
(3) (2), where three entities should be consid-

ered in the proposition expressed by the verb, in order to completely understand
the semantics of the verb. These entities are: the maker entity, the entity which
is made by the maker and the entity for whom the maker is making the thing
(i.e. the beneficent entity).

(2) ǰaḡl-s
Dog-dat

v-u-k. et-eb
(3)

1sing-3-make-prs-ind-ipfv-3
saxl-s
house-dat

I am making the house for the dog

Note that in order to understand the semantics of k. et-eb-a
8 ‘to make’, two

entities are required: the maker and the entity which is made; but the Georgian
verb has the polypersonal property and there are inflectional rules that help to
introduce new entities in the semantics of the inflected verb form. E.g. in (2),
the beneficient entity is introduced by the -u- infix and that is why the semantics
of the inflected verb becomes richer.

We continue providing examples and gradually increasing the placeness of verb
predicates. (3) contains a 4-ary verb. Semantics of the non-finite verb ga-gzavn-a
‘to send’ talks about three entities, like (1). Example (3) represents its inflected
verb form in such a way that the inflection introduces the beneficient entity (2nd
person) in the semantics of the verb, like in (2). Thus the placeness of the verb
predicate becomes four.

(3) g-i-gzavn-i(4)

1sing-2sing-send-prs-ind-ipfv-3
c.eril-s
letter-dat

deda-s-tan
mother-dat-to

6We are still treating some postpositions in the traditional way assumed in the Georgian
linguistics.

7Note that the verb in screeve 1 can express the present, general or future tense depending
on the context. When the tense is not important for the discussion, we will show only one of
the tenses in glosses, as in this case.

8More precisely, the initial verbal semantic unit (introduced in (Pkhakadze, 2004)). It is
the semantic unit of the the non-finite verb k. et-eb-a ‘to make’ and underlies to semantics of all
inflected verb forms of the non-finite verb.

48

I am sending the letter to the mother for you

Note that the verb predicate g-i-gzavn-i (4) in (3) should not be confused with the

3-ary predicate with the same word form in (4). The verb g-i-gzavn-i (3) can be

roughly considered as the version of g-i-gzavn-i (4) where the beneficent entity is
identical to the addressee. Moreover, these verb predicates have different word
forms in aorist (i.e., screeve 7): ga-g-i-gzavn-e(4) and ga-

:::

mo-g-i-gzavn-e(3). Note
that the placeness of the verb predicate remains constant in the word forms
inflected according to tam grammatical features.9

(4) g-i-gzavn-i(3) c. eril-s
1sing-2sing-send-prs-ind-ipfv-3 letter-dat
I am sending the letter to you

In the end, we exemplify the 5-ary verb predicate in (5). The semantics of

the verb ga-v-u-b-i (5) implicitly states the proposition involving four entities: the
agent entity performing the action, the patient entity which is stretched and two
entities between which the patient is stretched. The extra fifth place (for the
beneficent) is introduced by the -u- infix.

(5) ḡob-idan xe-mde babua-s tok. -i ga-v-u-b-i(5)

Fence-from tree-till grandfather-dat rope-nom pvb-1sing-3-stretch-
between-pst-ind-pfv-3
I stretched the rope for the grandfather from the fence till the tree

Here we finish providing examples. More examples of the Georgian declarative
verbs will be given when we discuss the notion of the logical case.

The reader can see some connections between the theta roles and theta rela-
tions (from Government and binding theory), and the approach given in (Pkhakadze,
2005). Both theories try to describe the relation between entities established by
the verb, but the main difference is that the starting point of the former theory
is the level of syntax and the one of the latter is semantics. More connections
can be found between the earlier theory of C. J. Fillmore, called Case grammar
and its further development – Frame semantics, and the theory of (Pkhakadze,
2005), as the theories are driven from the semantics of the verb. Unfortunately,
there is no mention about the relation with those theories in (Pkhakadze, 2005)
and its further discussion is beyond the scope of this thesis.

3.1.2 The notion of logical case

In the previous section, we introduced the notion of the Georgian simple declara-
tive sentence and its core component – the Georgian declarative verb, also called
the linguistic predicate (Pkhakadze, 2005), or simply verb predicate. Based on
the simple declarative sentence and the linguistic predicate, (Pkhakadze, 2005)
introduces the notion of the logical case.

While the linguistic predicate is characterized by the number of arguments,
each of its argument is characterized by the syntactic domain (and not only by

9In other words, the verb forms differing from each other only in tam grammatical features
have the same number of places.

49

that). The initial syntactic domain is viewed as N-α, where N stands for the
noun stem, followed by the delimiter (-) and α – the postposition morpheme. The
linguistic predicate can be expressed formally as:

LingPred(n)(N-α1, N-α2, . . . , N-αn)

where the N−αi expresses that the i-th argument of the predicate should be pre-
fixed with αi morpheme, otherwise the resulting formula (i.e., the simple declara-
tive sentence) will be ill-formed (i.e., ungrammatical). Note that we assume that
the order of the semantic roles for every linguistic predicate is fixed, thus the se-
mantic role of each argument is unambiguously defined. We will call the ordered
list of arguments of the linguistic predicate its semantic argument structure. The
logical case stands for the N-α domain, and the α morpheme is the logical case
marker. The different α morphemes result different logical cases.

For example, the linguistic predicate in (1) has the following semantic argu-
ment structure:

gzavnis(3)(N-i, N-s,N-tan)

meaning that noun arguments should be marked with the following logical cases
N-i, N-s and N-tan as it is in (1). The formula:

gzavnis(3)(kac-i, c. eril-s, švil-tan)

corresponds to the Georgian simple declarative sentence given in (1).
After introducing the notion of the logical case, a question naturally arises:

how many logical cases are there in Georgian? (Pkhakadze, 2005) shows that
the number of logical cases is fourteen and each case is substantiated by a proof,
providing an example of a Georgian simple declarative sentence built by the
declarative verb which has this case in its semantic argument structure. In table
3.1, we give the complete list of the (fourteen) logical cases in Georgian.

Logical Case10 Name11 of Case Abbr. English analog

1 N-i Nominative nom We, a box
2 N-it Instrumental ins By hand, with knife
3 N-is Genitive gen Of him, of a box
4 N-isk. en Orientative ori Towards him
5 N-idan Ablative1 abl1 From/out of a box
6 N-isgan Ablative2 abl2 From us
7 N-istvis Benefactive ben For us
8 N-ma Ergative erg Man-erg
9 N-ši Inessive ine In a box
10 N-s Dative dat Us, to us
11 N-ze Locative loc On a box
12 N-tan Comitative com With us
13 N-ad Adverbial adv As/into a box
14 N-amde Terminative ter Till/until/before a box

Table 3.1: The list of the Georgian logical cases.

50

The proof that for each inflected form a logical case is involved is given below
with several examples of simple declarative sentences.

proof: A postpositional inflection is a logical case if there exists a verb predicate
which has a word form in its semantic argument structure derived by this post-
positional inflection. The following simple declarative sentences are built with
verb predicates which provide the evidence for the fourteen logical cases:

gzavnis(3)(N-i, N-s, N-tan)
k.ac-i švil-tan gzavn-i-s(3) c. eril-s
The man-nom is sending the letter-dat to the son/daughter-om
gaaba(4)(N-ma, N-i, N-idan, N-amde)
ḡob-idan saxl-amde bič. -ma tok. -i ga-a-b-a(4)

The boy-erg stretched the rope-nom from the fence-abl1 till the tree-ter
ešinia(2)(N-s, N-is)
k.urdḡel-s ešin-i-a(2) mgl-is
The rabbit-dat is afraid of the wolf-gen
moixibla(2)(N-i, N-it)
kac-i kal-it mo-i-xibl-a(2)

The man-nom was charmed by the woman-ins
čavarda(2)(N-i, N-ši)
burt-i qut-ši ča12-vard-a(2)

The ball-nom fall in the box-ine
davarda(2)(N-i, N-ze)
burt-i magida-zi da13-vard-a(2)

The ball-nom fall on the table-lo
šetrialda(2)(N-i, N-isk. en)
kac-i saxl-isk.en še-triald-a(2)

The man-nom turned towards the house-ori
gadmoiḡo(3)(N-ma, N-i, N-isgan)
bavšv-ma čvev-eb-i mšobl-eb-isgan gadmo-iḡ-o(3)

The child-erg inherited the habits from the parents-abl2
gadaakcia(3)(N-ma, N-i, N-ad)
ǩocna-m baqaq-i p. rinc-ad gada-akc-i-a(3)

The kiss-erg transformed the frog-nom into the the princes-adv
miucia(3)(N-s, N-i, N-stvis)
deda-s vašl-i bavšvis-tvis mi-u-c-i-a(3)

The mother-dat has given the apple-nom to the baby-ben
It is very likely that the complete list of the logical cases is represented only by
these fourteen logical cases. In order to discover a new logical case, one has to
find a Georgian verb whose semantic argument structure will have a word form
not marked by the above-mentioned cases.

Note that the number of logical cases is twice greater than the number of

12The preverb adds the semantics about the target of the falling process to the verb ‘to fall’.
13The preverb adds the semantics about the target of the falling process to the verb ‘to fall’.

51

traditional cases in Georgian.
It is worthwhile to mention that two cases used in the traditional Georgian

grammar (namely, vocative and genitive14) are not present in the list of logical
cases. They are rejected for a simple reason – it is not possible to find a simple
declarative sentence whose argument will be in vocative or in the traditional
genitive case. Moreover, in contrast to the traditional Georgian cases, logical
cases are qualified by the well-defined criteria based on the lexical semantics
of the word. With the help of the criteria, it is possible to determine if some
inflection of the noun is a logical case or not.

14The traditional genitive case is different from the logical genitive case. The difference will
be revealed in one of the declension paradigms which we will discuss later.

52

3.2 Getting started with

an HPSG-based grammar for Georgian

We start with modeling the syntax of simple declarative sentences in HPSG frame-
work. First, we model the simple sentence with the noun arguments and then we
extend it to the pronoun arguments. While the verb encodes the polypersonal
information, we structure the lexical entry of the verb in such way to distinguish
implicit and explicit arguments. This structuring allows an easy discovery for the
verb saturation.

3.2.1 Complementation of verbs with nouns

The above theory about the Georgian simple declarative sentences, declarative
verbs and logical cases represents the fundamentals of the formal grammar we
are going to build for Georgian. We start building the grammar by modeling the
core part of simple declarative1 sentences. More precisely, the formal grammar
will license only sentences which correspond to declarative verbal predicates with
(partially or fully) complemented2 semantic argument structures.

The lexicon of the initial grammar contains only verb forms and noun forms.
The grammar will license not only sentences such as (1), corresponding to ful-
ly complemented verb predicates, but also sentences corresponding to partially
complemented verbal predicates such as (6),

(6) k.ac-i gzavn-i-s(3) c. eril-s
Man-nom 3sing-send-prs-ind-ipfv-3 letter-dat
The man is sending the letter

where the addressee of the latter is not syntactically realized in the sentence.3

In the initial grammar, nouns include information about their logical case
(henceforth simply “case”4), number and person categories, where the person
category is always 3rd person.5 The verbs carry information about their corre-
sponding linguistic predicates, namely, the arity and the case category for each
argument slot. The information will be encoded as a list value of the valency
feature. This feature is also appropriate to nouns and its value is the empty list.
Moreover, we add information about the number and person categories to each
argument slot as the verb agrees with the noun in number and person.

The information about both word classes will be traditionally encoded in the
head feature of the syntactic category of the word and phrase types. Fig. 3.1
shows the main part of signature of the grammar. We assume that the most
general type of the type hierarchy is bot (to be consistent with the bot type

1As we are mostly dealing with simple declarative sentences and declarative verbs, we often
skip the word declarative while talking about them.

2Meaning that the argument slots of the verbal predicate are filled by some noun phrases
3In the formal grammar, we will be able to distinguish sentences corresponding to a verbal

predicate with a partially and fully complemented semantic argument structure.
4Under “case”, we do not mean those traditional seven cases any more, but the logical cases

of (Pkhakadze, 2005)
5We introduce the grammatical category of person as we have intend to include pronouns

in next versions of the grammar.

53

assumed in trale).

bot

list

ne list
hd bot

tl list

e list

head

noun

case case
num num
pers per3

verb

cat
head head

val list

sign

phon list
cat cat
h init bool

[

word
h init plus

]

phrase
head dtr sign

nonh dtr sign
dtrs list

Figure 3.1: The first part of the signature of the initial grammar of Georgian

The list type represents the general list – a list of bots. Details of the boolean
type are depicted in Fig.3.2. The type stands for the boolean value and is directly
subsumed by bot. The h init feature has the boolean value. It serves to specify
whether the leftmost daughter of the phrase is its head daughter or not. For the
word type the value of the feature is maximally specified (i.e., resolved) to plus,
assuming that each word is head initial (i.e., headed).6 The num type stands
for the number category. The case type is a type for logical cases and has all
fourteen logical cases as its immediate subtypes.

bot

bool

minusplusnom, ins, . . . , adv, ter

casenum

plursing

per3

Figure 3.2: The second part of the signature of the initial grammar of Georgian

The sample lexical entries for the noun and the verb word classes are given in
Fig.3.3 and Fig.3.4, respectively. The AVMs are labeled at the top with English
translations. Other analytic information about the entry can be read from the
AVMs.

The valency of the verb represents a list of cats7 as the verb itself does not
encode the information about the phonology of its arguments, but their syntactic
and semantic properties. Note that the AVM corresponding to ‘sends’ is not type-
resolved (the last two num features are not specified) because, in Georgian, the
verb gzavn-i-s can be used with one or several sent and sendee entities; but in the

6The h init feature is appropriate to word for the technical reasons – to avoid the unary
phrase structure rules from words to phrases.

7Note that in the signature we just typed the val feature with the general list type.

54

[Man]

word
phon 〈kaci〉

cat

cat

head

noun

case nom
num sing
pers per3

val 〈〉

h init plus

Figure 3.3: A lexical entries for ‘man’ in initial grammar

complete context the AVM will be typed-resolved. If the AVM of some linguistic
expression is not type-resolved it can be viewed as a underspecified representation
of some linguistic expressions.

[Sends]

word
phon 〈gzavnis〉

cat

cat
head verb

val

〈

cat

head

noun

case nom
num sing
pers per3

val 〈〉

,

cat

head

noun

case dat
num num
pers per3

val 〈〉

,

cat

head

noun

case com
num num
pers per3

val 〈〉

〉

h init plus

Figure 3.4: A lexical entry for ‘sends’ in initial grammar

In order to build grammatical phrases from lexical entries, we need to intro-
duce phrase structure rules – to combine lexical entries and phrases into larger
phrases, and principles – to license all and only grammatical expressions by con-
straining lexical entries and generated phrases.

In the HPSG theory, grammar principles and phrase structure rules (and also
lexical entries) have the same format – all are expressed as constraints on relevant
types or structures, usually in the shape of logical implications. Constraints
corresponding to PS rules are called phrase schemata and are usually encoded as
a disjunction with the type phrase as the antecedent; while, in trale, principles
and phrase structure rules have different formats and functions. As our aim is to
implement an HPSG grammar for Georgian, we will write principles and rules in
the trale format. This will keep the grammar theory and its implementation
close to each other and make it easy for the reader to understand.

In the initial version of the grammar, we use two phrase structure rules: Head-
Initial Phrase (HIP) rule and Head-Final Phrase (HFP) rule. The AVM repre-
sentation of the rules are given in Fig. 3.5 and Fig.3.6, respectively. Note that we
use two types of arrows: thin arrows for phrase structure rules, and thick arrows
for logical implications.

The rules simply says that the head expression should try to form the phrase
first with all its right adjacent expressions and then with the left ones.

55

phrase

h init plus
head dtr 0

nonh dtr 1

−→ 0
[

h init plus
]

1

Figure 3.5: The preliminary version of Head-Initial Phrase Rule

phrase

h init minus
head dtr 0

nonh dtr 1

−→ 1 0

Figure 3.6: The preliminary version of Head-Final Phrase Rule

Along with the HIP and HFP rules, the initial grammar contains two princi-
ples: Head-Feature Principle (Fig.3.7) and Valency Principle (Fig.3.8).

[

phrase
]

=⇒
[

cat|head 0

head dtr|cat|head 0

]

Figure 3.7: Head-Feature Principle

In Valency Principle, ⊖ stands for the deletion operation. It operates on the
non-empty list L and some type t and L ⊖ t returns the list R different from L
only in t. Note that the operation is defined if t is in L, otherwise it is undefined.
Moreover, the operation can return several results if there are several ts in L.

[

phrase
]

=⇒

cat|val 1 ⊖ 0

head dtr|cat|val 1

nonh dtr|cat 0

Figure 3.8: Valency Principle

Below we give the implementation of ⊖ operation as a functional description del

in trale (List.3.1). trale’s functional notation del(Y,X)=Z corresponds to the
infix notation X ⊖ Y = Z of the delete operation, where the del function is
directly defined by the del/3 predicate. In the implementation, we use delayed
version of the deletion operation. Which means that when/2 delays execution un-
til some event is witnessed. After the condition is satisfied, it calls the procedures
defined in the second position. For more details about when/2 and its usage we
refer the reader to (Penn & Abdolhosseini, 2003a, pp. 44).

To demonstrate how the initial grammar works, let us consider the simple
sentence (7).

(7) student-i k. itx-ul-ob-s c. ign-s
Student-nom read-prs-ind-ipfv-3-sing-3 book-dat
The student reads the book

Our grammar licenses (7), and gives the following AVM parse tree8 for it (Fig.3.9).

8In general, there is no need for the parse tree to represent the final unification, since the
unification is an information combining operator and the final unification contains all necessary
information about the sentence structure; but the parse tree with AVMs as nodes is often used
for its visual power.

56

Listing 3.1: The functional description Delete

fun de l (+ ,+ ,−).
de l (X,Y,Z) i f

when ((Y=n e l i s t ;
Z=(e l i s t ; n e l i s t)) ,

unde layed de l (X,Y, Z)) .

unde layed de l (El , (hd : El , t l : L) ,L) i f true .
unde layed de l (El , (hd :H, t l :T1) , (hd :H, t l :T2)) i f

de l (El ,T1 ,T2) .

Note that according to HIP and HFP rules [Reads]9 first combines with [Book]
and then with [Student] and, at the same time, these combinations are licensed
by Valency and HF principles.
The current grammar also licenses the free word order among the verb and its
arguments (i.e., complements). We will call the current version of the Georgian
grammar geogram1. The source code of the grammar is attached to the thesis
as appendix A.

3.2.2 Verb complementation – polypersonal agreement

In the current section we are going to introduce the pronouns and the verb forms
encoding polypersonal agreement – rich information on several arguments at the
same time. Also, we will add the information about tense to the verb signs.

Before we started modifying the grammar, let us discuss the polypersonal
property of the verbs once again. In previous grammar, the verb simply had the
nouns in its argument structure and encoded the information about their case,
number and person (always specified as per3) features. Now some verbs have to
assign different person features to the arguments. Let us see on examples how
the verbs does this.

In (8), the verb corresponding to a unary predicate marks its single argument
with the first person.

(8) v-arseb-ob
1sing-exist-prs-ind-ipfv
I exist

Note that the semantics of (8) remains the same if the argument (i.e., the first
person pronoun) of the verb is syntactically realized. In (9), the verb encodes
the person features (and the number features too) for both arguments and the
syntactic realization of the arguments is optional. This is also an example that a
single verb form can represent a simple sentence.

(9) g-xat.-av
2sing-draw-prs-ind-ipfv-1sing
I am drawing you

9As a shorthand notation, we denote the AVM of some phrase by [some, phrase].

57

[Student]

9

word
phon 〈 10 studenti〉

cat 1

cat

head

noun
case nom
num sing
pers per3

val 〈〉

h init plus

[Reads]

4

word
phon 〈 6 kithxulobs〉

cat

cat
head 0 verb

val
〈

1 , 3
〉

h init plus

[Book]

5

word
phon 〈 7 tcigns〉

cat 3

cat

head

noun
case dat
num sing

pers per3

val 〈〉

h init plus

[Reads, book]

8

phrase

phon
〈

6 , 7
〉

cat

cat

head 0

val
〈

1
〉

dtrs
〈

4 , 5
〉

h init plus
head dtr 4

nonh dtr 5

[Student, reads, book]

phrase

phon
〈

10 , 6 , 7
〉

cat

cat
head 0

val 〈〉

dtrs
〈

9 , 8
〉

h init minus
head dtr 8

nonh dtr 9

Figure 3.9: the AVM parse tree for the simple sentence

The verb in (10), encodes person features for all its arguments, but the number
feature for the agent argument. Hence, the number feature for arguments except
the agent can be specified by syntactic realizations of the arguments, e.g. (11).

(10) v-u-xat.-av
1sing-3-draw-prs-ind-ipfv-3
I am drawing it for her

Note that the theme of the action ‘draw’ is not marked (namely, its person feature)
explicitly in the morphology of the verb, but it has no choice to have other than
the third person feature, since encoding the person features except third person
is done by different verb forms, e.g. (9) where the theme argument of ‘draw’ is
the 2nd person.

(11) vašl-s
Apple-dat

v-u-xat.-av
1sing-3-draw-prs-ind-ipfv-3

58

I am drawing the apple for her

Moreover, there are no verb forms in Georgian encoding the information (12) in
its morphology. To express events like these, some arguments (not specified by
the verb form) have to be syntactically realized as it is exemplified in (13).10

(12) *1sing-1/2-draw-prs-ind-ipfv-3
I am drawing myself/you for her

(13) v-u-xat.-av
1sing-3-draw-prs-ind-ipfv-3

čem-s/šen-s
my/your-dat

tav-s
head-dat

I am drawing myself/you for her

We will call the arguments, which the verb provides with the person feature, the
explicit arguments.11

Now let us see the verbs which do not encode any person feature information
for some arguments. (14) exemplifies such a kind of verb form.

(14) m-ešin-ia
1-sing-afraid-of-prs-ind-ipfv

šen-i
you-gen

I am afraid of you

The following grammatical sentence (15), shows that the verb ‘afraid of’ does not
provide its second argument with the person feature (but does provide it with
the case). There are several kinds of such verbs.

(15) m-ešin-i-a
1-sing-afraid-of-prs-ind-ipfv

mgl-is
wolf-gen

I am afraid of a wolf

We call such kind of arguments the implicit arguments. Moreover, we observe
that the features of implicit arguments of the verb remain constant in inflected
forms of the verb, e.g. (16)-(19).

(16) ešin-i-a
3sing-afraid-of-prs-ind-ipfv

šen-i/mgl-is
you/wolf-gen

She is afraid of a wolf

(17) ešin-o-d-a
3sing-afraid-of-

::::

pst-ind-ipfv
šen-i/mgl-is
you/wolf-gen

She was afraid of a wolf

(18) še-ešin-d-a
3sing-afraid-of-pst-ind-

::::

pfv
šen-i/mgl-is
you/wolf-gen

She got frightened of the wolf

(19) še-ešin-d-eb-a
3sing-afraid-of-

::::

fut-ind-ipfv
šen-i/mgl-is
you/wolf-gen

She will get frightened of the wolf

Therefore, the collection of implicit arguments can be viewed as a kind of vertical
generalization of lexical entries. In the grammar, we are going to distinguish

10Here we give just one of the sentences expressing this semantics.
11Although the number feature of an explicit argument can be left unspecified by the verb.

59

implicit arguments from explicit ones in verbal lexical entries. This will be useful
from the lexical and syntactic point of view.12

bot

head

npn

case case
num num
pers per

[

noun
pers per3

]

[

verb

tense tense

]

cat
head head

val val

[

sign
]

word

h init plus
arg st list

[

phrase
]

Figure 3.10: The first part of the updated signature

In order to introduce new categories in the grammar, we add some new types
to the signature of geogram1. The changes in the signature are depicted in
Fig. 3.10 and Fig. 3.11. We introduce npn to cover the nouns and pronouns.
npn has the feature pers unspecified, in contrast to its subtype noun. A new
feature tense of type tense is appropriate to verb, where tense has four subtypes
corresponding to the present (prs), past continuous (i.e., progressive) (psc), past
(pst) and future (fut) tenses.

bot

tense

futpstpscprs

val

list

frame
expl list
impl list

pers

per3per2per1

Figure 3.11: The second part of the updated signature

In order to structure the information about implicit and explicit arguments of
the verb, the type of the val feature is updated to val, which has two subtypes
frame and list (Fig. 3.11). The frame type is intended to structure the argument
structure of the verb into two lists – lists of explicit and implicit arguments. Note
that we keep the original argument structure in the feature arg st attached to
word. This will facilitate to talk about the semantic argument structure of the

12We believe that the difference between explicit and implicit arguments plays some role
in the phrase order of a sentence. However, we are not exploring phrase order in this work
(assuming that it is free), mainly due to the lack of resources necessary for research of this
kind.

60

verb.13 At this moment we simply consider other word classes than verbs to have
empty semantic argument structure.

We also update the theory of the grammar,14 namely, macros, functional
descriptions and principles. In Valency Principle we have to consider changes we
did in the valency structure of the verb. The revised version of Valency Principle
is given in Fig.3.12. Now the verb complement should complement one of the
‘slots’ either from the explicit or implicit list.

[

phrase
]

=⇒

cat|val

[

expl 1 ⊖ 0

impl 2

]

head dtr|cat|val

[

expl 1

impl 2

]

nonh dtr|cat 0

∨

cat|val

[

expl 1

impl 2 ⊖ 0

]

head dtr|cat|val

[

expl 1

impl 2

]

nonh dtr|cat 0

Figure 3.12: Revised Valency Principle

In the lexical entry of the verb, the semantic argument structure is defined in
terms of explicit and implicit argument structures. Namely, the value of arg st
is the list resulted by appending the list values of expl and impl (Fig.3.13).

word

phon
〈

gagigzavne
〉

arg st 0 ⊕ 1

cat

cat

head

[

verb

tense pst

]

val

frame

expl 0

〈

cat

head

npn

case erg

num sing

pers per1

val 〈〉

,

cat

head

npn

case dat

num sing

pers per2

val 〈〉

,

cat

head

npn

case nom

num num

pers per3

val 〈〉

〉

impl 1

〈

cat

head

npn

case com

num num

pers per3

val 〈〉

〉

Figure 3.13: A lexical entry for the verb form ga-g-i-gzavn-e (I-sent-it-for-you)

The append operator denoted by the symbol ⊕ takes two lists as the input and
returns the list consisting with the same elements in the same order as the input
lists. The functional description append is the implementation of the append ⊕
operator in trale (3.2).

13This approach is similar to the one in (Sag et al., 2003).
14As long we do not differentiate HPSG-based grammar and the implemented trale grammar

in the thesis, under the theory we mean all parts of the grammar except the signature, the
lexicon and the test suite.

61

Listing 3.2: The functional description Append

fun append (+ ,+ ,−).
append (X,Y, Z) i f

when ((X=(e l i s t ; n e l i s t) ;
Z=(e l i s t ; n e l i s t)) ,

undelayed append (X,Y,Z)) .

undelayed append (e l i s t , L , L) i f true .
undelayed append ((hd :H, t l :T1) , L , (hd :H, t l :T2)) i f

append (T1 , L , T2) .

In addition, we could also optimize the phrase structure rules but we leave
this for the next version of the grammar.15

To see how the grammar works, we show the AVM parse tree of the sentence
(20) in Fig. 3.14, where the branches are labeled by H denoting head daughters.
Note that the verbal semantic argument structure is completed with arguments,
in other words, the verb is saturated; though some arguments are not realized
in the sentence as overt constituents. The saturation of the verb can be checked
easily by checking whether the value of the impl feature is empty or not.

(20) ga-g-i-gzavn-e
1sing-2sing-3-send-pst-ind-pfv

c.eril-eb-i
letters-nom

st.udent.-eb-tan
students-com

I sent for you letters to students

We will refer to the current version of the grammar as geogram2. The source
code of geogram2 can be found in Appendix B.

15In the current grammar, any phrase is headed by the verb, so we could specify this infor-
mation in the phrase structure rules to make parsing more efficient.

62

[I-sent-it-for-you]

word

phon
〈

11

〉

arg st
〈

3 , 4 , 5 , 6

〉

cat

head 0

[

verb
tense pst

]

val

[

expl
〈

3 , 4 , 5

〉

impl
〈

6

〉

]

[Letters]

word

phon
〈

12

〉

arg st 8

cat 5

head

noun
case nom
num plur
pers per3

val 8 〈〉

H

[I-sent-it-for-you, letters]

phrase

phon
〈

11 , 12

〉

cat

head 0

val

[

expl
〈

3 , 4

〉

impl
〈

6

〉

]

[to-Students]

word

phon
〈

17

〉

arg st 13

cat 6

head

noun
case com
num plur
pers per3

val 13 〈〉

H

[I-sent-it-for-you, letters, to-students]

phrase
phon 〈 11 gagigzavne, 12 tcerilebi, 17 studentebthan〉

cat

head 0

val

expl

〈

3

head

npn
case erg
num sing
pers per1

val 〈〉

, 4

head

npn
case dat
num sing
pers per2

val 〈〉

〉

impl 〈〉

Figure 3.14: The AVM parse tree of the saturated sentence

3.3 The noun phrase –

Adjunction and complementation of the noun

In the previous section 3.2, we modeled the syntax of simple declarative sentences
– the verb complemented by nouns and pronouns, and implemented in the formal
grammar geogram2. In the current section, we extend our formal grammar by
modeling the syntax of noun phrases, hence make the grammar to parse simple
sentences with noun phrases.

We begin with modeling the adjunction of the noun. First, we model a noun
phrase consisting of attribute modifiers (i.e., adjectives) followed by the head
noun, then we deal with quantifiers and model quantified noun phrases. We finish
the part on adjuncts by modeling noun phrases with possessives (possessive nouns
and pronouns).

We start complementation of the noun by contrasting noun complements with
possessive nouns (i.e., several readings of some noun phrases vs. the alleged left-
branching). Then we model the complementation in the grammar. At the end of
the section, we present the implementation of the modified grammar.

3.3.1 Adjunction by adjectives and quantifiers

First, we show the similarity between adjectives and quantifiers while agreeing
with (but differently modifying) the head noun and then model the adjunction.

63

All these will be done according to the theory of (Pkhakadze, 2005).

Adjunction by adjectives

Like in (almost) all languages, in Georgian the adjective is also one of the common
adjuncts of the noun. Hence, it is natural to start modeling noun phrases with
nouns modified by adjectives. Note that in this part, we will talk about modifier
adjectives which should not be confused with nominalized adjectives – nouns
derived from adjectives which really behave as nouns in syntax.

In Georgian, the adjective agrees with the noun only in case.1 (Pkhakadze,
2005) defines four logical cases for the adjective, based on the logical cases for
nouns. We distinguish these two kinds of logical cases as adjunct logical cases
and argument logical cases,2 but in some unambiguous context we still refer to
them as logical cases or just cases. Adjunct logical cases are the inflections which
the adjective takes while declining the noun phrase (the adjective modifying the
head noun) according to argument logical cases. Simply saying, we call adjunct
logical cases to those inflections of adjuncts which are required for the agreement
with the noun marked by some argument logical case.

The list of adjunct cases3 along with the set of compatible argument cases are
given in Table 3.2.

Adjunct logical case Compatible argument logical cases

nom nom, ins, gen, ori, abl1, abl2, ben
erg erg
dat dat, ine, loc, com, adv, ter

cnst All argument logical cases

Table 3.2: The list of adjunct logical cases

Note that adjunct cases are divided into two groups, where the cnst4 case is
appropriate only to the adjective whose word form remains constant during de-
clension (hence, this is the only case it can have); the nom, erg and dat5 cases
are appropriate to the rest of adjectives – changing their word form during de-
clension.6

As in (almost) all languages, several adjectives can modify the same noun in
Georgian, but an adjective does not modify a pronoun.7

1Unlike in Slavic languages, where the adjective agrees with the noun in number and gender
categories too.

2As these cases are assigned to arguments of the verb predicate.
3The adjunct case system, differs from the one used in the traditional grammar in the

vocative case.
4It roughly corresponds to case A in (Pkhakadze, 2005), where case and POS are integrated

in the type A.
5They correspond to the cases of A-i, A-ma and A- in (Pkhakadze, 2005), respectively.
6Note that these two different kinds of adjectives are easily distinguished by their word form,

which agrees with the noun in the nominal case. Namely, if it ends with -i, then the adjective
has three word forms, otherwise it has a constant word form. We will revisit this issue when
we write lexical rules.

7More details about this issue are given in lexical rules section.

64

Adjunction by quantifiers

Quantifiers behave as adjuncts of the noun in the syntax, but they have a stronger
semantic impact than other adjuncts. Like adjectives, quantifiers also agree with
nouns in case. Moreover, their case inflection coincides with the one for adjectives
– as in adjectives, there are two kinds of quantifiers: where the word form either
remains constant, or changes during declension. Table 3.2 describes the agreement
between the case of the quantifier and the case of the head as well as between
that of the adjective and the head.

Unlike adjectives, quantifiers are sensitive to the number category of the head.
Namely, they cannot specify a plural noun, e.g. the noun phrase (21) is ungram-
matical.

(21) *qvela
All-cnst

student-eb-i
Students-nom

All students8

Like in English, in Georgian the order between the quantifiers, adjectives and
nouns in the noun phrase are described by the regular language Q?A*N – head
noun preceded by possibly zero or more number of adjectives prefixed with the
optional quantifier.

Revision of the formal grammar

For modeling adjunction of the noun, we introduce new types in the signature of
the grammar. First, we revise the case type (Fig. 3.15), we make it more general
to cover more than just argument logical case (arg c). Now it subsumes adjunct
logical case (adj c), where adj c’s subtypes correspond to the adjunct cases of
Table 3.2. The subtypes of arg c are organized according to Table 3.2 that makes
it easy to capture the agreement between nom c, erg c, dat c and case i, erg,
case , respectively.9

case

arg c

dat, . . . , ter

caseerg

nom, . . . , ben

case i

adj c

cnstn cnst

dat cerg cnom c

Figure 3.15: case type and its subtypes

We also add the adjective type (adj) and the quantifier type (qnt) with other
subtypes to head (Fig. 3.16). Note that adjunct has an appropriate feature mod,

8Unlike in English.
9There could be a more compact way of organizing the case type hierarchy – identifying

n cnst with arg c and their agreed immediate subtypes, and adj c with case. But this solution
would give fourteen type-resolved TFSs for the adjective in cnst case, even though it is a
single linguistic object. This will be the case for the possessive nouns as you will see in the
later sections.

65

which will include the information about the modified category in the ne list type.
In Georgian, agreement between the adjunct and the head is restricted to case,
hence there is no need of appropriating a special agreement feature (commonly,
agr) for the head type.

head

[

nominal

case case

]

npn

case case
num num

pers per

[

noun

pers per3

]

adjunct

case adj c
mod ne list

qnt

[

qnt

case cnst

][

qnt i

case n cnst

]

adj

[

adj

case cnst

][

adj i

case n cnst

]

[

verb
tense tense

]

Figure 3.16: head type and its subtypes

The maximal type having the case feature of type case is nominal. The adjunct
and npn subtypes partition the head of a noun phrase and its possible adjuncts
and assign different types for the case feature. The subtypes of adjunct encode
the information about adjectival and quantifier adjuncts and their subtypes with
the appropriate types for the case feature.

Some changes affect also the valency type (val). Namely, we add a new
subtype spec with the spec feature of type bool. The value of spec will denote
whether the noun phrase is quantified or not. Using the information from spec
the grammar does not licenses any adjunction (by the quantifier or adjective) of
already quantified noun.

phrase

h init minus
cat|val|spec 5

head dtr 0

nonh dtr 1

−→ 1

word

cat|head 3

adjunct

case 7

mod
〈

4
〉

0

cat 4

head

[

noun

case 6

]

val|spec minus

where, if 3 = adj then 5 = minus, otherwise plus, and 7 is compatible with 6

Figure 3.17: The preliminary version of AdjN Rule

In the theory of the grammar, we introduce a new phrase structure rule –
adjunct-noun (AdjN) rule (Fig. 3.17). The rule licenses a phrase consisting of
an adjunct word followed by an unspecified10 head noun, such that the case of
the adjunct has to be compatible (in the sense of Table 3.2) with the case of its
modified category and the modified category of the adjunct should be consistent
with the category of the noun. The value of spec of the licensed phrase depends

10This prevents the ungrammatical combinations like the adjective or the quantifier preceding
the quantified head noun.

66

on the adjunct type. In the lexicon, the spec feature of the pronouns is specified
to plus, in order to avoid their adjunction by an adjective or quantifier.

phrase
h init plus
head dtr 0

nonh dtr 1

−→ 0

[

cat|head verb
h init plus

]

1

Figure 3.18: Verb-Initial Phrase Rule (revised Head-Initial Phrase Rule)

Since free word order is only between the arguments of the verb, we modify the
HIP and HFP rules and make them specific for the verb.11 Namely we revise and
rename the rules as Verb-Initial Phrase and Verb-Final Phrase rules (Fig. 3.18
and Fig. 3.19), respectively.

phrase
h init minus
head dtr 0

nonh dtr 1

−→ 1 0
[

cat|head verb
]

Figure 3.19: Verb-Final Phrase Rule (revised Head-Final Phrase Rule)

Moreover, we revise and rename the Valency Principle as the Verb Valency
Principle as the consequent of the principle is satisfied only by the verb phrase
(Fig. 3.20).

[

phrase
cat|head verb

]

=⇒

cat|val

[

expl 1 ⊖ 0

impl 2

]

head dtr|cat|val

[

expl 1

impl 2

]

nonh dtr|cat 0

∨

cat|val

[

expl 1

impl 2 ⊖ 0

]

head dtr|cat|val

[

expl 1

impl 2

]

nonh dtr|cat 0

Figure 3.20: Verb Valency Principle (revised Valency Principle)

The current version of our grammar can license verbs complemented with
pronouns and noun phrases – some adjuncts (adjectives and quantifiers) followed
by a head noun. To demonstrate how the current formal grammar works, we
parse the sentence (22) and give its simplified AVM parse tree in Fig. 3.21.

(22) qvela
All-cnst

c. eril-i
letter-nom

ga-g-i-gzavn-e
1sing-2sing-3-send-pst-ind-pfv

bejit
diligent-dat

st.udent.-eb-tan
students-com
I sent all letters to diligent students for you

3.3.2 Possessive nouns and pronouns

We continue modeling the adjunction of the noun – specifying the head noun by
possessives. We start with contrasting the logical genitive and the traditional

11We also make the parser more efficient this way.

67

[all]
[

cat|head|mod
〈

1
〉

]

[letter]
[

cat 1
]

H

[All letters]
[

cat 9
]

[I-sent-it-for-you]

arg st
〈

7 , 8 , 9 , 14
〉

cat|val

[

expl
〈

7 , 8 , 9
〉

impl
〈

14
〉

]

[diligent]
[

cat|head|mod
〈

16
〉

]

[to-students]
[

cat 16
]

H

[to diligent students]
[

cat 14
]

H

[I sent it to diligent students for you]
[

cat|val

[

expl
〈

7 , 8 , 9
〉

impl 〈〉

]

]

H

[I sent all letters to diligent students for you]
[

cat|val

[

expl
〈

7 , 8
〉

impl 〈〉

]

]

Figure 3.21: The AVM parse tree of the sentence (22)

genitive cases, then introduce a new case – possessive case to model the pos-
sessive noun. After analyzing how the possessive noun specifies the head, we
introduce the degrees of specification and describe its change during all gram-
matical adjunctions. At the end, we do the same analysis for possessive pronouns
and according to it, extend the degrees of specification.

Possessive nouns

In general, possessive nouns are nouns marked with either the genitive or the pos-
sessive case (depending on the language). They are used to express the possessive
relation between concepts.

According to the traditional Georgian grammar the possessive noun is marked
by the genitive case and there is no possessive case in Georgian. One of the results
of (Abzianidze, 2008) was showing the difference between the logical genitive and
the traditional genitive case.12 While modeling the syntax of Georgian, we go
further and state that there are both possessive and genitive cases in Georgian,
and the former is used to mark the possessive nouns and the latter corresponds
to the logical genitive case (N-is, according to (Pkhakadze, 2005)). As we showed
in Section 3.1.2, the genitive case (as we analyzed the inflection of the word form
N-is) is a logical case. For most nouns, the word form marked by the possessive
case is phonologically identical to the one marked by the genitive case. But for
example, the noun gogo ‘girl’ distinguishes these two word forms. In (23), the

12Originally, the difference between logical case N-is and the traditional genitive case.

68

word form gogo-si corresponds to the (logical) genitive case (since the word form
represents an implicit argument of the verbal predicate).

(23) m-erid-eb-a
1sing-shy-of

gogo-
::

si
:

girl-gen
I am shy of a girl

The possessive form of ‘girl’ is given in (24). The nouns which distinguish these
two inflections are the nouns ending with -u or -o in nominative, or representing
the proper names (e.g. human names).

(24) gogo-
:

s
:

girl-poss
c. ign-i
book-nom

The girl’s book

The different word forms for these syntactically and semantically different roles
make us distinguish possessive and genitive cases.

In our formal grammar, we mark possessive nouns by possessive case and
the case is different from the logical (i.e., argument) cases. While the noun
representing an entity being possessed declines according to the logical cases,
the noun in the possessive case does not change its word form (i.e., stays in
possessive case). By this kind of behavior, possessive nouns resemble adjectives
and quantifiers, whose form also remains constant during the declension of the
modified head. Hence, from the point of agreement, the noun in possessive agrees
with the noun in all logical cases. There is nothing more than this agreement
between the possessive and the possessed nouns.

Possessive nouns specify the head differently than quantifiers and adjectives.
Namely, they can modify a noun phrase consisting of adjectives and quantifiers
and followed by the noun (i.e., noun phrases which are licensed by the current
version of the formal grammar) as in (25).

(25) gogo-s
girl-poss

qvela
all-cnst

lamaz-i
beautiful-nom

surat-i
picture-nom

The girl’s all beautiful pictures

But after the possession of the noun phrase is expressed – the noun phrase is
modified by the possessive noun, the head of the noun phrase is not accessible
(for agreement) to adjectives and quantifiers any more, as exemplified in (26).

(26) *lamaz-ma
Beautiful-erg

kal-is
woman-poss

mankana-m
car-erg

Woman’s beautiful car

There are two options to fix (26). One option is that the adjective modifies
the possessive noun and results in a possessive noun phrase (27). Note that the
adjectival and quantifier adjuncts have to be marked by the nominative case to
modify the possessive noun (i.e., the possessive noun behaves as if it was marked
by nominative in adjunction).

(27) lamaz-i
Beautiful-nom

kal-is
woman-poss

mankana-m
car-erg

69

(Beautiful woman’s) car

Another option is to swap the possessive noun and the adjunct (28). Note that
the semantics of these two grammatical phrases is different and the syntactic
structures (shown by grouping) are also different.

(28) kal-is
Woman-poss

lamaz-ma
beautiful-erg

mankana-m
car-erg

Woman’s (beautiful car)

Also the possessed head is not accessible to the other possessive noun. Though
the sentence remains grammatical (as the possessive noun modifies the posses-
sive noun), syntactic structure (and semantics) of the phrase is different as the
possession does not apply to the head, but to its possessive modifier (29).

(29) p. rezident.-is
President-poss

kal-is
woman-poss

mankana
car-nom

(President’s woman’s) car

To model the noun phrases correctly, the simple boolean value (as it is the
type of spec feature of the noun category) is not sufficient any more to express
the specification degree (i.e., status) of the head. In Table 3.3, we express how
adjectives, quantifiers and possessive nouns change the different specification de-
grees of the head.

Type of adjunct Spec-value of head Resulting spec-value

Adjective unspecified → attributed
Adjective attributed → attributed
Quantifier unspecified → quantified
Quantifier attributed → quantified
Poss. noun unspecified → possessed
Poss. noun attributed → possessed
Poss. noun quantified → possessed

Table 3.3: Possible specification values for the head noun

Each row of Table 3.3 describes all grammatical adjunction processes of the
head noun, modified by adjectives, quantifiers and possessive nouns. E.g., if the
quantifier adjunct modifies the unspecified13 or attributed head noun, then the
head’s specification value becomes ‘quantified’. Adjunction – quantifier modifying
the possessed head noun – is not presented in the table as it is grammatically
impossible (as exemplified in (29)).

The rules of specification change (Table 3.3) play a key role in the determi-
nation of grammatical adjunctions in the noun phrase. We will add more rules
to these above after discussing possessive pronouns.

13This specification value is for the noun lexical entries – noun categories which are not
modified.

70

Possessive pronouns

Possessive pronouns have almost the same syntactic and semantic functions as
possessive nouns do. In contrast to possessive nouns, they encode the information
about the category of person and agree with the modified head in case. They
also reveal the richer nature of the specifying function than the possessive nouns
do. We will discuss all these points below.

The possessive pronoun has the person, number and case categories. It agrees
with the head in case like the adjective and the quantifier do (having three logical
cases as shown in Table 3.2, section 3.3.1). Note that the genitive word form of the
pronoun should not be confused with the nominative word form on the possessive
pronoun. Though they are phonologically the same, they reveal syntactic and
semantic functions different from those of nouns.

Unlike the possessive noun, the possessive pronoun can modify the head along
with the quantifier. Moreover, both orders are permissible in the noun phrase, as
shown in (30) and (31).

(30) čem-ma
My-erg

or-ma
two-erg

megobar-ma
friend-erg

My two friends

(31) or-ma
Two-erg

čem-ma
my-erg

megobar-ma
friend-erg

Two friends of mine

Taking into account the effect of the possessive pronouns on the specification
value of the head, we update Table 3.3 to Table 3.4. Note that the adjective is a
‘mild’ specifier according to other adjuncts – after an adjective it is still possible
to specify the head by other adjuncts.

Type of adjunct Spec-value of head Resulting spec-value

Adjective unspecified → attributed
Adjective attributed → attributed
Quantifier unspecified → quantified
Quantifier attributed → quantified
Quantifier pro. possessed → poss+quant
Poss. noun unspecified → noun possessed
Poss. noun attributed → noun possessed
Poss. noun quantified → noun possessed
Poss. pron. unspecified → pro. possessed
Poss. pron. attributed → pro. possessed
Poss. pron. quantified → poss+quant

Table 3.4: Possible specification values for the head noun

The rules given in Table 3.4 will be used in the formal grammar and in its
implementations. Based on this rules we will license all and only grammatical
noun phrases.

71

3.3.3 Noun complementation and

several readings of noun phrases

We begin with revealing the complementation relation, different from possession,
between the head noun and noun in possessive. Then we see how the complemen-
tation of the noun causes several syntactic (and semantic) readings in some noun
phrases, in contrast to the alleged left-branching readings. We analyze conditions
when the noun complementation is possible and how it affects the specification
of the head. At the end, making some conclusions about the semantics of com-
plement nouns.

Adjunct nouns vs complement nouns in noun phrases

In the previous section we discussed possessives – possessive nouns and possessive
pronouns, and analyzed the possessive relation between the noun in possessive
and the head noun. Here, we are going to show another kind of relation, different
from the possessive relation. Note that we use the expression – noun in possessive
– to refer to the noun which is marked by the possessive case and is not necessarily
the possessive noun – the noun syntactically serving as the adjunct (namely, as
the determiner).

Let us consider the example below (32).14 Based on the analysis done in
Section 3.3.2, we can describe (32) as a noun phrase consisting of a head and an
adjunct – a quantifier followed by a possessive noun.

(32) qvela
All-cnst

k.utx-is
region-poss

mbrǰanebel-i
lord-nom

The lord of all regions

But there is also a different syntactic (and semantic) reading of the phrase, where
the quantifier is applied to the head of the phrase rather than to the possessive
noun (33).15 This reading talks about all lords of a region (33).

(33) qvela
All-cnst

k.utx-is
region-poss

mbrǰanebel-i
lord-nom

All lords of a region

This kind of reading is more obvious in the example (34). Where nobody will
interpret (34) as a governor of all sates (opposed to the reading of (32)).

(34) qvela
All-cnst

št.at.-is
state-poss

gubernat.or-i
governor-nom

All state governors

Syntactic structures of these two readings are given in Fig. 3.22, where only the
reading of (32) has the left-branching structure.

14By the way, the phrase is very popular in Georgian tales and history and refers to the lord
of all areas/regions of some country.

15Analyzing the semantics of (33) and considering the two semantic readings – lords of the
same region (i.e., the existential quantifier with ‘wide’ scope) or lords of some regions (i.e., the
universal quantifier with ‘wide’ scope), is beyond this thesis.

72

NP

mbrǰanebeliNPposs

k.utxisqvela

NP

NP

mbrǰanebelik. utxis

qvela

(32) (33)

Figure 3.22: Two syntactic readings of the noun phrase

The reason for these two syntactic (and semantic) readings of the noun phrase
is that there can be two kinds of syntactic relations between the noun in the pos-
sessive case and the head noun, namely a possessive relation – where the adjunct
is a possessive noun and serves as a determiner and, a complement relation –
where the noun in possessive is the complement (as opposed to the adjunct).
The possessive relation expresses the possession of one entity by another, but the
complement relation corresponds to the generic relation – complement relation,
rather than just possession.

To make a rough parallel with English, English noun-modifying adjectives
correspond to Georgian nouns in the possessive case establishing the complement
relation with the head noun. To illustrate the point, let us consider (35), repre-
senting one of two reading of the surface structure in Georgian. The reading is
specified by the parenthesis expressing the tree structure of the phrase. In the
example, the noun in possessive (avt.obus-is) is a complement of the head noun
(gačereba) and the complement does not refer to the particular bus but to any
bus (semantically, a variable defined over the domain of buses). This relation in
English is done by, so-called, noun modifiers (namely, by bus).

(35) qvela
All-cnst

(avt.obus-is
bus-poss

gačereba)
stop-nom

All bus stops

The second reading of the sentence is exemplified in (36)– talking about the
particular stop where all buses stop. This kind of concept is expressed in different
way in English, but in Georgian, the noun16 in possessive also does it.

(36) (qvela
All-cnst

avt.obus-is)
bus-poss

gačereba
stop-nom

The stop of all buses

These two different functionalities – complementation and adjunction (namely,
determination), expressed by the same word form – the word form of the noun
marked by the possessive case, causes several syntactic (and semantic) readings
of noun phrases. This phenomenon is easily resolved in human communication
by taking into account the context of the communication.

Note that if we first quantify the head in (36), then we get (37) which refers
to the different concept than (35) and (36).

16For shorthand, we refer to the noun phrase with its head marked in possessive as the noun
in possessive.

73

(37) avt.obus-is
Bus-poss

qvela
all-cnst

gačereba
stop-nom

All stops of the bus

Also there are no two readings any more and the noun in possessive behaves as the
determiner – all stops are the stops of the particular bus (semantically, a constant
form the domain of buses, in contrast to the different nature of the same word
in (35)). We can conclude from this example that the head after quantification
loses its ability to take complements.

To conclude, we discovered another syntactic behavior of the noun marked by
the possessive case. Namely, except being the adjunct of the head, it can also
serve as a complement to the same head. These two roles cause several readings
of the surface structure, opposed to the alleged left-branching structures which
is specific only for the adjunct (namely, the determiner) nature. Moreover, these
functionally different behaviors have different semantics. The complement noun
is understood as a variable (i.e., a universal constant) over the domain of entities
expressed by the noun and the determiner noun is a constant entity from this
domain. The latter statement is another evidence of semantic diversity of the
Georgian noun declared in (Pkhakadze, 2008b) and (Pkhakadze, 2009a).

Noun complementation

After discovering the new kind of syntactic relation between the noun marked by
the possessive case and the head noun, we have to find out how the complement
noun changes the head category and in which syntactic constructions the noun
complementation is possible.

After some analysis of the noun phrases, we find that the complement does
not affect the specification value of the head. This property is exemplified in (38),
where both phrases – with or without the complement (enclosed in parenthesis)
of the head – are grammatical.

(38) qvela
All-nom

gabrazebul-i
angry-nom

(št.at.-is)
(state-poss)

gubernat.or-i
governor-nom

All angry (state) governors

The complementation did not change the specification value of the head, but
what are the admissible specification values for the head that it can take comple-
ments? The answer to the question is that the complementation of the head is
possible only if the head is unspecified, otherwise the relation between the noun
in possessive and the head will have the possessive nature. In (39), we show a
noun phrase consisting of a noun in possessive followed by a specified head.

(39) (qvela)
(All-nom)

št.at.-is
state-poss

gabrazebul-i
angry-nom

gubernat.or-i
governor-nom

The angry governor of (all states) a state

Without any other details it is difficult to detect the type of the relation between
the noun in possessive (št.at.) and head (gubernat.or-i). After we quantify the
noun phrase by ‘all’, it does not quantify the head of the phrase but the noun
in possessive. This shows that before the quantification there was a possessive

74

relation in the noun phrase and it made the head inaccessible for the quantification
(see Table 3.4). Therefore the early ‘mild’ specification (namely, by the adjective)
forbids further complementation of the head. Like adjectives, specification by
other adjuncts also prevents the complementation. The example for the quantifier
‘blocking’ the noun complementation is given in (37), where due to ‘blocking’ the
surface structure is unambiguous.

Another issue that needs to be analyzed is – what kind of noun or noun phrase
can be the noun complement? Note that answering such kind of questions is not
easy and requires empirical checking on deeply annotated data. Despite this, after
some analysis we ensure that the noun complement can be specified as attributed
or quantified.17 The corresponding examples in the same order are given in (40)
and (41), where the complements are enclosed by parentheses.

(40) (p. ersonalur-i
(Personal-nom

k.omp. iut.er-is)
computer-poss)

nac. il-i
part-nom

A part (of the personal computer)

(41) ((xut-i
(Five-nom

švil-is)
son/daughter-poss)

deda
mother-nom

A mother (of five sons/daughters)

Although the lack of resources for Georgian does not allow us to make further
substantial statements about noun complements, we will encode the information
about complements in lexical entries, therefore the grammar theory will not be
affected by this lacuna.

At the end, we want to emphasize that there is no related study of Georgian
noun phrases and noun complementation known to us. The researches done on
the complementation in Georgian were more oriented on the complementation of
the verb than the noun, like (Vamling, 1989).

3.3.4 The grammar and its implementation

We begin modeling the syntax of noun phrases in the grammar based on the
analysis done in the previous sections. While revising the formal grammar, at
some technical points we give the source code of its implementation. In the
end, we present the complete code of the implemented trale grammar and
demonstrate its parsing power.

Signature

We make changes in the signature after introducing possessive nouns and pro-
nouns. Note that both share some features with adjuncts, nouns and pronouns.
Hence, we organize the hierarchy in such a way that possessives inherit appro-
priate features from these categories. The revised nominal type of the signature
with its subtype hierarchy is given in Fig. 3.23 (as a reminder, nominal is the
direct subtype of head along with verb).

17Not all kind of quantifications are available. E.g. the universal quantification makes the
head unusable for complementation, since the complement noun should be interpreted as a
universal constant over the domain expressed by the head.

75

[

nominal
case case

]

npn
num num
pers per

[

arg npn
case arg c

]

[

arg noun
pers per3

]

[

noun
pers per3

]

adjunct
case adj c
mod ne list

poss npn

[

poss noun
case cnst

][

poss pn
case n cnst

]

qnt

[

qnt
case cnst

][

qnt i
case n cnst

]

adj

[

adj
case cnst

][

adj i
case n cnst

]

Figure 3.23: nominal type and its subtype hierarchy

We introduce five new types (poss npn, poss pn, poss noun, arg npn, poss noun)
in the subtype hierarchy subsumed by the nominal type. The noun/pronoun
(npn) is partitioned into tree direct subtypes – poss npn representing posses-
sives; noun still remains as a subtype of npn and stands for the noun; arg npn
corresponding to nouns/pronouns which are candidates for the arguments of the
verbal predicate, hence the argument case is appropriate to it. At the same time
poss npn is a subtype of adjuncts (adjunct) since possessives can syntactically
behave like adjuncts. They inherit all features from adjuncts and nouns/pro-
nouns. Note that poss npn has the same case type (adj c) as adjuncts. poss npn
has subtypes poss pn and poss noun representing possessive pronouns and nouns,
respectively. Moreover, poss pn has the same case type n cnst as the adjectives
and quantifiers with variable case. The case of possessive nouns is not the (log-
ical) genitive case, but the possessive case. We do not introduce any new case
type for the possessive case, but we mark the possessive nouns with the constant
case (cnst). This kind of marking works flawlessly in the grammar theory as the
possessive nouns have the same ‘constant’ agreement with the head like adjec-
tives and quantifiers with the cnst case. Except of poss npn. poss noun is also
a subtype of noun. arg noun is a subtype of arg npn and noun as the argument
nouns are nouns and candidates for arguments at the same time.

A new feature is introduced at the comps valency type, namely, the comp
feature which encodes information about the syntactic category of the comple-
ments in the list type (Fig. 3.24). The e list type is one of the subtypes of val
and it is intended as a valency value for those syntactic categories which do not
take any complements.

In order to express those various specification degrees the head noun can
obtain in noun phrases, we revise the spec type and make it more structured.
The unspec type is the specification value that corresponds to the unspecified
sate (this state is important in the syntax as the head noun can be complemented
only when it is unspecified). The ‘opposite’ type of unspec is specif, which can
be specified to its several subtypes expressing different degrees of specification.
The attrib type is for the attributed specification. deter stands for the quantified
or possessed (by nouns or pronouns) specifications. The quant type stands for
the quantified status and, n poss and pn poss for the possession by the noun

76

bot

spec

specif

deter

pnp q

pn possquant

n poss

attrib

unspec

val

comps

spec spec
comp list

e list

frame

expl list
impl list

Figure 3.24: The val and spec types and their subtypes

and the pronoun, respectively. pnp q is the type value of spec when the head
noun is quantified and possessed by the pronoun at the same time.18 All these
specification types are recall of the specification statuses given in Table 3.4.

Theory

In the theory of the grammar, we revise the adjunction of the noun phrase by
adding the possessive adjunction and then introduce the new rule – the noun
complementation rule.

In order to consider the possessives in the noun adjunction, we revise the
AdjN Rule (Fig. 3.25). The valency value of the phrase is revised by adding
comp feature with e list as its value. This is due to the fact that after adjunction
the head complementation is not possible (section 3.3.3). Hence, we specify the
complement value as the empty list. Also, note that the adjunct constituent can
be of type word or phrase, since the possessive adjunct can be a noun phrase.

phrase
h init minus

cat|val

[

spec 3

comp e list

]

head dtr 0

nonh dtr 1

−→ 1

cat|head 5

adjunct

case 7

mod
〈

4
〉

0

cat 4

head

[

noun

case 6

]

val|spec 2

where, Specify(5 , 2 , 3) and CompatibleCases(7 , 6)

Figure 3.25: The final version of AdjN Rule

For the rule application19 there are two necessary conditions to be met. The
first condition is that the head type of the adjunct and the values of the spec
features of the head and the resulting phrase should satisfy the ternary predicate
Specify defined according to Table 3.4. The second conditions remains the same

18This kind of structure of the specification type reflects the real situation in the noun phrase
and it is smoothly implemented in trale grammar (namely, as Prolog’s definite clauses).

19In the HPSG formalism, this would be satisfaction (rather than application) of the principle.

77

– it makes sure that the case of the adjunct is compatible with the one of the head.
The binary predicate CompatibleCases is defined according to Table 3.2.

Since the order of the complement and the head is fixed in the noun phrase,
we introduce the rule to model the noun complementation in the grammar. The
Complement-Noun Rule (CNR) is exemplified in Fig. 3.26 (in the format of
trale grammar).

phrase
h init minus

cat|val

[

spec unspec

comp e list

]

head dtr 0

nonh dtr 1

−→ 1
[

cat 2
]

0

[

cat

[

word head noun

val|comp
〈

2
〉

]]

Figure 3.26: The final version of Complement-Noun Rule

The reason for the simplicity of the rule is that the information about the
syntactic category of the complement is encoded in the lexical entry – in the
value of comp. For example, the case feature is encoded in the complement list
and there is no need for an explicit constraint on it. Moreover, it is not necessary
to ensure that the head constituent is unspecified, because the rule does not
license the complementation of specified heads since AdjN rule sets the value of
comp to the empty list after the adjunction (i.e., specification). The complement
list of the resulted phrase becomes the empty list. There is no need to constrain
the head to be word as the noun phrase complementation is not licensed by the
rule (due to AdjN rule assigning empty complement list to the licensed phrases).

The the remaining rules and principles of the theory are left unchanged.

Implementation

We start with discussing some technical issues of the grammar implementation.
Then we give the complete source code of the implemented trale grammar and
in the end, we show its parsing abilities.

In the AdjN rule of the formal grammar, we used two predicates – the ternary
predicate Specify encoding the rules of Table 3.4 and the binary predicate
CompatibleCase representing Table 3.2. The following predicates are imple-
mented as clauses under the functional descriptions. The implementation of the
predicate Specify as the specify functional description is given in List 3.3.

Listing 3.3: The functional description specify

fun sp e c i f y (+ ,+ ,−).
s p e c i f y ((S , s p e c i f) , unspec , S) i f true .
s p e c i f y ((S , s p e c i f) , a t t r i b , S) i f true .
s p e c i f y (n poss , quant , n poss) i f true .
s p e c i f y (pn poss , quant , pnp q) i f true .
s p e c i f y (quant , pn poss , pnp q) i f true .

The function takes any two types and if these types satisfy any clause then
outputs the third argument type of that clause. The clauses are written in such

78

a way that the output of the function is always deterministic (i.e., not more than
one output value). For example, the first two clauses simply express the relation
that unspecified and attributed specification degrees are always overridden by the
specification functionality20 of any adjunct (Table 3.4).

Listing 3.4: The functional description mod case

fun mod case (+ ,−).
mod case (erg c , erg) i f true .
mod case (dat c , c a s e) i f true .
mod case (cnst , case) i f true .
mod case (nom c , c n s t i) i f true .

The predicate CompatibleCase is also implemented as a functional descrip-
tion – mod_case (List 3.4). The function takes a type as its input and returns the
compatible case type if it exists. Note that the cnst i type is a direct supertype of
cnst and case i. The reason of introducing this type is rather technical and with
the help of it we achieve smooth agreement between case i and cnst – needed for
the adjunction of possessive nouns. mod_case is used in macros of adjectives and
quantifiers to automatically define the case type for the modified category based
on the case type of the adjunct.

It is worthwhile to mention the technical reason for adding the not deter type
which represents the ‘opposite’ (i.e., complement) type of deter. The type is
used for the specification value of noun complements. We avoid use of trale’s
inequality (=\=) for the negation of the type, because during the testing trale
licenses the object even if it violates the inequality constraint and the grammar
writer has to manually check if the inequity is satisfied or not.

In the signature, there are three subtypes introduced for phrase, namely,
ch phrase (the complement-head phrase), hc phrase (the head-complement phrase)
and ah phrase (the adjunct-head phrase). With this new types it is easier to ana-
lyze the several resulted parse trees of the same linguistic expressions (i.e., surface
structure), since they encode the dominance relation of daughters in the label of
the mother node.

The complete source code of the implemented trale grammar along with the
lexicon and test suite is presented in appendix C.

Demonstration

To see how the trale grammar works, we let it parse the sentence (42), including
an ambiguous noun phrase.

(42) mo-m-c.on-s
1sing-like-prs-ind-ipfv-3

čem-i
my-nom

p. at.ara
little-cnst

bavšv-is
child-poss

rol-i
role-nom

I like my little child’s role

All three output parse trees for (42) are given in Fig. 3.27, Fig. 3.28, Fig. 3.29.

20We avoid to give adjunct types as the first argument to specify since the type hierarchy of
adjuncts is already defined and its direct use in clauses of specify would require introduction
of some redundant unwanted subtypes of head.

79

I-like my little child’s role

My little child’s role

little child’s node

Rolelittle child’s

Child’sLittle

A H

C H
My

A H
I-like

H C

Figure 3.27: The first reading – I like my role of a little child

In the first reading, ‘little child’s’ is the complement of ‘role’. The reading
corresponds the situation when I like my role which is about a little baby.

I-like my little child’s role

My little child’s role

RoleMy little child’s

Little child’s

Child’sLittle

A H
My

A H

A H
I-like

H C

Figure 3.28: The second reading – I like the role of my little child

The second reading represents the case when I have a child and I like his
(some) role. In this reading, ‘role’ does not find its complement.

I-like my little child’s role

My little child’s role

Little child’s role

Child’s role

RoleChild’s

C H
Little

A H
My

A H
I-like

H C

Figure 3.29: The third reading – I like my little (short) role of a child

In the last reading, ‘role’ is complemented by ‘child’ and the reading says that
I like my little (short) role which is about a child.

Note that the syntactic structure where ‘role’ is complemented by ‘my little
child’ is blocked as the complement can not be possessed by pronoun as it makes
the complement concrete (i.e., constant) and the relation between the head and
the non head constituent becomes relational (i.e., adjunction by possessives).

80

Also the structure where ‘role’ is possessed by ‘my’ and ‘child’ at the same time
is blocked.

To draw the conclusion, the current HPSG-based grammar models the syntax
of the simple declarative sentences consisting of the verb and its complement noun
phrases – the head possibly complemented and possibly modified by adjectives,
quantifiers or possessives. Its implementation parser syntactically analyzes the
sentences modeled by the grammar theory.

81

4. Towards a realistic grammar –

modeling the morphology of

Georgian

In the previous section, we modeled the syntax of simple declarative sentences.
The formal grammar (and its implemented version) can parse (provide syntactic
analysis of) the sentences based on the lexicon. In this chapter, we build the set
of lexical rules in the grammar. The rules make it easy to extend the lexicon by
adding new lexical entries. More precisely, using these lexical rules the grammar
will be able to “understand” some set of inflected forms of the canonical word
form, if this canonical word form is added to the lexicon. This kind of grammar
is called realistic as it roughly resembles the mental grammar as it is assumed to
exist in human minds – it is sufficient to “learn” a single new word form; other
inflected forms related to the “learned” one are “understood” without the need
to learn them explicitly.

We start modeling the morphology of Georgian by describing lexical rules for
nominals (nouns, adjectives and quantifiers). We also consider nominalization
rules for adjectives and quantifiers. At the end of modeling, we implement these
rules and thus make the implemented grammar more expressive.

It would not be justified if we build the formal grammar for the core part of
Georgian omitting lexical rules for the verb. The study of the verb is the most
difficult part of Georgian linguistics as there is very rich information encoded in
the verb, which is highly inflectional. While designing lexical rules for the verb,
our goal is to model a wide range of verbs and make the rules highly productive.
We classify the verbs into three classes (conjugation paradigms), providing a set
of lexical rules for each class The lexical rules are implemented and added to the
grammar.

This chapter represents a contribution of the thesis to the formal analysis and
modeling of some fundamental parts of the complex morphology of Georgian.

82

4.1 Lexical rules for nominals

We start with modeling and implementing lexical rules for nouns and adjuncts
(adjectives and quantifiers) – rules describing the inflected forms corresponding
to the marking by logical cases. In addition to these core rules we also treat other
lexical rules, such as the pluralization rule producing the plural versions of nouns,
the nominalization rules “converting” the adjective and quantifier into noun, and
the possessive rule producing word forms marked by the possessive case.

4.1.1 Logical declension of the noun

In general, we are using fifteen inflectional forms (fourteen of them correspond to
the forms marked by the logical cases and one form by the possessive case) of the
the noun lemma in the lexicon of the formal grammar.1 We design lexical rules
to produce these inflected word forms from the single lexeme in the grammar.
Note that we call the initial (i.e., canonical) lexical entry a lexeme as it does not
represent a particular word form but the compact description of the lexeme – a
set of the inflections.

The lexical rules are based on four declension paradigms which we defined
after some manual analysis of the logical declensions of some nouns. We provide
these declension paradigms in Table 4.1.

Arg. log. case Paradigm I Paradigm A Paradigm E Paradigm OU

nom N1-i N1 N1 N1

erg N1-ma N1-m N1-m N1-m
dat N1-s N1-s N1-s N1-s
ine N1-ši N1-ši N1-ši N1-ši
loc N1-ze N1-ze N1-ze N1-ze
com N1-tan N1-stan N1-stan N1-stan
adv N2-ad N2-ad N1-d N1-d
ter N2-amde N2-amde N1-mde N1-mde
ins N2-it N2-it N2-it N1-ti
gen N2-is N2-is N2-is N1-si
ori N2-isk. en N2-isk. en N2-isk. en N1-sk. en
abl1 N2-idan N2-idan N2-idan N1-dan
abl2 N2-isgan N2-isgan N2-isgan N1-sgan
ben N2-istvis N2-istvis N2-istvis N1-stvis

Table 4.1: Four declension paradigms for nouns

The symbols N1 and N2 denote the full and non-full stems of the noun. Under
the non-full stem we mean the stem with the syncope or apocope. The declension
paradigms are named according to the nominative word forms of the nouns of
the paradigm. For example, most nominative word forms in Paradigm OU2 end
in o or u. The given declension paradigms represent a refined version of those

1If we take into account the pluralized forms too, the number of word forms doubles.
2For example the words of foreign origins also fall into this paradigm without ending on o

or u, e.g. čai ‘tea’ or t.ramvai ‘tram’.

83

used in (Abzianidze, 2008) and (Chikvinidze, 2010).3 It is not always possible to
detect the syncope and apocope in the stem, that is why we require to specify
both full and non-full stems in our lexical rules. After specifying both stems and
the declension paradigm, the production of the noun inflections is trivial. Note
that in this way the declension paradigms cover a wide range of nouns (including
proper nouns and nouns of foreign origin). Though these paradigms are hand-
crafted, we do not expect many exceptions – manual adding of exceptions to the
lexicon would not be a problem.4

In Sections 4.1.3 and 4.1.3, we will show that this declension paradigms cover
the pluralized nouns and the nominalized adjectives and quantifiers too.

4.1.2 Logical declension of the adjunct

Modeling the logical declension for adjectives and quantifiers is done similarly as
in (Abzianidze, 2008) and (Chikvinidze, 2010). Namely, there are two declension
paradigms. Adjectives and quantifiers ending with -i fall into the first paradigm,
hence changing their word forms according to the adjunct logical cases. Other
adjectives and quantifiers having the same (i.e., constant) word form in all adjunct
logical cases fall into the second paradigm. The paradigms are given in Table 4.2.

Adj. log. case Non-constant Paradigm Constant Paradigm

nom A-i Q-i
erg A-ma Q-ma
dat A-s Q-s
cnst A Q

Table 4.2: Two declension paradigms for adjectives and quantifiers

In Table 4.2 symbols A and Q denote the stem of the adjective and quantifier,
respectively. As you can see, the adjective and the quantifier have the same
morphological paradigms because their word form changes in a similar way (but
their syntactic functions are different).

In order to determine into which paradigms the certain adjective or quanti-
fier belongs, it is sufficient to check the last letter of its nominative word form.
The adjunct ending with i in its nominative form falls into the Non-constant
Paradigm, otherwise into the Constant Paradigm. Note that the adjunct in Con-
stant paradigm has a unique word form marked by the cnst logical case.

4.1.3 Pluralization and possession rules

In sections 4.1.1 we discussed the logical declension paradigms for the noun. We
finalize the analysis of the noun lexical rules by modeling the pluralization and
the possession rules.

3The systems try to guess the paradigm according by the last character of the full stem
and then produce the word forms. In case of a wrong guess the user has to manually edit the
produced word forms. During our research we found that the probability of wrong guessing is
quite high, especially in the case of nominalized adjective and quantifiers.

4Of course, an empirical check of this anticipation is necessary and requires additional re-
sources.

84

There are two different ways how the pluralized stem (stem including the
plural morpheme) is related to the “singular” stems (the full and non-full stems)
of the noun. For nouns of the declension paradigms I and A, the pluralized stem
is reproduced by suffixing the non-full stem (i.e., N2) with the plural morpheme
-eb (i.e., Npl = N2-eb). In the case of nouns of the paradigms E and OU, the
pluralized stem represents Npl = N1-eb – the full stem affixed with the plural
morpheme. In Table 4.3, the second and third columns are the same declension
paradigms (the difference is only in stems which are not part of the paradigm).

Arg. log. case Paradigm I & A Paradigm E & OU Paradign I

nom N2-eb-i N1-eb-i N1-i
erg N2-eb-ma N1-eb-ma N1-ma
dat N2-eb-s N1-eb-s N1-s
ine N2-eb-ši N1-eb-ši N1-ši
loc N2-eb-ze N1-eb-ze N1-ze
com N2-eb-tan N1-eb-tan N1-tan
adv N2-eb-ad N1-eb-ad N2-ad
ter N2-eb-amde N1-eb-amde N2-amde
ins N2-eb-it N1-eb-it N2-it
gen N2-eb-is N1-eb-is N2-is
ori N2-eb-isk. en N1-eb-isk. en N2-isk. en
abl1 N2-eb-idan N1-eb-idan N2-idan
abl2 N2-eb-isgan N1-eb-isgan N2-isgan
ben N2-eb-istvis N1-eb-istvis N2-istvis

Table 4.3: Pluralization and declension paradigms for nouns

Any pluralized noun is declined according to paradigm I. Namely, based on
the token-identical pluralized stems Npl

1 and Npl
2 (where Npl

1 = Npl
2 = Npl), the

declension of the plural word forms follows the declension paradigm I. For a
demonstration of the identity between the pluralized declension paradigm and
the paradigm I, we give both in Table 4.3.

For producing the possessive form of the noun the same information – two
stems and the declension paradigm, is sufficient as in the case of pluralization
and declension.

Case Paradigm I Paradigm A Paradigm E Paradigm OU

gen N2-is N2-is N2-is N1
::

-si
poss N2-is N2-is N2-is N1

::

-s

Table 4.4: Inflection for the possessive case

Table 4.4 shows how the possessive form is produced from the stems depending
on the declension paradigms. Not that the difference between the possessive and
genitive word forms occurs only for nouns of the paradigm OU.

85

4.1.4 Nominalization of adjectives and quantifiers

In Georgian, the nominalization of adjectives is quite common. This means that
the adjective gains the (morphological and syntactic) characteristics of the noun
(gets nominalized) and is used as a noun referring to the set of entities having
the property expressed by the adjective.

For example, the sentence (1) uses the nominalized adjective ‘little’ referring
to the entities which are little. The entities are further specified by the context
and they represent animate entities which are little. The most common way of
understanding the sentence is given in the English translation of (1).

(1) p. atar-eb-i
Little-pl-nom

tamaš-ob-en
play-prs-ind-ipfv-3pl

Little babies/children are playing

In the case of the nominalization of the quantifier, the domain over which the
variable is quantified is restricted by the context. Since the nominalized adjec-
tives and quantifiers syntactically behave as nouns we are going to introduce the
nominalization of adjective in our formal grammar.5

The analysis showed that nominalized adjectives and quantifiers are declined
according to one of the declension paradigms we have tailored for the noun (Ta-
ble 4.1). Hence, in order to decline the nominalized adjectives and quantifiers we
need to encode in their lexemes the information about the declension paradigm
and two stems, like for noun lexemes. We model the nominalization with the a
separate lexical rule, which produces the noun lexeme from the adjective and the
quantifier lexemes.

The details about the nominalization are given in sections 4.1.5 and 4.1.6.

4.1.5 Putting all together in the formal grammar

After setting up the paradigms and specifying inflectional rules working on each
paradigms, we are ready to model all this collected knowledge in the HPSG
framework.

First of all we start by updating the type hierarchy of the grammar – adding
new types corresponding to lexemes (Fig.4.1). In order to distinguish words and
phrases from the lexemes, we introduce two new subtypes of sign: expr – the type
for linguistic expressions such as words and phrases, and lexeme – the type for
abstract linguistic objects such as lexemes. Note that the types (of the values) of
the head dtr and nonh dtr features are not sign but expr. For the horizontal
lexical generalization, we introduce the feature lex of the type lexeme at word.6

One of the subtypes of lexeme is nominal lex, corresponding to nominal lex-
emes. We classify the nominal lexemes as the noun (noun lex), quantifier (qnt lex)
and adjective (adj lex) lexemes. The decl feature encodes the information about
the declension paradigm. The feature is appropriate to all nominal lexemes as we
are modeling the nominalization rules too. For the lexical rules from lexemes to

5If we were also modeling the semantics, then modeling the nominalization would be a much
more complex task.

6Note that this feature is also useful for implementing the grammar in trale.

86

[

sign
phon list

]

lexeme

e lex

nominal lex
decl decl

init lexeme

adj lexqnt lex

noun lex

plural bool4
compl list

expr

cat cat
h init bool

word
arg st list
lex lexeme

phrase

head dtr expr
nonh dtr expr
dtrs list

Figure 4.1: The revised sign type with its subtypes

lexemes, we use the feature init to keep track the origin lexeme.7 If the lexeme
has no ancestor, then the value of the init feature is e lex (the empty lexeme).

The noun lexeme, in addition to the features specifying its declension paradigm
and initial lexeme, encodes the information (in the feature plural) on whether
pluralization is valid for word forms of the lexeme. This information is necessary
to avoid ungrammatical lexical entries like e.g. haer-eb-i ‘air-pl-nom’.

During the composition of several lexical rules, the “two-valued” bool type is
not enough to express the pluralization information, hence we extend the type
to bool4, which is used in further versions of the implemented grammar. The
information about the complement is now encoded on the lexeme level (by the
feature compl), as it is common for all word forms of the lexeme.

In the grammar we introduce lexical rules for reproducing the lexical entries
(i.e., words) and lexemes too. This kind of organization of lexical rules is quite
compact and natural at the same time. The schemata in Fig. 4.2 express the
lexical rules with their domain and range. Lexemes are placed at the top and
words forms at the bottom of the schemata (Fig. 4.2). The number of lexical
rules is five and they are represented as transitions (i.e., rewriting rules) between
the descriptions. For clarity, domains and ranges of some rules are partitioned,
hence those rules are repeated in the schemata.

We briefly describe the lexical rules. The adjunct decl rule applies to quantifier
and adjective lexemes and produces word forms of quantifiers and adjectives,
respectively, marked by all possible adjunct logical cases. Phonological morphing
is done according to Table 4.2.

The nominalization rule produces nominalized (i.e., noun) lexemes from quan-
tifier and adjective lexemes. Note that the feature plural of the noun lexeme,
which is produced from the quantifier lexeme, has the value minus, in order to
avoid pluralization of the nominalized quantifiers.

The pluralized noun lexeme is generated by the pluralization rule. Note that
the rule applies to both noun lexemes and nominalized adjective lexemes (both

7This feature is also very helpful during the implementation of the lexical rules.

87

[

qnt lex
]

[

word

cat|head qnt

]

[

adj lex
]

[

word

cat|head adj

]

[

noun lex

plural bool

]

[

word

cat|head noun

]

[

noun lex

plural both

]

[

word

cat|head poss noun

]

a
dj
u
n
c
t
d
e
c
l

nominalization

a
dj
u
n
c
t
d
e
c
l

nominalization

lo
g
ic

d
e
cl

pluralization

p
o
s
s
d
e
c
l

lo
gi
c
de
cl

poss decl

Figure 4.2: Schemata of the lexical rules on nominals

denoted by the noun lex type).
The logic decl and poss decl lexical rules produce word forms marked by the

argument logical cases and possessive case, respectively. The construction of the
phonology is done according to Table 4.1 and Table 4.4. The logic decl rule is the
most productive rule, generating fourteen different word forms from a lexeme.

We do not explore the lexical rules further in the HPSG framework, but
implement them in the next section. Further details about each lexical rules will
be revealed in its implementation as trale grammar is faithful to its “hand-
written” grammar in the HPSG framework.

4.1.6 Implementation

We start with implementing the lexical rules presented in the previous section.
While implementing the rules some technical issues will be mentioned along with
their solutions. At the end we demonstrate how the lexical rules work inside the
grammar.

The main issue while implementing the lexical rules is how to encode two stems
in the structure, or in general, how to make several features encode the different
phonology information and at the same time enable the string operations (those
available for the value of the phon feature) on them. The problem is that phon
has a special status in lexical rules – its value is automatically carried over to
morphing part of the rule where powerful matching functionalities are applicable
to it. Another related problem is that only a_/1 atoms are accessible in the
morphing section (and of course the value of phon). As the string matching and
concatenation operations are not available on a_/1 atoms in trale, we encode
both stems in the phon feature, separated by the underscore. With this solutions,
we are able to use trale’s string matching and concatenating operations on both
stems.

The most important rule in the mentioned lexical rules is the logic decl rule
and this is why we discuss it here. We build the rule in the way that it can
generates fourteen different word forms for a lexeme. The part of implementation
of the logoc decl lexical rule is given in List. 4.1 (we skipped the morphing part

88

due to its length).
In the rule, the lexeme and its complements are copied into the produced word.

The produced lexical entry is unspecified. The case and the number categories
are evaluated in the condition of the rule. Here, we use the power of Prolog and
trale clauses. Namely, in order to make the rule generate fourteen different
word form, we “loop” over the logical case types by the predicate isLogCase/2,
defined in terms of fourteen clauses. The predicate represents the set of fourteen
pairs of argument logical case type and the corresponding Prolog a_/1 atom. The
second argument of isLogCase/2 is used to carry over the information about the
case type to the morphs part of the lexical rule (namely, in the when’s Prolog
goal). We use the predicate isParadigm/2 for the same purpose – to carry over
the information about the declension paradigm to the Prolog goal.

Listing 4.1: The lexical rule for logical declension

l o g i c d e c l ##
(L , noun lex ,

compl : Compl ,
dec l : Par ,
p l u r a l : Pl) .

∗∗>
(word ,

cat : (cat ,
head : (noun ,

case : Case ,
num:Num) ,

va l : (spec : unspec ,
comp :Comp)) ,

a r g s t :Comp,
l ex :L) .

i f isLogCase (Case , a C) ,
isParadigm (Par , a P) ,
(Pl=(p lus ; minus) −> Num=s ing ; Num=plur)

morphs
% Fu l l v e r s i on o f the ru l e
% i s a v a i l a b l e in appendix D
. . .

After the information about where the declension paradigm and case are kept
in Prolog’s variables, we can easily generate all possible word forms with the
help of trale’s phonology matching and Prolog’s goals (For the details see ap-
pendix D).

While implementing lexical rules we have to change the lexical rule depth
default value 2 by 3. The reason is that in our lexical rules there is a case where
a sequence of three lexical rules is applied to a lexeme. Namely, the word form
for the nominalized adjective in plural marked by the ergative case is generated

89

by applying the nominalization, pluralization and logic decl rules to the adjective
lexeme (Fig. 4.2).

To show how the lexical rules work as a system, we consider the example
of the word form which is generated by three different lexical rules at the same
time. The AVM of the description of the word form – the nominalized adjective in
plural, marked by the ergative case, is given in Fig 4.3. Note that the word form
is one of 33 word forms8 generated from the adjective lexeme (its corresponding
TFS is adj lex in Fig. 4.3).

[Little-pl-erg]

word

phon
〈

patarebma
〉

cat

cat

head

noun
case erg
num plur
pers per3

val

comps
comp 0

spec unspec

arg st 0

lex

noun lex

phon
〈

patareb patareb
〉

plural both

decl decl i
compl 0

init

noun lex

phon
〈

patara patar
〉

plural plus
decl 1

compl 0 〈〉

init

adj lex

phon
〈

patara patar
〉

decl 1 decl a

init

[

e lex
phon list

]

Figure 4.3: A lexical entry produced by three lexical rules

The values of lex and init features show us in which order the lexical rules
were applied on the initial lexeme, or the history of the generation, and how
both stems encoded as a unique phonology are changing at the same time in
different ways. This kind of information is useful for capturing the horizontal
generalizations and at the same time it represents data valuable for implementing
and maintaining the grammar.

8Namely, 3 of them are adjective forms and 30 forms are nominalized forms in plural and
singular, marked by logical cases and the possessive case.

90

4.2 Lexical rules for the verbs

In this section, we discuss the verb and its conjugation system. The traditionally
assumed approach to the verb conjugation is critically assessed and an approach
better suited to Georgian is presented. Based on an analysis of a wide range of
verbs, we propose three conjugation paradigms (i.e., verb classes, as opposed to
the traditional system of four classes). Verbs of the same paradigm do not have
the same conjugation system only, but also the same case alignment of explicit
arguments. At the end, we implement the conjugation system of each paradigm.

4.2.1 The verb and its conjugation

We will discuss the verb and the traditionally assumed approach to its conjuga-
tion, show that the approach is not natural for the verb with the polypersonal
property. We will also talk about the traditional verb classification, which has
many of exceptions.

In the traditional grammar, the verb is conjugated according to its subject.
This tradition is carried over from the Indo-European languages where mostly
only the subject agrees with the verb, but as we have seen in the previous chapters,
the verb can agree with other arguments in several persons. The result of this
subject-centered approach is that often the polypersonal property of the verb
is ignored and often most word forms are not considered.9 We will call this
kind of conjugation unary conjugation in contrast to polypersonal conjugation –
a conjugation according to several arguments of the verbal predicate.

To continue with the topic of subject, it appears that there is no rule in Geor-
gian according to which one can say which constituent is the subject. Sometimes
the subject can be marked by the nominative, ergative or dative cases. More-
over, the subject and the object are represented by the same morpheme in the
verb. For example in (2), the subject is expressed by m morpheme and the same
morpheme is used to express the object of the verb “dance” in (3). Note that the
subject is not expressed by any morpheme in (3).10

(2) m-i-qvar-xar
1sing-love-prs-ind-ipfv-2sing
I love you

(3) m-e-cek.v-eb-i
1sing-dance-prs-ind-ipfv-2sing
You are dancing with me

That is why the traditional Georgian grammar uses the notions of morpholog-
ical subject and morphological object. In (2), the morphological and syntactic
subjects are the same but in (3), they are different.

In the traditional grammar, the classification of verbs is done according to
screeves (Table 1.2). For example, verbs which can produce word forms for the
same set of screeves are considered the same class. Based on this classification

9For example, the word form agreeing with the first person and the second person is ignored,
since according to the standard conjugation there is at least one third person involved.

10This kind of examples are also emphasized in (Pkhakadze, 2004) along with criticism of the
alleged verbal conjugation.

91

there are four verb classes. This kind of classification also attempts to characterize
verb classes according to the transitivity feature but it fails, since there are quite
a few exceptions for some classes.11 This kind of classification is not suited for
the conjugation paradigms.12 Note that this classification in four classes is used
in (Meurer, 2009).13

In the next sections, we are going to analyze the verbal conjugation without
using any undefined notions (such as subject and object). Then we classify verbs
into three conjugation paradigms covering a wide range of verbs.

4.2.2 The verb conjugation paradigms

We organize the section in three subsections. Namely, in each subsection we
give the conjugation paradigms represented as a table. The paradigms are built
on the basis of the analysis of verbs and their polypersonal conjugation (as op-
posed to unary conjugation). In this thesis, we are dealing only with the core
tenses, namely, expressed by the present, imperfect, future and aorist screeves
(Table 1.2). These screeves roughly correspond to the English present indefi-
nite (simple), past progressive (continuous), future indefinite and past indefinite
(simple) tenses, respectively.14

The conjugation paradigm 1

The conjugation systems of the paradigm 1 are given in Table 4.5 and Table 4.6.
The table encodes the binary conjugation system.

Persons Present simple Past progressive

sing-num pl-num sing-num pl-num

X-3
[p]-v-[st]-(var) [p]-v-[st]-(var)-t [p]-v-[st]-i [p]-v-[st]-i-t
[p]-[st]-(xar) [p]-[st]-(xar)-t [p]-[st]-i [p]-[st]-i-t
[p]-[st]-s [p]-[st]-en/an [p]-[st]-a [p]-[st]-nen

X2-2
[p]-g-[st]-(var) [p]-g-[st]-(var)-t [p]-g-[st]-i [p]-g-[st]-i-t
[p]-g-[st]-(var)-t [p]-g-[st]-i-t

[p]-g-[st]-s [p]-g-[st]-en/an [p]-g-[st]-a [p]-g-[st]-nen
[p]-g-[st]-t [p]-g-[st]-a-t

X1-1
[p]-m-[st]-(xar) [p]-m-[st]-(xar)-t [p]-m-[st]-i [p]-m-[st]-i-t
[p]-gv-[st]-(xar) [p]-gv-[st]-(xar)-t [p]-gv-[st]-i [p]-gv-[st]-i-t
[p]-m-[st]-s [p]-m-[st]-en/an [p]-m-[st]-a [p]-m-[st]-nen
[p]-gv-[st]-s [p]-gv-[st]-en/an [p]-gv-[st]-a [p]-gv-[st]-nen

1-nom 2-dat 3-dat 1-nom 2-dat 3-dat

Table 4.5: Part 1 of the conjugation paradigm 1

11In spite of the fact, the classes still use names as transitive class or intransitive class.
12It is obvious that the classification, which does not consider the (even wrong) conjugation

at all, cannot be used for the verb conjugation.
13Moreover, the author claims that the correct verbal frames are not easily deducible from

this classification.
14Note that these tenses are already introduces in the current version of the formal grammar.

92

Each word pattern represents the sequence of a preverb ([p]), followed by a
morpheme insert (possibly empty one), a stem ([st], which is characteristic for
the tense – a stem is shared by the word forms of the same tense) and word-final
morpheme(s). A morpheme in parenthesis is only used by some verbs. A string
morpheme1/morpheme2 means that, depending on the verb, exactly one of the
morphemes is used in the conjugation.

Persons Past simple Future indefinite

sing-num pl-num sing-num pl-num

X-3
[p]-v-[st]-e/i [p]-v-[st]-e/i-t [p]-v-[st]-i [p]-v-[st]-t
[p]-[st]-e/i [p]-[st]-e/i-t [p]-[st] [p]-[st]-t
[p]-[st]-a/o [p]-[st]-es [p]-[st]-s [p]-[st]-en/an

X2-2
[p]-g-[st]-e/i [p]-g-[st]-e/i-t [p]-g-[st] [p]-g-[st]-t
[p]-g-[st]-e/i-t [p]-g-[st]-t
[p]-g-[st]-o/a [p]-g-[st]-es [p]-g-[st]-s [p]-g-[st]-en/an
[p]-g-[st]-o/a-t [p]-g-[st]-t

X1-1
[p]-m-[st]-e/i [p]-m-[st]-e/i-t [p]-m-[st] [p]-m-[st]-t
[p]-gv-[st]-e/i [p]-gv-[st]-e/i-t [p]-gv-[st] [p]-gv-[st]-t
[p]-m-[st]-a/o [p]-m-[st]-es [p]-m-[st]-a [p]-m-[st]-en/an
[p]-gv-[st]-a/o [p]-gv-[st]-es [p]-gv-[st]-s [p]-gv-[st]-en/an

1-erg 2-dat 3-nom 1-nom 2-dat 3-dat

Table 4.6: Part 2 of the conjugation paradigm 1

The symbol Xi denotes a variable over persons, except for the ith person.
Therefore, X2-2 means two combinations 〈1, 2〉 〈3, 2〉. If the same word form is
used to express both the 2nd argument in singular and in plural, then there is
just one word pattern in the table cell.

At the bottom of the table, the case structure is specified. The number
expresses the argument position. With this ordering and case assignments we
determine the order of the arguments for every verb of the paradigm. Note
that each argument is distinguishable from other arguments on the basis of their
change according to tenses. Note that some verbs of the paradigms are lacking the
2nd and/or 3rd arguments, but the first arguments is always presented. We call
it by semantic subject. We call it semantic subject since it is the main participant
of the event expressed by the verb (e.i., it is the agent or the only participant of
the event).

The unary conjugation (i.e., the conjugation according to the unique explicit
argument) is expressed in the sub table of the binary conjugation. Namely, the
subtable in the row of “X-3”.

The conjugation paradigm 2

The conjugation paradigm 2 is exemplified in Table 4.8 and Table 4.8. The verbs
from this paradigm can also have the polypersonal conjugation. The maximum
number of explicit arguments of the paradigm is two. The first and second ar-
guments are marked constantly by the nominative and dative case, respectively.
Therefore the semantic subject is always marked by the nominative case.

93

Persons Present simple Past progressive

sing-num pl-num sing-num pl-num

X-3
[p]-v-[st]-i [p]-v-[st]-i-t [p]-v-[st]-i [p]-v-[st]-i-t
[p]-[st]-i [p]-[st]-i-t [p]-[st]-i [p]-[st]-i-t
[p]-[st]-a [p]-[st]-ian [p]-[st]-a [p]-[st]-nen

X2-2
[p]-g-[st]-i [p]-g-[st]-i-t [p]-g-[st]-i [p]-g-[st]-i-t
[p]-g-[st]-i-t [p]-g-[st]-i-t
[p]-g-[st]-a [p]-g-[st]-ina [p]-g-[st]-a [p]-g-[st]-nen
[p]-g-[st]-a-t [p]-g-[st]-a-t

X1-1
[p]-m-[st]-i [p]-m-[st]-i-t [p]-m-[st]-i [p]-m-[st]-i-t
[p]-gv-[st]-i [p]-gv-[st]-i-t [p]-gv-[st]-i [p]-gv-[st]-i-t
[p]-m-[st]-a [p]-m-[st]-ian [p]-m-[st]-a [p]-m-[st]-nen
[p]-gv-[st]-a [p]-gv-[st]-ian [p]-gv-[st]-a [p]-gv-[st]-nen

1-nom 2-dat 1-nom 2-dat

Table 4.7: Part 1 of the conjugation paradigm 2

Note that for the conjugation of the verb in this paradigm, one has to explicitly
encode the information about the suffix for the past tense. There are only four
options for the set of suffixes: [e, e, a], [e, e, o], [i, i, a] and [i, i, o]. By knowing
all four stems, a set of suffixes for the past tense and applicable preverbs for each
tense, we can generate 84 word forms.

Persons Past simple Future indefinite

sing-num pl-num sing-num pl-num

X-3
[p]-v-[st]-e/i [p]-v-[st]-e/i-t [p]-v-[st]-i [p]-v-[st]-i-t
[p]-[st]-e/i [p]-[st]-e/i-t [p]-[st]-i [p]-[st]-i-t
[p]-[st]-a/o [p]-[st]-nen [p]-[st]-a [p]-[st]-ian

X2-2
[p]-g-[st]-e/i [p]-g-[st]-e/i-t [p]-g-[st]-i [p]-g-[st]-i-t
[p]-g-[st]-e/i-t [p]-g-[st]-i-t
[p]-g-[st]-a/o [p]-g-[st]-nen [p]-g-[st]-a [p]-g-[st]-ian
[p]-g-[st]-a/o-t [p]-g-[st]-a-t

X1-1
[p]-m-[st]-e/i [p]-m-[st]-e/i-t [p]-m-[st]-i [p]-m-[st]-i-t
[p]-gv-[st]-e/i [p]-gv-[st]-e/i-t [p]-gv-[st]-i [p]-gv-[st]-i-t
[p]-m-[st]-a/o [p]-m-[st]-nen [p]-m-[st]-a [p]-m-[st]-ian
[p]-gv-[st]-a/o [p]-gv-[st]-nen [p]-gv-[st]-a [p]-gv-[st]-ian

1-nom 2-dat 1-nom 2-dat

Table 4.8: Part 2 of the conjugation paradigm 2

The conjugation paradigm 3

The conjugation paradigm is given in two Tables 4.9 and Table 4.10. The
paradigm has at most two explicit arguments. The semantic subject is always in
the dative case and the second argument in the nominative case.

94

In the word patterns, some last letters are deleted from the stem, while new
morpheme is appended on it. Moreover, there are also other phonological pro-
cesses going in the front part of the stem. For example, the stems starting with
the plosive and ejective sounds are prefixed by the fricative sounds. Further de-
tails about the phonological changes in the word forms can be found in the source
code of the conjugation lexical rules.

Persons Present simple Past progressive

sing-num pl-num sing-num pl-num

X-3
[p]-m-[st] [p]-gv-[st] [p]-m-[st] [p]-gv-[st]
[p]-g-[st] [p]-g-[st]-s-t [p]-g-[st] [p]-g-[st]-t
[p]-[st] [p]-[st]-s-t [p]-[st] [p]-[st]-t

X2-2
[p]-m-[st]-s/a-xar/i [p]-gv-[st]-s/a-xar/i [p]-m-[st]-a-i [p]-gv-[st]-a-i
[p]-m-[st]-s/a-xar/i-t [p]-gv-[st]-s/a-xar/i-t [p]-m-[st]-a-i-t [p]-gv-[st]-a-i-t
[p]-[st]-s/a-xar/i [p]-[st]-s/a-xar/i [p]-[st]-a-i [p]-[st]-a-i
[p]-[st]-s/a-xar/i-t [p]-[st]-s/a-xar/i-t [p]-[st]-a-i-t [p]-[st]-a-i-t

X1-1
[p]-g-[st]-s/a-var/i [p]-g-[st]-s/a-var/i-t [p]-g-[st]-a-i [p]-g-[st]-a-i-t
[p]-g-[st]-s/a-var/i-t [p]-g-[st]-a-i-t
[p]-v-[st]-s/a-var/i [p]-v-[st]-s/a-var/i [p]-v-[st]-a-i [p]-v-[st]-a-i
[p]-v-[st]-s/a-var/i-t [p]-v-[st]-s/a-var/i-t [p]-v-[st]-a-i-t [p]-v-[st]-a-i-t

1-dat 2-nom 1-dat 2-nom

Table 4.9: Part 1 of the conjugation paradigm 3

Persons Past simple Future indefinite

sing-num pl-num sing-num pl-num

X-3
[p]-m-[st] [p]-gv-[st] [p]-m-[st] [p]-gv-[st]
[p]-g-[st] [p]-g-[st]-t [p]-g-[st] [p]-g-[st]-s-t
[p]-[st] [p]-[st]-t [p]-[st] [p]-[st]-s-t

X2-2
[p]-m-[st]-a-e/i [p]-gv-[st]-a-e/i [p]-m-[st]-a-i [p]-gv-[st]-a-i
[p]-m-[st]-a-e/i-t [p]-gv-[st]-a-e/i-t [p]-m-[st]-a-i-t [p]-gv-[st]-a-i-t
[p]-[st]-a-e/i [p]-[st]-a-e/i [p]-[st]-a-i [p]-[st]-a-i
[p]-[st]-a-e/i-t [p]-[st]-a-e/i-t [p]-[st]-a-i-t [p]-[st]-a-i-t

X1-1
[p]-g-[st]-a-e/i [p]-g-[st]-a-e/i-t [p]-g-[st]-a-i [p]-g-[st]-a-i-t
[p]-g-[st]-a-e/i-t [p]-g-[st]-a-i-t
[p]-v-[st]-a-e/i [p]-v-[st]-a-e/i [p]-v-[st]-a-i [p]-v-[st]-a-i
[p]-v-[st]-a-e/i-t [p]-v-[st]-a-e/i-t [p]-v-[st]-a-i-t [p]-v-[st]-a-i-t

1-dat 2-nom 1-dat 2-nom

Table 4.10: Part 2 of the conjugation paradigm 3

To draw a conclusion, we wish to mention that most of the verbs are falling
into these paradigms. Note that this is explained by the fact that we are already
providing the verb with four stems (for four tenses, respectively).

95

Note that the conjugation paradigms we got coincide with the diatheses of
(Melikishvili, 2001).15 Note that our approach of finding these paradigms was
simply guided by the morphology of personal marking, in contrast to (Melikishvili,
2001), which uses several linguistic descriptions at the same time.

We have to mention verbs which do not fall at this moment into any of the
three conjugation paradigms. Most of these verbs use two different stems inside a
tense.16 The number of these verbs is not large. They need further investigation
to find out how diversely they are conjugated.

4.2.3 Implementation

For the implementation of the conjugation rules, we introduce verb lexemes. Verb
lexemes encode information about four stems in the phon feature in the same
way as noun lexemes encode the stems. Moreover, the verb lexeme includes infor-
mation about the conjugation paradigm (i.e., class). The conjugation paradigms
are described in terms of features, mainly encoding information about the sets of
suffixes and the arity of conjugation. The list of applicable preverbs along with
the implicit arguments (since they are capturing lexical generalizations) is also
encoded in the verb lexeme.

From the technical point of view, we implement the predicates for looping
over the person and number categories, also over the list of preverbs. To avoid
complications in the conjugation rules we introduce Prolog’s definite clauses to
model the predicates used to treat the valid phonological changes in word forms.

We do not present the conjugation rules in this thesis for space reasons. Fur-
ther details about the lexical rules can be found on the CD attached to the hard
copy of the thesis, or at the following address: https://sites.google.com/

site/lashabzianidze/thesis. Also, further updates of the formal and imple-
mented grammar will be available at the address.

15After defining the diatheses, (Melikishvili, 2001) gives further classification of verbs inside
the diatheses.

16These verbs also does not fall in the scope of diatheses of (Melikishvili, 2001).

96

https://sites.google.com/site/lashabzianidze/thesis
https://sites.google.com/site/lashabzianidze/thesis

References

Abzianidze, L. 2008. Georgian Simple Sentence Syntactic Spellchecker based
on Mathematical Methods (Experimental version). Master thesis, Tbilisi
State University. in Georgian, http://gllc.ge/publications/articles/
L.Abzianidze_BT.pdf.

Butskhrikidze, M. 2002. The Consonant Phonotactics of Georgian. Netherlands
Graduate School of Linguistics.

Carpenter, B. 1992. The Logic of Typed Feature Structures. Cambridge University
Press.

Carpenter, B. 1993. Skeptical and credulous default unification with applications
to templates and inheritance. In: E. J. Briscoe, A. Copestake, & de Paiva,
V. (eds), Defaults, Inheritance and the Lexicon. Cambridge University Press.

Chikvinidze, M. 2010. 1st version of the Georgian-English-German Two-Way
Translator Computer System Constructed by Mathematical Methods. Master
thesis, Tbilisi State University, Georgia.

Flickinger, D. 1987. Lexical Rules in the Hierarchical Lexicon. Phil. Dissertation,
Stanford University.

Hillery, P.J. 2006. The Georgian Language – An outline grammatical summary.
http://www.armazi.com/georgian/.

Levine, R. D., & Meurers, D. W. 2006. Head-Driven Phrase Structure Grammar:
Linguistic Approach, Formal Foundations, and Computational Realization.
In: Brown, Keith (ed), Encyclopedia of Language and Linguistics. Second
Edition. Oxford: Elsevier.

Melikishvili, D. 2001. Conjugation system of Georgian verb. Logos press.

Melnik, N. 2007. From “Hand-Written” to Computationally Implemented HPSG
Theories. Research on Language and Computation, 5(2), 199–236.

Meurer, P. 2009. Logic, Language, and Computation. Springer-Verlag.

Meurers, W. D., Penn, G., & Richter, F. 2002. A Web-based Instructional Plat-
form for Constraint-Based Grammar Formalisms and Parsing. Pages 18–25
of: Effective Tools and Methodologies for Teaching NLP and CL. ACL.

Moshier, M. 1988. Extensions to unification grammar for the description of pro-
gramming languages. Ph.D. thesis, Ann Arbor, MI, USA.

Moshier, M., Rounds W. 1987. A Logic for Partially Specified Data Structures.
Pages 156–167 of: Principles of Programing Languages.

Penn, G., & Abdolhosseini, M. H. 2003a. The Attribute Logic Engine with TRALE
extensions. User’s Guide.

Penn, G., & Abdolhosseini, M. H. 2003b. TRALE reference manual. draft.

97

http://gllc.ge/publications/articles/L.Abzianidze_BT.pdf
http://gllc.ge/publications/articles/L.Abzianidze_BT.pdf
http://www.armazi.com/georgian/

Penn, G., Meurers, D., De Kuthy, K., H., Abdolhosseini M., Metcalf, V., Muller,
S., & H., Wunsch. 2003. Trale Milca Environment v. 2.5.0. User’s Manual
(Draft).

Penn, G. B. 2000. The Algebraic Structure of Attributed Type Signatures. Phil.
Dissertation, Carnegie Mellon University.

Pkhakadze, K., Abzianidze L. Maskharashvili A. 2008a. Georgian language’s
theses. In: Reports vol. 34, Seminar of I. Vekua Institute of Applied Mathe-
matics. http://www.viam.science.tsu.ge/report/vol34/pkhakadze_2.

pdf.

Pkhakadze, K., Abzianidze L. Maskharashvili A. 2009a. The mathematical anal-
ysis of Georgian declarative verbs. In: Reports of Enlarged Session of the
Seminar of I. Vekua Institute of Applied Mathematics. http://gllc.ge/

publications/articles/VIAM2009_MA_of_GDV.pdf.

Pkhakadze, K., Abzianidze L. Maskharashvili A. Bakradze N. Chichua G.
Gurasashvili L. Pkhakadze N. Vakhania N. 2008b. The 2-Stage Logical
Grammar of Georgian Language And The 1-Stage Voice Managed Geor-
gian Intellectual Computer System. Online publication, http://gllc.ge/
publications/online_issues/2Stage_LGofGL&1Stage_VMGICS.pdf.

Pkhakadze, K., Chichua G. Vashalomidze A. Abzianidze L. Maskharashvili
A. Pkhakadze N. Chikvinidze M. 2009b. Toward Complete Mathemat-
ical and Mechanical Foundation of the Georgian Language and Think-
ing. Online publication, http://gllc.ge/publications/online_issues/
Foundation_of_GLT.pdf.

Pkhakadze, K. 2004. Pre-verbal Semantic Unit, Problem of Personal Mark Signs,
Integral and Non-Integral Verbal Word-Semantics and Incomplete or First
Semantic Classification of Georgian Verbs. in Georgian.

Pkhakadze, K. 2005. About Logical Declination and Lingual Relations in Geor-
gian. in Georgian, http://gllc.ge/publications/issues/Jurnali_1_

2005.pdf.

Pollard, C. 1997. Lectures on the foundations of HPSG. Course Notes.

Pollard, C., & Sag, I. A. 1987. Information-Based Syntax and Semantics. Volume
1: Fundamentals. Stanford: CSLI Publications.

Pollard, C., & Sag, I. A. 1994. Head-Driven Phrase Structure Grammar. Chicago:
The University of Chicago Press.

Rosen, A. 2010a. How to write a TRALE grammar. Course in Linguistic The-
ory and Grammar Formalisms, http://utkl.ff.cuni.cz/~rosen/public/
trale_syntax.pdf.

Rosen, A. 2010b. TRALE. Course in Linguistic Theory and Grammar For-
malisms, http://utkl.ff.cuni.cz/~rosen/public/trale.pdf.

98

http://www.viam.science.tsu.ge/report/vol34/pkhakadze_2.pdf
http://www.viam.science.tsu.ge/report/vol34/pkhakadze_2.pdf
http://gllc.ge/publications/articles/VIAM2009_MA_of_GDV.pdf
http://gllc.ge/publications/articles/VIAM2009_MA_of_GDV.pdf
http://gllc.ge/publications/online_issues/2Stage_LGofGL&1Stage_VMGICS.pdf
http://gllc.ge/publications/online_issues/2Stage_LGofGL&1Stage_VMGICS.pdf
http://gllc.ge/publications/online_issues/Foundation_of_GLT.pdf
http://gllc.ge/publications/online_issues/Foundation_of_GLT.pdf
http://gllc.ge/publications/issues/Jurnali_1_2005.pdf
http://gllc.ge/publications/issues/Jurnali_1_2005.pdf
http://utkl.ff.cuni.cz/~rosen/public/trale_syntax.pdf
http://utkl.ff.cuni.cz/~rosen/public/trale_syntax.pdf
http://utkl.ff.cuni.cz/~rosen/public/trale.pdf

Sag, I. A., Wasow, T., & Bender, E. M. 2003. Syntactic Theory: A Formal
Introduction, 2nd edition. CSLI.

Uszkoreit, H. 1996. A personal note on the essence of HPSG and its role in com-
putational linguistics. http://www.coli.uni-sb.de/~hansu/hpsg1.html.

Vamling, K. 1989. Complementation in Georgian. Ph.D. Thesis, Lund University.

99

http://www.coli.uni-sb.de/~hansu/hpsg1.html

A. GeoGram ver.1

%%%

%%%%%%%%%%%%%% SIGNATURE %%%%%%%%%%%%%%%%

%%%

type_hierarchy

bot

sign phon:list cat:cat h_init:bool

word h_init:plus

phrase head_dtr:sign nonh_dtr:sign dtrs:list

cat head:head val:list

head

verb

noun num:num case:case pers:per3

case

nom % nominative N-i

ins % instrumental N-ith

gen % genetive N-is(si)

ori % orientative N-isken

abl1 % ablative1 N-idan

abl2 % ablative2 N-isgan

ben % benefactive N-isthvis

erg % ergative N-ma

ine % inessive N-shi

dat % dative N-s

loc % locative N-ze

com % comitative N-than

adv % adverbial N-ad

ter % antessive N-amde

num

sing

plur

per3

bool

plus

minus

list

e_list

ne_list hd:bot tl:list

.

%%%

%%%%%%%%%%%%%% THEORY %%%%%%%%%%%%%%%%%%%

%%%

:- tree_extensions.

:- multifile if/2.

% hidden features

hidden_feat(dtrs).

% feature ordering

>>> phon.

num <<< pers.

case <<< num.

%==

% Functional Descriptions

%==

% delete(+,+,-)

% delete a bot element from the list and return reduced list

fun del(+,+,-).

del(X,Y,Z) if

when((Y=(e_list;ne_list);

Z=(e_list;ne_list)),

undelayed_del(X,Y,Z)).

undelayed_del(El,(list,hd:El,tl:L),L) if true.

undelayed_del(El,(list,hd:H,tl:T1),(list,hd:H,tl:T2)) if del(El,T1,T2).

100

%==

% Import other components

%==

:- [’principles’].

:- [’ps_rules’].

:- [’macros’].

% no lexical rules

:- [’lexicon’].

:- [’test’].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% MACROS %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=====================================

% Synsem Macros

%=====================================

%%% noun category, input: case, number

noun_ss(Case-case, Num-num) :=

(cat,

head:(noun,

case:Case,

num:Num),

val:e_list).

%%% Verb category, input: Valency list

verb_ss(ConjSt-list) :=

(cat,

head:(verb),

val:ConjSt).

%=====================================

% Word Macros

%=====================================

%%% noun word, input: case, number

noun(Case-case, Num-num) :=

(word,

cat:(@noun_ss(Case, Num))).

%%% verb word, input: valency list

verb(ConjSt-list) :=

(word,

cat:(@verb_ss(ConjSt))).

%%%

%%%%%%%% PHRASE STRUCTURE RULES %%%%%%%%%

%%%

%=====================================

% Head Initial PS rule

%=====================================

head_init_phrase ##

(phrase,

h_init:plus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (Head, h_init:plus),

cat> (NonHead).

% results head initial phrase

% whose head is also head initial

% i.e. the first word is the head word in the phrase

%=====================================

% Head Final PS rule

%=====================================

head_fin_phrase ##

101

(phrase,

h_init:minus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (NonHead),

cat> (Head).

% results the head final phrase

% without any constraints on the head

%%%

%%%%%%%%%%%% PRINCIPLES %%%%%%%%%%%%%%%%%

%%%

%=====================================

% Head Feature Principl

%=====================================

phrase

*>

(cat:(head:HF),

head_dtr:cat:(head:HF)).

%=====================================

% Valency Principle

%=====================================

phrase

*>

(cat:val:del(NonH,H),

head_dtr:cat:val:H,

nonh_dtr:cat:NonH).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% LEXICON %%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%====================================

% Nouns

%====================================

%%% man

kaci ~~> @noun(nom, sing).

kacma ~~> @noun(erg, sing).

%%% woman

qali ~~> @noun(nom, sing).

qalma ~~> @noun(erg, sing).

%%% book

tcigni ~~> @noun(nom, sing).

tcigns ~~> @noun(dat, sing).

tcignebs ~~> @noun(dat, plur).

%%% letter

tcerili ~~> @noun(nom, sing).

tcerils ~~> @noun(dat, sing).

%%% son/daughter

shvili ~~> @noun(nom, sing).

shvilthan ~~> @noun(com, sing).

%%% student

studenti ~~> @noun(nom, sing).

students ~~> @noun(dat, sing).

studentma ~~> @noun(erg, sing).

studentebi ~~> @noun(nom, plur).

studentebs ~~> @noun(dat, plur).

%%% boy

bitchi ~~> @noun(nom, sing).

bitchma ~~> @noun(erg, sing).

%%% rope

thoki ~~> @noun(nom, sing).

%%% fence

102

ghobe ~~> @noun(nom, sing).

ghobidan ~~> @noun(abl1, sing).

ghobemde ~~> @noun(ter, sing).

%%% house

saxli ~~> @noun(nom, sing).

saxlidan ~~> @noun(abl1, sing).

saxlamde ~~> @noun(ter, sing).

%%% exam

gamocda ~~> @noun(nom, sing).

gamocdis ~~> @noun(gen, sing).

gamocdebis ~~> @noun(gen, plur).

%====================================

% Verbs

%====================================

%%% to read

kithxulobs ~~> @verb([@noun_ss(nom,sing), @noun_ss(dat,_)]).

kithxuloben ~~> @verb([@noun_ss(nom,plur), @noun_ss(dat,_)]).

tcaikithxa ~~> @verb([@noun_ss(erg,sing), @noun_ss(nom,_)]).

%%% to be afraid of

eshinia ~~> @verb([@noun_ss(dat,sing), @noun_ss(gen,_)]).

eshiniath ~~> @verb([@noun_ss(dat,plur), @noun_ss(gen,_)]).

%%% to send

gzavnis ~~> @verb([@noun_ss(nom,sing), @noun_ss(dat,_), @noun_ss(com,_)]).

gaagzavna ~~> @verb([@noun_ss(erg,sing), @noun_ss(nom,_), @noun_ss(com,_)]).

%%% to stretch smth. between smth.

gaaba ~~> @verb([@noun_ss(erg,sing), @noun_ss(nom,_), @noun_ss(abl1,_), @noun_ss(ter,_)]).

%%%

%%%%%%%%%%%%%% TEST SUITE %%%%%%%%%%%%%%%

%%%

%=====================================

% Verb complemeted with nouns

%=====================================

t(1, "studenti kithxulobs tcigns", (phrase, cat:(@verb_ss(e_list))), 1,

’The student reads the book’).

t(2, "studentebi kithxuloben tcignebs", (phrase, cat:(@verb_ss(e_list))), 1,

’students reads books’).

t(3, "studentma tcaikithxa tcigni", (phrase, cat:(@verb_ss(e_list))), 1,

’The student read the book’).

t(4, "tcigni tcaikithxa studentma", (phrase, cat:(@verb_ss(e_list))), 1,

’The student read the book’).

t(5, "studentebi kithxuloben", (phrase, cat:(@verb_ss(ne_list))), 1,

’Students read’).

t(6, "studentebs eshiniath gamocdebis", (phrase, cat:(@verb_ss(e_list))), 1,

’Students are afraid of exams’).

t(7, "students eshinia", (phrase, cat:(@verb_ss(ne_list))), 1,

’Student is afraid of’).

t(8, "students eshiniath gamocdebis", bot, 0,

’verb noun agreemnet in number’).

t(9, "kaci gzavnis tcerils shvilthan", (phrase, cat:(@verb_ss(e_list))), 1,

’The man sends the letter tothe son’).

t(10, "qalma gaagzavna tcerils", bot, 0,

’wrong case for the noun argumnet’).

t(11, "bitchma gaagzavna tcigni", (phrase, cat:(@verb_ss(ne_list))), 1,

’the boy sent the book’).

t(12, "bitchma gaaba thoki", (phrase, cat:(@verb_ss(ne_list))), 1,

’The boy stretched the rope’).

t(13, "kacma thoki gaaba saxlidan ghobemde", (phrase, cat:(@verb_ss(e_list))), 1,

’The mam stretched the rope from the house till the fence’).

t(14, "saxlidan ghobemde kacma thoki gaaba", (phrase, cat:(@verb_ss(e_list))), 1,

’The mam stretched the rope from the house till the fence’).

103

t(15, "ghobidan saxlamde kacma thoki gaaba", (phrase, cat:(@verb_ss(e_list))), 1,

’The mam stretched the rope from the fence till the house’).

t(16, "ghobidan gaaba saxlamde kacma thoki", (phrase, cat:(@verb_ss(e_list))), 1,

’The mam stretched the rope from the fence till the house’).

104

B. GeoGram ver.2

%%%

%%%%%%%%%%%%%% SIGNATURE %%%%%%%%%%%%%%%%

%%%

type_hierarchy

bot

sign phon:list cat:cat h_init:bool

word h_init:plus arg_st:list

phrase head_dtr:sign nonh_dtr:sign dtrs:list

cat head:head val:val

head

verb tense:tense

npn case:case num:num pers:pers

noun pers:per3

val

frame expl:list impl:list

&list

case

nom % nominative N-i

ins % instrumental N-ith

gen % genetive N-is(si)

ori % orientative N-isken

abl1 % ablative1 N-idan

abl2 % ablative2 N-isgan

ben % benefactive N-isthvis

erg % ergative N-ma

ine % inessive N-shi

dat % dative N-s

loc % locative N-ze

com % comitative N-than

adv % adverbial N-ad

ter % antessive N-amde

tense

prs

psc

pst

fut

num

sing

plur

pers

per1

per2

per3

bool

plus

minus

list

e_list

ne_list hd:bot tl:list

.

%%%

%%%%%%%%%%%%%% THEORY %%%%%%%%%%%%%%%%%%%

%%%

:- tree_extensions.

:- multifile if/2.

:-lex_rule_depth(3).

% hidden features

hidden_feat(dtrs).

% feature ordering

>>> phon.

num <<< pers.

case <<< num.

105

%==

% Functional Descriptions

%==

% append(+,+,-)

% This append assumes that the first or the third argument

% are known to be non_empty or empty lists.

fun append(+,+,-).

append(X,Y,Z) if

when((X=(e_list;ne_list);

Z=(e_list;ne_list))

, undelayed_append(X,Y,Z)

).

undelayed_append(e_list, L, L) if true.

undelayed_append((list, hd:H, tl:T1), L, (list, hd:H, tl:T2)) if append(T1, L, T2).

% delete(+,+,-)

% delete a bot element from the list and return reduced list

fun del(+,+,-).

del(X,Y,Z) if

when((Y=(e_list;ne_list);

Z=(e_list;ne_list)),

undelayed_del(X,Y,Z)).

undelayed_del(El,(list,hd:El,tl:L),L) if true.

undelayed_del(El,(list,hd:H,tl:T1),(list,hd:H,tl:T2)) if del(El,T1,T2).

%==

% Import other components

%==

:- [’principles’].

:- [’ps_rules’].

:- [’macros’].

% no lexical rules

:- [’lexicon’].

:- [’test’].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% MACROS %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=====================================

% Synsem Macros

%=====================================

%%% noun/pronoun category input: case, number, person

npn_ss(Case-case, Num-num, Per-pers) :=

(cat,

head:(npn,

case:Case,

num:Num,

pers:Per),

val:e_list).

%%% verb category input: explicit_arg_list, Implicit_arg_list, tense

verb_ss(Expl-list, Impl-list, T-tense) :=

(cat,

head:(verb,

tense:T),

val:(frame,

expl:Expl,

impl:Impl)).

106

%=====================================

% For Testing and Lexicon

%=====================================

%%% noun word, input: case, number

noun(Case-case, Num-num) :=

(word,

cat:(cat,

head:(noun,

case:Case,

num:Num),

val:e_list),

arg_st:e_list).

%%% pronoun (noun) word, input: case, number, person

npn(Case-case, Num-num, Per-pers) :=

(word,

cat:(@npn_ss(Case, Num, Per)),

arg_st:e_list).

%%% verb word, input: explicit_arg_list, implicit_arg_list, tenses

verb(Expl-list, Impl-list, T-tense) :=

(word,

cat:(@verb_ss(Expl, Impl, T)),

arg_st:append(Expl, Impl)).

%%%

%%%%%%%% PHRASE STRUCTURE RULES %%%%%%%%%

%%%

%=====================================

% Head Initial PS rule

%=====================================

head_init_phrase ##

(phrase,

h_init:plus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (Head, h_init:plus),

cat> (NonHead).

% results head initial phrase

% whose head is also head initial

% i.e. the first word is the head word in the phrase

%=====================================

% Head Final PS rule

%=====================================

head_fin_phrase ##

(phrase,

h_init:minus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (NonHead),

cat> (Head).

% results the head final phrase

% without any constraints on the head

%%%

%%%%%%%%%%%% PRINCIPLES %%%%%%%%%%%%%%%%%

%%%

%=====================================

% Head Feature Principl

%=====================================

phrase

*>

(cat:(head:HF),

head_dtr:cat:(head:HF)).

%=====================================

% Valency Principle

107

%=====================================

phrase

*>

((cat:val:(expl:del(NonH, Expl),

impl:Impl),

head_dtr:cat:val:(expl:Expl,

impl:Impl),

nonh_dtr:cat:NonH);

(cat:val:(expl:Expl,

impl:del(NonH, Impl)),

head_dtr:cat:val:(expl:Expl,

impl:Impl),

nonh_dtr:cat:NonH)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% LEXICON %%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%====================================

% Nouns

%====================================

%%% man

kaci ~~> @noun(nom, sing).

kacma ~~> @noun(erg, sing).

%%% woman

qali ~~> @noun(nom, sing).

qalma ~~> @noun(erg, sing).

%%% book

tcigni ~~> @noun(nom, sing).

tcigns ~~> @noun(dat, sing).

tcignebs ~~> @noun(dat, plur).

%%% letter

tcerili ~~> @noun(nom, sing).

tcerilebi ~~> @noun(nom, plur).

tcerils ~~> @noun(dat, sing).

%%% son/daughter

shvili ~~> @noun(nom, sing).

shvilthan ~~> @noun(com, sing).

shvilebthan ~~> @noun(com, plur).

%%% student

studenti ~~> @noun(nom, sing).

students ~~> @noun(dat, sing).

studentma ~~> @noun(erg, sing).

studentebi ~~> @noun(nom, plur).

studentebs ~~> @noun(dat, plur).

studentebthan ~~> @noun(com, plur).

%%% boy

bitchi ~~> @noun(nom, sing).

bitchma ~~> @noun(erg, sing).

%%% rope

thoki ~~> @noun(nom, sing).

thoks ~~> @noun(dat, sing).

%%% fence

ghobe ~~> @noun(nom, sing).

ghobidan ~~> @noun(abl1, sing).

ghobemde ~~> @noun(ter, sing).

%%% house

saxli ~~> @noun(nom, sing).

saxlidan ~~> @noun(abl1, sing).

saxlamde ~~> @noun(ter, sing).

%%% exam

108

gamocda ~~> @noun(nom, sing).

gamocdis ~~> @noun(gen, sing).

gamocdebis ~~> @noun(gen, plur).

%====================================

% VERBS

%====================================

%%% to read smth

kithxulobs ~~> @verb([@npn_ss(nom,sing,per3), @npn_ss(dat,_,per3)], [], prs).

kithxuloben ~~> @verb([@npn_ss(nom,plur,per3), @npn_ss(dat,_,per3)], [], prs).

tcaikithxa ~~> @verb([@npn_ss(erg,sing,per3), @npn_ss(nom,_,per3)], [], pst).

vkithxulobdith ~~> @verb([@npn_ss(nom,plur,per1), @npn_ss(dat,_,per3)], [], psc).

%%% to be afraid of smth./smb.

eshinia ~~> @verb([@npn_ss(dat,sing,per3)], [@npn_ss(gen,_,_)], prs).

eshiniath ~~> @verb([@npn_ss(dat,plur,per3)], [@npn_ss(gen,_,_)], prs).

meshinia ~~> @verb([@npn_ss(dat,sing,per1)], [@npn_ss(gen,_,_)], prs).

shegeshinda ~~> @verb([@npn_ss(dat,sing,per2)], [@npn_ss(gen,_,_)], pst).

%%% to send smth./smb. smwh.

gzavnis ~~> @verb([@npn_ss(nom,sing,per3), @npn_ss(dat,_,per3)],

[@npn_ss(com,_,_)], prs).

gaagzavna ~~> @verb([@npn_ss(erg,sing,per3), @npn_ss(nom,_,per3)],

[@npn_ss(com,_,_)], pst).

gavagzavne ~~> @verb([@npn_ss(erg,sing,per1), @npn_ss(nom,_,per3)],

[@npn_ss(com,_,_)], pst).

agzavnith ~~> @verb([@npn_ss(nom,plur,per2), @npn_ss(dat,_,per3)],

[@npn_ss(com,_,_)], prs).

%%% to send for smb. smth. smwh.

gagigzavne ~~> @verb([@npn_ss(erg,sing,per1), @npn_ss(dat,sing,per2), @npn_ss(nom,_,per3)],

[@npn_ss(com,_,_)], pst).

%%% to stretch smth. between smth.

gaaba ~~> @verb([@npn_ss(erg,sing,per3), @npn_ss(nom,_,per3)],

[@npn_ss(abl1,_,_), @npn_ss(ter,_,_)], pst).

%%% to stretch for smb. smth. between smth.

gagibav ~~> @verb([@npn_ss(nom,sing,per1), @npn_ss(dat,sing,per2), @npn_ss(dat,_,per3)],

[@npn_ss(abl1,_,_), @npn_ss(ter,_,_)], fut).

%====================================

% PRONOUNS

%====================================

%%% 1st person singular

me ~~> @npn((nom;erg;dat), sing, per1).

chemi ~~> @npn(gen, sing, per1).

chemidan ~~> @npn(abl1, sing, per1).

chemgan ~~> @npn(abl2, sing, per1).

chemthan ~~> @npn(com, sing, per1).

chemamde ~~> @npn(ter, sing, per1).

%%% 1st person plural

chven ~~> @npn((nom;erg;dat), plur, per1).

chveni ~~> @npn(gen, plur, per1).

chvenidan ~~> @npn(abl1, plur, per1).

chvengan ~~> @npn(abl2, plur, per1).

chventhan ~~> @npn(com, plur, per1).

chvenamde ~~> @npn(ter, plur, per1).

%%% 2nd person singular

shen ~~> @npn((nom;erg;dat), sing, per2).

sheni ~~> @npn(gen, sing, per2).

shenidan ~~> @npn(abl1, sing, per2).

shengan ~~> @npn(abl2, sing, per2).

shenthan ~~> @npn(com, sing, per2).

shenamde ~~> @npn(ter, sing, per2).

%%% 2nd person plural

thqven ~~> @npn((nom;erg;dat), plur, per2).

thqveni ~~> @npn(gen, plur, per2).

thqvenidan ~~> @npn(abl1, plur, per2).

109

thqvengan ~~> @npn(abl2, plur, per2).

thqventhan ~~> @npn(com, plur, per2).

thqvenamde ~~> @npn(ter, plur, per2).

%%% 3rd person singular

is ~~> @npn(nom, sing, per3).

igi ~~> @npn(nom, sing, per3).

mas ~~> @npn(dat, sing, per3).

man ~~> @npn(erg, sing, per3).

misith ~~> @npn(ins, sing, per3).

misi ~~> @npn(gen, sing, per3).

misgan ~~> @npn((abl2;abl1), sing, per3).

masthan ~~> @npn(com, sing, per3).

%%% 3rd person plural

isini ~~> @npn(nom, plur, per3).

math ~~> @npn((erg;dat), plur, per3).

mathi ~~> @npn(gen, plur, per3).

mathgan ~~> @npn((abl1;abl2), plur, per3).

maththan ~~> @npn(com, plur, per3).

%%%

%%%%%%%%%%%%%% TEST SUITE %%%%%%%%%%%%%%%

%%%

%=====================================

% Verb complemeted with nouns

%=====================================

t(1, "studenti kithxulobs tcigns", (phrase, cat:(@verb_ss(e_list, e_list, prs))), 1,

’The student reads the book’).

t(2, "studentebi kithxuloben tcignebs", (phrase, cat:(@verb_ss(e_list, e_list, prs))), 1,

’students reads books’).

t(3, "studentma tcaikithxa tcigni", (phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The student read the book’).

t(4, "tcigni tcaikithxa studentma", (phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The student read the book’).

t(5, "studentebi kithxuloben", (phrase, cat:(@verb_ss(ne_list, e_list, prs))), 1,

’Students read’).

t(6, "studentebs eshiniath gamocdebis", (phrase, cat:(@verb_ss(e_list, e_list, prs))), 1,

’Students are afraid of exams’).

t(7, "students eshinia", (phrase, cat:(@verb_ss(e_list, ne_list, prs))), 1,

’Student is afraid of’).

t(8, "students eshiniath gamocdebis", bot, 0,

’verb noun agreemnet in number’).

t(9, "kaci gzavnis tcerils shvilthan", (phrase, cat:(@verb_ss(e_list, e_list, prs))), 1,

’The man sends the letter tothe son’).

t(10, "qalma gaagzavna tcerils", bot, 0,

’wrong case for the noun argumnet’).

t(11, "bitchma gaagzavna tcigni", (phrase, cat:(@verb_ss(e_list, ne_list, pst))), 1,

’the boy sent the book’).

t(12, "bitchma gaaba thoki", (phrase, cat:(@verb_ss(e_list, ne_list, pst))), 1,

’The boy stretched the rope’).

t(13, "kacma thoki gaaba saxlidan ghobemde",(phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The mam stretched the rope from the house till the fence’).

t(14, "saxlidan ghobemde kacma thoki gaaba",(phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The mam stretched the rope from the house till the fence’).

t(15, "ghobidan saxlamde kacma thoki gaaba",(phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The mam stretched the rope from the fence till the house’).

t(16, "ghobidan gaaba saxlamde kacma thoki",(phrase, cat:(@verb_ss(e_list, e_list, pst))), 1,

’The mam stretched the rope from the fence till the house’).

%=====================================

% Verb complemeted with nouns and pronouns

%=====================================

t(17, "chven tcignebs vkithxulobdith",(phrase, cat:(@verb_ss(e_list, e_list, psc))), 1,

’We were reading books’).

t(18, "meshinia sheni", (phrase, cat:(@verb_ss(ne_list, e_list, prs))), 1,

’I am afraid of you’).

t(19, "me meshinia sheni", (phrase, cat:(@verb_ss(e_list, e_list, prs))), 1,

’I am afraid of you’).

110

t(20, "meshinia misi", (phrase, cat:(@verb_ss(ne_list, e_list, prs))), 1,

’I am afraid of him’).

t(21, "shen shegeshinda", (phrase, cat:(@verb_ss(e_list, ne_list, pst))), 1,

’you got frightened’).

t(22, "me gavagzavne shen", bot, 0,

’3rd person required 2nd person got’).

t(23, "gavagzavne tcerili shvilthan", (phrase, cat:(@verb_ss(ne_list, e_list, pst))), 1,

’I sent a letter to to the son’).

t(24, "thqven agzavnith tcerils", (phrase, cat:(@verb_ss(e_list, ne_list, prs))), 1,

’You-pl are sending a letter’).

t(25, "gagibav saxlamde thoks", (phrase, cat:(@verb_ss(ne_list, ne_list, fut))), 1,

’I will stretch for you the rope till the house’).

t(26, "gagigzavne tcerilebi studentebthan", (phrase, cat:(@verb_ss(ne_list, e_list, pst))), 1,

’I sent for you letters to students’).

111

C. GeoGram ver.3

%%%

%%%%%%%%%%%%%% SIGNATURE %%%%%%%%%%%%%%%%

%%%

type_hierarchy

bot

sign phon:list cat:cat h_init:bool

word h_init:plus arg_st:list

phrase head_dtr:sign nonh_dtr:sign dtrs:list

ch_phrase %tech

ah_phrase %tech

hc_phrase %tech

cat head:head val:val

head

verb tense:tense

nominal case:case

npn num:num pers:pers

&poss_npn

arg_npn case:arg_c

&arg_noun

noun pers:per3

arg_noun

&poss_noun

adjunct case:adj_c mod:ne_list

poss_npn

poss_pn case:non_cnst

poss_noun case:cnst %tech, cnst

qnt

qnt_i case:non_cnst

qnt_ case:cnst

adj

adj_i case:non_cnst

adj_ case:cnst

val

frame expl:list impl:list

comps spec:spec comp:list

&e_list

spec

unspec

specif

attrib

deter

n_poss

pnp_q

quant

pn_poss

non_deter %tech

&unspec

&attrib

case

arg_c

case_i

nom % nominative N-i

ins % instrumental N-ith

gen % genetive N-is(si)

ori % orientative N-isken

abl1 % ablative1 N-idan

abl2 % ablative2 N-isgan

ben % benefactive N-isthvis

erg % ergative N-ma

case_

ine % inessive N-shi

dat % dative N-s

loc % locative N-ze

com % comitative N-than

adv % adverbial N-ad

ter % antessive N-amde

adj_c

non_cnst

nom_c

112

dat_c

erg_c

cnst

cnst_i %tech

&cnst

&case_i

tense

prs

psc

pst

fut

num

sing

plur

pers

per1

per2

per3

bool

plus

minus

list

e_list

ne_list hd:bot tl:list

.

%%%

%%%%%%%%%%%%%% THEORY %%%%%%%%%%%%%%%%%%%

%%%

:- tree_extensions.

:- multifile if/2.

:-lex_rule_depth(3).

% hidden features

hidden_feat(dtrs).

% feature ordering

>>> phon.

num <<< pers.

case <<< num.

%==

% Functional Descriptions

%==

% append(+,+,-)

% input: two lists

% output: concatenation of the lists

% This append assumes that the first or the third argument

% are known to be non_empty or empty lists.

fun append(+,+,-).

append(X,Y,Z) if

when((X=(e_list;ne_list);

Z=(e_list;ne_list))

, undelayed_append(X,Y,Z)

).

undelayed_append(e_list, L, L) if true.

undelayed_append((list, hd:H, tl:T1), L, (list, hd:H, tl:T2)) if append(T1, L, T2).

% delete(+,+,-)

% delete a bot element from the list and return reduced list

% input: element and list

% output: list minus element

fun del(+,+,-).

del(X,Y,Z) if

when((Y=(e_list;ne_list);

Z=(e_list;ne_list)),

undelayed_del(X,Y,Z)).

113

undelayed_del(El,(list,hd:El,tl:L),L) if true.

undelayed_del(El,(list,hd:H,tl:T1),(list,hd:H,tl:T2)) if del(El,T1,T2).

% mod_case(+,+,-)

% input: adjunct case

% output: modifiers case

fun mod_case(+,-).

mod_case(erg_c, erg) if true.

mod_case(dat_c, case_) if true.

mod_case(cnst, case) if true.

mod_case(nom_c, cnst_i) if true.

% specify(+,+,-)

% input: the specification function of the adjunct and

% the specification value og the head

% output: specification value of the phrase

fun specify(+,+,-).

specify((S,specif), unspec, S) if true.

specify((S,specif), attrib, S) if true.

specify(n_poss, quant, n_poss) if true.

specify(pn_poss, quant, pnp_q) if true.

specify(quant, pn_poss, pnp_q) if true.

%==

% Import other components

%==

:- [’principles’].

:- [’ps_rules’].

:- [’macros’].

% no lexical rules

:- [’lexicon’].

:- [’test’].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% Macros %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%=====================================

% Synsem Macros

%=====================================

%%% noun category input: case, number, specification, complement

%%% used to complect the argument structure of adjuncts

noun_ss(Case-case, Num-num, Spec-spec, Comp-list) :=

(cat,

head:(noun,

case:Case,

num:Num),

val:(spec:Spec,

comp:Comp)).

%%% noun complement input: number

%%% used for noun complements

n_comp_ss(Num-num) :=

(cat,

head:(noun,

case:cnst,

num:Num),

val:spec:non_deter).

%%% argument noun/pronoun category input: case, number, person

%%% used to complect the argument structure of the verb

arg_npn_ss(Case-arg_c, Num-num, Per-pers) :=

114

(cat,

head:(arg_npn,

case:Case,

num:Num,

pers:Per),

val:comps).

%%% verb category input: explicit_arg_list, Implicit_arg_list, tense

%%% used in test

verb_ss(Expl-list, Impl-list, T-tense) :=

(cat,

head:(verb,

tense:T),

val:(frame,

expl:Expl,

impl:Impl)).

%=====================================

% For Testing and Lexicon

%=====================================

%%% noun word, input: case, number, complement

%%% used in lexicon for arg-nouns and poss-nouns

noun(Case-case, Num-num, Comp-list) :=

(word,

cat:(@noun_ss(Case, Num, unspec, Comp)),

arg_st:Comp).

%%% pronoun word, input: case, number, person

%%% used in lexicon for possesive and argument pronouns

pn(Case-case, Num-num, Per-pers) :=

(word,

cat:(head:(npn,

case:Case,

num:Num,

pers:Per),

val:(spec:n_poss,

comp:e_list)),

arg_st:e_list).

%%% verb word, input: explicit_arg_list, implicit_arg_list, tenses

%%% used in lexicon

verb(Expl-list, Impl-list, T-tense) :=

(word,

cat:(@verb_ss(Expl, Impl, T)),

arg_st:append(Expl, Impl)).

%%% adjective word, input: case

%%% used in lexicon

adj(Case-adj_c) :=

(word,

cat:(cat,

head:(adj,

case:Case,

mod:[@noun_ss(mod_case(Case),_,_,_)]),

% constraints are relaxed on spec feature

% to avoid inequations

val:e_list),

arg_st:e_list).

%%% quantifier word, input: case

%%% used in lexicon

qnt(Case-adj_c) :=

(word,

cat:(cat,

head:(qnt,

case:Case,

mod:[@noun_ss(mod_case(Case),sing,_,_)]),

% constraints are relaxed on spec feature

% to avoid inequations

val:e_list),

arg_st:e_list).

115

%%%

%%%%%%%% PHRASE STRUCTURE RULES %%%%%%%%%

%%%

%=====================================

% Head Initial Verb PS Rule

%=====================================

head_init_phrase ##

(hc_phrase,

h_init:plus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (Head, h_init:plus,

cat:head:verb),

cat> (NonHead).

% results head initial verb phrase

% whose head is also head initial

% i.e. the first word is the head word in the phrase

%=====================================

% Head Final Verb PS Rule

%=====================================

head_fin_phrase ##

(ch_phrase,

h_init:minus,

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (NonHead),

cat> (Head, cat:head:verb).

% results the head final verb phrase

% without any constraints on the head

%=====================================

% Adjunct-Noun PS Rule

%=====================================

adjunct_noun ##

(ah_phrase,

h_init:minus,

cat:val:(spec:Spec,

comp:e_list),

head_dtr:Head,

nonh_dtr:NonHead)

===>

cat> (NonHead, cat:head:(adjunct, POS,

mod:[H_cat])),

cat> (Head, cat:(H_cat, head:noun,

val:spec:Hspec)),

goal> ((POS = adj, Spec = specify(attrib,Hspec));

(POS = qnt, Spec = specify(quant,Hspec));

(POS = poss_pn, Spec = specify(pn_poss,Hspec));

(POS = poss_noun, Spec = specify(n_poss, Hspec))

).

% Depending on adjunct type the phrase changes the Spec value

% Resulted phrase can not take any complements

%=====================================

% Complement-Noun PS Rule

%=====================================

complement_noun ##

(ch_phrase,

h_init:minus,

cat:val:(spec:unspec,

comp:e_list),

head_dtr:Head,

nonh_dtr:NonHead)

116

===>

cat> (NonHead, cat:Comp_ss),

cat> (Head, cat:(head:noun,

val:comp:[Comp_ss])).

% The cat of complement is encoded in complement list of the head

% Resulted phrase is unspecified and has empty list of complements

%%%

%%%%%%%%%%%% PRINCIPLES %%%%%%%%%%%%%%%%%

%%%

%=====================================

% Head Feature Principl

%=====================================

phrase

*>

(cat:(head:HF),

head_dtr:cat:(head:HF)).

%=====================================

% Verb Valency Principle

%=====================================

(phrase, cat:head:verb)

*>

((cat:val:(expl:del(NonH, Expl),

impl:Impl),

head_dtr:cat:val:(expl:Expl,

impl:Impl),

nonh_dtr:cat:NonH);

(cat:val:(expl:Expl,

impl:del(NonH, Impl)),

head_dtr:cat:val:(expl:Expl,

impl:Impl),

nonh_dtr:cat:NonH)).

%=====================================

% We skip the lexicon and the test suite due to its length

% They can be found along with other implemented grammars at:

% https://sites.google.com/site/lashabzianidze/thesis

%=====================================

117

D. Lexical rules for nominals

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% Lexical Rules %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%##

% Lexical Rules For Nominals (Noun, Adjective)

%##

%==

% Noun Lexeme Pluralization

%==

% noun lexeme ---> noun plural lexeme

%--

pluralization ##

(L, (@lex_n(Par, plus, Compl)))

**>

(@lex_n(decl_i, both, Compl), init:L)

if (Par=(decl_i;decl_a) -> (a_ Para)=(a_ ai); (a_ Para)=(a_ eou))

morphs

(_,’_’,NonFullSt) becomes (NonFullSt,eb,’_’,NonFullSt,eb) when (Para = ai),

(FullSt,’_’,_) becomes (FullSt,eb,’_’,FullSt,eb) when (Para = eou).

%==

% Noun Declension in Logical Cases

%==

% noun lexeme ---> 14 word forms marked by logical cases

%--

logic_decl ##

(L, @lex_n(Par, Pl, Compl))

**>

(@noun(Case, Num, Compl), lex:L)

if isLogCase(Case, a_ C),

isParadigm(Par, a_ P),

(Pl=(plus;minus) -> Num=sing; Num=plur)

morphs

(FullSt,’_’,_) becomes (FullSt,i) when (C = nom, P = decl_i),

(FullSt,’_’,_) becomes (FullSt) when (C = nom),

(FullSt,’_’,_) becomes (FullSt,ma) when (C = erg, P = decl_i),

(FullSt,’_’,_) becomes (FullSt,m) when (C = erg),

(FullSt,’_’,_) becomes (FullSt,s) when (C = dat),

(FullSt,’_’,_) becomes (FullSt,shi) when (C = ine),

(FullSt,’_’,_) becomes (FullSt,ze) when (C = loc),

(FullSt,’_’,_) becomes (FullSt,than) when (C = com, P = decl_i),

(FullSt,’_’,_) becomes (FullSt,sthan) when (C = com),

(_,’_’,NonFullSt) becomes (NonFullSt,ad) when (C = adv, (P = decl_i; P = decl_a)),

(FullSt,’_’,_) becomes (FullSt,d) when (C = adv),

(_,’_’,NonFullSt) becomes (NonFullSt,amde) when (C = ter, (P = decl_i; P = decl_a)),

(FullSt,’_’,_) becomes (FullSt,mde) when (C = ter),

(FullSt,’_’,_) becomes (FullSt,thi) when (C = ins, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,ith) when (C = ins),

(FullSt,’_’,_) becomes (FullSt,si) when (C = gen, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,is) when (C = gen),

118

(FullSt,’_’,_) becomes (FullSt,sken) when (C = ori, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,isken) when (C = ori),

(FullSt,’_’,_) becomes (FullSt,dan) when (C = abl1, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,idan) when (C = abl1),

(FullSt,’_’,_) becomes (FullSt,sgan) when (C = abl2, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,isgan) when (C = abl2),

(FullSt,’_’,_) becomes (FullSt,sthvis) when (C = ben, P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,isthvis) when (C = ben).

%==

% Marking Noun by Possessive Case

%==

% noun word form ---> the same noun marked with possessive case

%--

poss_decl ##

(L, @lex_n(Par, Pl, Compl))

**>

(@noun(cnst, Num, Compl), cat:head:mod:[head:noun], lex:L)

if isParadigm(Par, a_ P),

(Pl=(plus;minus) -> Num=sing; Num=plur)

morphs

(FullSt,’_’,_) becomes (FullSt,s) when (P = decl_ou),

(_,’_’,NonFullSt) becomes (NonFullSt,is).

%==

% Adjective/Quantifier Declension in Logical Cases

%==

% adjective/quantifier lexeme ---> 3/1 word forms marked by logical cases

%--

adjunct_decl ##

(L, (adj_lex;qnt_lex))

**>

(Adjunct, lex:L)

if (L=adj_lex -> Adjunct=(@adj(Case)); Adjunct=(@qnt(Case))),

((Case=erg_c), (a_ C)=(a_ erg_c);

(Case=dat_c), (a_ C)=(a_ dat_c);

(Case=nom_c), (a_ C)=(a_ nom_c);

(Case=cnst), (a_ C)=(a_ cnst))

morphs

(Stem,i,’_’,_) becomes (Stem,ma) when (C=erg_c),

(Stem,i,’_’,_) becomes (Stem) when (C=dat_c),

(Stem,i,’_’,_) becomes (Stem,i) when (C=nom_c),

(Stem,[A],’_’,_) becomes (Stem,A) when (C=cnst, A\=i).

%==

% Normalization of Adjective/Qiantifier Lexeme

%==

% adj_lexeme/qnt_lexeme ---> noun_lexeme

%--

normalizarion ##

(L, (@lex_a(Decl);@lex_q(Decl)))

**>

(@lex_n(Decl,Plural,e_list), init:L)

if (L=adj_lex -> Plural=plus; Plural=minus)

morphs

(Stem,i,’_’,PlStem) becomes (Stem,’_’,PlStem),

(Stem,’_’,PlStem) becomes (Stem,’_’,PlStem).

119

%=====================================

% We skip the other parts of the grammar for its length

% All further inforation about the grammar can be found at:

% https://sites.google.com/site/lashabzianidze/thesis

%=====================================

120

	Introduction to Georgian and its Grammar
	The Georgian language and its script
	Introduction to the Georgian grammar

	HPSG Formalism and Its Implementation in TRALE System
	Typed feature structures
	Feature structures
	Type hierarchy and signature
	Typed feature structures
	Subsumption order and unification operation

	Head-driven phrase structure grammar
	Main principles of HPSG
	The HPSG framework
	Signature
	Lexicon
	lexical rules
	Principles
	Grammar rules

	TRALE – an HPSG-based grammar implementation platform
	TRALE system
	Signature
	Syntax of the signature
	Subtype covering

	Theory
	Descriptions and macros
	Lexicon
	Lexical rules
	Principles
	Grammar rules
	Test suite
	Test suite

	Modeling the syntax of Georgian
	Simple declarative sentence and logical case
	Simple declarative sentence and the declarative verb
	The notion of logical case

	Getting started with an HPSG-based grammar for Georgian
	Complementation of verbs with nouns
	Verb complementation – polypersonal agreement

	The noun phrase – Adjunction and complementation of the noun
	Adjunction by adjectives and quantifiers
	Adjunction by adjectives
	Adjunction by quantifiers
	Revision of the formal grammar

	Possessive nouns and pronouns
	Possessive nouns
	Possessive pronouns

	Noun complementation and several readings of noun phrases
	Adjunct nouns vs complements noun in noun phrases
	Noun complementation

	The grammar and its implementation
	Signature
	Theory
	Implementation
	Demonstration

	Towards a realistic grammar – modeling the morphology of Georgian
	Lexical rules for nominals
	Logical declension of the noun
	Logical declension of the adjunct
	Pluralization and possession rules
	Nominalization of adjectives and quantifiers
	Putting all together in the formal grammar
	Implementation

	Lexical rules for the verbs
	The verb and its conjugation
	The verb conjugation paradigms
	The conjugation paradigm 1
	The conjugation paradigm 2
	The conjugation paradigm 3

	Implementation

	References
	GeoGram ver.1
	GeoGram ver.2
	GeoGram ver.3
	Lexical rules for nominals

