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Abstract 

Helping computers understand the meaning of sentences is one of the most challenging 

tasks in Natural Language Processing (NLP). According to the principle of 

compositionality, the meaning of a whole (e.g. a sentence) is a function of its parts and 

the way they are combined. Sentences are composed of words; thus the first step to create 

proper representations for sentences is to build appropriate representations for words. 

We argue that the type of context and the size of corpus affect the quality of the resulting 

word embeddings. To verify this, we build three different semantic spaces using three 

different contexts (bag-of-words, syntactic, and character n-gram) and two corpora of 

different sizes (British National Corpus and Wikipedia). We evaluate the resulting 

embeddings in various tasks qualitatively and quantitatively. Then we define three 

composition models (summation/averaging, concatenation and multiplication) to build 

sentence representations using the previous word embeddings. These models are 

evaluated in two different tasks (phrase and sentence similarity) to see which model of 

word embeddings along with which composition model perform best. 

The results suggest that among the three types of context, the syntactic one needs the 

largest corpus, while the character n-gram context the smallest corpus to produce quality 

word embeddings, while the bag-of-words is the fastest to build. Moreover, representing 

a sentence by averaging the vectors of its constituent words yields the best results in 

phrase and sentence level similarity tasks compared to the other methods of composition 

(i.e. concatenation and multiplication). Furthermore, the character n-gram creates the best 

embeddings to represent the sentence’s constituent words in the task of paraphrase 

detection, especially when the size of the corpus is small. 
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1 Introduction 

Distributional Semantic Models (DSMs) are computational models to represent words. In 

these models, each word is represented by a vector in a space where semantically related 

words are close and unrelated words are distant. Despite the variations in building these 

models, the theories and assumptions behind them are the same.  All these models are 

based on the Distributional Hypothesis (Harris, 1954) and all adopt a geometric approach 

toward natural language semantics. 

Distributional Hypothesis (DH) is based on the idea that words occurring in similar 

contexts tend to have a similar meaning. This hypothesis is appealing to computational 

linguists since it provides a solid theoretical foundation to automatically extract the 

semantic relations between words by considering their real use without any human 

intervention and without any a priori knowledge about semantics. Moreover, it offers the 

possibility to create a semantic space where a geometric metaphor can be used for 

meaning representation. 

The core idea to adopt a geometric approach to natural language semantics is that 

semantic similarity can be represented as proximity in n-dimensional space. According to 

Sahlgren (2006) employing spatial proximity to represent semantic similarity is not 

accidental. In fact, it is very natural and intuitive to us since we are embodied beings who 

use our spatiotemporal knowledge to make sense of the world and conceptualize the 

abstract concepts. Many aspects of semantics, especially lexical semantics require a 

notion of distance. For example, when comparing the meaning of words dog, cat, and 

car, we would say the meaning of the word cat is closer to the meaning of the word dog 

than the meaning of the word car. 

Exploiting the aforementioned ideas, DSMs try to represent a word in the form of a 

finite-dimensional vector of real numbers in a vector space. The dimensions of this vector 

are the word’s context items (e.g. co-occurring words) and the coordinates are a measure 

of the association between the word and the context items (e.g. the co-occurrence count). 

Different methods have been suggested by the scholars for building these models and 
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although all of them are based on the same theory (i.e. DH), they are divided into two 

main categories: count-based models and predictive models
1
. The following section 

discusses each category in detail. 

1.2 Distributional Semantic Models: Count-based 

As mentioned earlier, creating a vector space of word meaning begins by extracting 

distributional information from a text corpus. Based on the DH, the distribution of a word 

in a corpus or its co-occurrences with other words is a good indication of its meaning. 

Extracting these co-occurrences from a corpus is an easy task for computers. Consider the 

following toy corpus of 4 sentences: 

 

I heated the soup on the stove. 

I heated the pizza in the microwave. 

Wear warmer clothes, it is cold. 

Were you wearing these shoes at the party?! 

 

The co-occurrence count at the sentence level i.e., every word is considered to be the 

context of another word if they are in the same sentence, can be represented in the form 

of the matrix in figure 1.1. This matrix is built after filtering out the functional words 

(e.g. in) and lemmatizing the remaining words.  

 

                                                 
1 This categorization is commonplace in the literature since Baroni et al.’s paper “Don’t count, 

predict! A systematic comparison of context-counting vs. context-predicting semantic vectors” in 

2013. 
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 ( heat soup pizza wear warm cold party ) 

stove 1 1 0 0 0 0 0 

microwave 1 0 1 0 0 0 0 

clothes 0 0 0 1 1 1 0 

shoes 0 0 0 1 0 0 1 

Figure 1.1. A small example corpus and term vocabulary with the corresponding term-term matrix, with 

term-frequency as the vector coefficients. Each sentence provides a contextual window, and the sentences 

are assumed to have been lemmatized when creating the matrix. 

The matrix shown in Figure 1.1 is the matrix of co-occurrence counts of words in the 

corpus. The rows of the matrix represent the target words, i.e. the words that we want to 

find the representations for (here: stove, microwave, clothes, and shoes), and the columns 

are the features that are important for deriving the word’s representation which are the 

lemmatized content words. Every row in this matrix is the vector representation of the 

corresponding word. Thus, the vectors for stove, microwave, and shoes are as follows: 

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗= [1 1 0 0 0 0 0];          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗= [1 0 1 0 0 0 0];      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [0 0 0 1 0 0 1] 

In order to find the similarity between these words, we could calculate the similarity 

between their vectors. A commonly used method for vector similarity is cosine similarity, 

i.e. we just need to calculate the cosine of the angle between their vectors. This value 

ranges from 0 to 1 where 0 suggests non-similarity and 1 perfect similarity between two 

words. Here is the formula to calculate the cosine similarity: 

   ( )  
    ⃗ 

‖  ‖ ‖ ⃗ ‖
 

, where   is the angle between vectors   and  , and ‖  ‖    ‖ ⃗ ‖ are the size of vectors a 

and b respectively. 
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Cosine (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  0.5  

Cosine (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )      

The results show 50% similarity between stove and microwave and 0.0% similarity 

between stove and shoes for this tiny corpus of 4 sentences. 

1.3 Distributional Semantic Models: Predictive 

Predictive models create word vectors that are the results of training a neural network for 

a particular task. For example, Bengio et al. (2003) proposed a neural network model in 

which the task was to predict the next word given the previous words in a sentence. 

Similar to the count-based method, words are again represented by their contexts. The 

only difference is the way the problem is formulated. One of the commonly used 

algorithms in this approach is the one introduced by Mikolov et al. (2013) which acquires 

word embeddings by solving a co-occurrence prediction task. This algorithm has two 

flavors: Continuous Bag of Words (CBOW) and SkipGram. We discuss these two 

models, CBOW and SkipGram, in more detail in the following parts with the emphasis 

on SkipGram. SkipGram model is finally used to build word vectors for the purpose of 

this work. 

As mentioned before, two different approaches can be taken to build word embeddings 

using co-occurrence prediction: CBOW and SkipGram. In CBOW, the target word is 

predicted given the context and in SkipGram, the context is predicted given the word. 

Needless to say, in both cases, the context is composed of the words before and after the 

target word.  

Figure 1.2 illustrates the two models. The left side of the figure predicts the target word, 

given the words on its left and right sides. In other words, it predicts “on”, given the 

words “cat”, “sat”, “the”, and “mat” in its context. As mentioned before, this model is 

called CBOW. The right side of the figure demonstrates the other model which is 

SkipGram where the context of a word is predicted given the word. Here, the model 

learns to predict the context words “cat”, “sat”, “the”, and “mat” given the word “on”.  
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Figure 1.2. The left side of the figure shows CBOW which predicts the target word, given the words on its 

left and right sides. The right side of the figure demonstrates the other model which is SkipGram where the 

context of a word is predicted given the word. 

Now, let’s have a closer look at the SkipGram model. 

1.3.1 Mathematical Description of the SkipGram Algorithm 

In this part, the model is described following the explanation provided by Goldberg & 

Levy (2014), and we show how this model offers a possibility of incorporating contexts 

different from the linear bag of words (BOW).  

 Before starting the explanation, it is worth mentioning that in this model, the vectors of 

the words are different from those of the contexts. This assumption has to be made for the 

model to work. For example, let’s assume that the vector of dog as a word is the same as 

the vector of dog as a context; since a word hardly appear in its own context, the model 

should assign a low probability to  (       )which entails a low value to     (dot 

products of two vectors) which is not possible since the words are totally similar.  

Considering the aforementioned assumption, SkipGram works like this: each word 

      is attributed with a vector       
  and each context       is represented as      

  

where   is the words vocabulary and   is the contexts vocabulary, and   is the 

embedding dimensionality (the size of word vectors). The elements in the vectors are 

latent and learned during the training period. In other words, their values are determined 
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so that the dot product of    and    (       ) for a proper word-context pair is 

maximized. 

Consider (   ) as a word-context pair;  (       ) denotes the probability that the 

pair come from the data and  (       )      (       ) denotes the very 

opposite. The distribution is modeled in the following formula: 

 (       )  
 

           
 

, where the model learns    and    . The aim is to maximize the log probability of the 

pairs seen in the data and minimize that of pairs not seen. This can be written as: 

              ( (   )       (        )   (   )        (        )) 

, where  ( )  
 

    
 and   is made of pairs (   ) which are randomly constructed and 

assumed to be incorrect. This part provides the model with what is referred to as negative 

sampling in the literature. The models learn the parameters by optimizing this objective 

and words appearing in similar contexts end up having similar embeddings. 

1.3.2 Simple Description of the SkipGram Algorithm 

To put it simply, SkipGram algorithm can be boiled down into four steps: 

1- Take a neural network with three layers: input, hidden, and output 

2- Feed the network with a word and train it to predict its neighboring word(s) 

3- When done with the training, remove the output layer 

4- Pick a word from the vocabulary, give it to the trained network; the output at the 

hidden layer is the embedding of the input word 

One question might be which (   ) pairs the network is given. Here is a nice example 

of a training set given by Chris McCormick
2
 where the window size is two. The window 

size is the number of neighboring words we want to consider for a word, and two means 

two words before and two words after the target word.  

                                                 
2 http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ 



7 

 

 

 

Figure 1.3. An example of a training sample for word2vec. 

Another question could be how the network receives the input and makes the prediction. 

The answer is: since the neural networks only work with numbers, each word is fed to the 

net in the form of a one-hot vector. The size of this vector is the size of the vocabulary 

and the value of its all elements is zero except for one element which represents the word 

itself in the vocabulary. For instance, if you have a corpus with three words in the 

vocabulary, say, “cat”, ”chase”, and ”dog” (V=[cat, chase, dog]), the one hot vector for 

each of this word will be like this: cat= [1 0 0] ; chase = [0 1 0] ; dog = [0 0 1] 

With regard to making a prediction, the network uses a softmax classifier to predict the 

neighboring words. The results of these predictions are compared to the ground truth 

values, the context vectors, which are also given to the network as outputs in the form of 

one-hot vectors. Based on the difference between the predictions and real values, the 

weights are adjusted. Figure 1.4 demonstrates the architecture of the model. 
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Figure 1.4.  SkipGram model. The inputs and labels are given to the network in the form of one-hot vectors. 

The output layer uses a softmax classifier to make predictions. Then the predictions are compared against 

the ground truth to update the weights. 

The final question is, after learning the weights and removing the output layer, how we 

can get the word embeddings. Figure 1.5 illustrates this clearly. Imagine the matrix in the 

figure is your hidden layer which contains the learned weights. In order to get the 

embedding for your intended word, you just need to multiply its one-hot vector by this 

matrix.  

 

Figure 1.5. How to get the embedding. (Adapted from Chris McCormick’s article on word embedding3) 

As you can see the neural network learns the word embeddings based on what it 

receives in its input and output layers. For example, in the SkipGram model, the input is 

the target words we would like to learn the embeddings for and the output layer is what 

                                                 
3  http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ 
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we define as the contexts of the words. Mikolov et al (2013) used just words themselves 

in input and output layers whereas other researchers suggest using words which are 

labeled with their dependency relations in a sentence in the output layer (Levy & 

Goldberg, 2014)  or  words and their character n-grams in the input and output layers 

(Bojanowski et al. ,2016). 

1.4 Compositional Semantic Models 

Compositional semantic models aim to build vectors for expressions longer than a word 

like phrases and sentences. Generally, these models create the vectors of 

phrases/sentences by composing the distributional representations of the words they 

contain. To do this, they adopt different approaches from defining the composition model 

as simple arithmetic operations (Mitchell & Lapata, 2008; 2010) to more sophisticated 

functional (Baroni & Zamparelli, 2010) and neural-based models (Socher et al., 2012). 

In the simple approach, which is also our approach, the values in the input word vectors 

are summed, multiplied or concatenated to form the phrase/sentence vector. The logic 

behind these models is that if the values in the words vectors show the association of 

these words with the corresponding context, then the vector of the phrase that is 

composed of these words should inherit all these contextual features. 

1.5 Research Questions, Aims, and Objectives 

Each of the above-mentioned researchers, Mikolov et al (2013), Levy & Goldberg (2014) 

, and Bojanowski et al. (2016), claim different qualities for the embeddings resulting 

from their methods. Furthermore, all of them built their models with huge corpora 

(Google news or Wikipedia or a combination of both) and did not report any results on 

embeddings built on corpora of smaller size.  

In this work, we first build three semantic spaces using two corpora of different sizes 

(British National Corpus with 100 million words, and Wikipedia with 600 million words) 

and three different models (BOW, syntax-based, and Fast-Text). We would like to know 
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how different kinds of contexts and different sizes of corpus would affect the 

performance of resulting word embeddings on word similarity and relatedness tasks.  

Moreover, we combine the resulting word embeddings to build sentence vectors. We 

use concatenation, summation/averaging and multiplication and evaluate the resulting 

sentence vectors on two (phrase/sentence) similarity tasks. Mitchell & Lapata (2008; 

2010) used the same composition models and evaluated their models on the phrase 

similarity task. They utilized word vectors which were built using the traditional method 

(count-based) while we use word embeddings built through the predictive method (neural 

network based). We would like to know how our results might be different from theirs 

and which word embeddings and composition model best suit the paraphrase detection. 

To sum up, the goal of this work is twofold: 1- To investigate the impact of different 

types of contexts on word embeddings produced by the SkipGram algorithm.  2- To 

experiment with the resulting word embeddings (from the first part) by combining them 

through different composition models (concatenation, summation/averaging and 

multiplication) to see which word embeddings and which composition model yield the 

best result for the task of paraphrase detection. Our research questions are: 

For the word embeddings part, 

1- How does the type of context affect the type of semantic information captured by 

the word embeddings built through the SkipGram algorithm? 

2- Is the size of the corpus important? If so, which type of context (bag-of-words, 

syntactic, and character n-gram) needs the biggest corpus (and in turn, smallest 

corpus) to produce the embeddings of comparable quality? 

And for the composition part, 

3- For the task of paraphrase detection, which of the embeddings built in the first 

part is the most suitable for building sentence vectors? 

4- For the task of paraphrase detection, which of the composition models 

(summation/averaging, concatenation and multiplication) is the most suitable for 

combining word vectors? 
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1.6 Thesis Structure 

This thesis is structured as follows: In Chapter 2, we give a background on the concepts 

and tools we refer to in different parts of the thesis. Chapter 3 covers the literature review 

by discussing what has been done so far both for word and sentence representations. 

Chapter 4, titled Methodology, goes through the methods and principles we used to 

perform our experiments. Since we conducted two different sets of experiments (i.e. word 

and phrase/sentence), we divided the chapter into two parts where the first part deals with 

different ways of building word embedding and the second part concern the composition 

models. Chapter 5, Results and Discussion, presents the results achieved through 

evaluating word and phrase/sentence representations. Thus, this chapter also comes into 

two different parts where the first part offers the results related to the evaluation of word 

embeddings and the second part presents the results of evaluating composition models. 

Chapter 6 concludes the work by listing what we have learned during this study and what 

we are aiming to do in the future. 
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2 Theoretical Background 

In this chapter, we explain some concepts and terminology that we referred to in the next 

following chapters. 

2.1 Different Kinds of Semantic Relations 

Word embeddings contain different types of semantic information. In order to know what 

kinds of information can be found in word embeddings, we first need to know what sorts 

of semantic relations exist between words. There are different semantic relations between 

words: Synonymy, antonymy, homonymy, metonymy, and etc. 

Synonyms are words which have similar meanings. Synonyms are usually different 

from each other at least in one semantic feature. This feature sometimes is denotative 

which means that it comes from a real world difference like the difference between the 

words walk, lumber, stroll, stride, etc. On the other hand, it is sometimes connotative and 

more related to the feelings of the speaker toward the referent rather than a real difference 

in the world; like the difference between the words die, pass away, kick the bucket, etc. 

There are not many absolute synonyms in a language. For example, sofa and couch are 

almost complete synonyms but they collocate with different words:  we can say couch 

potato but not *sofa potato. 

Hyponymy is the relationship between a general term (hypernym) and a specific 

instance of it (hyponym). A hypernym is a word or phrase whose semantic field is 

broader than its hyponym. For example, the words apple and orange are hyponyms of the 

word fruit and co-hyponyms of each other. 

Meronymy denotes a semantic relation between a thing and its constituent part. That is, 

X is a meronym of Y if Xs are parts of Y. For example, a tire is a meronym of car. 
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2.2 Distributional Semantic Models 

Distributional Semantic Models (DSMs) are computational models to represent words. In 

these models, each word is represented by a vector of real numbers in a space where 

semantically related words are close and unrelated words are distant. Despite the 

variations in building these models, the theories and assumptions behind them are the 

same.  All these models are based on the Distributional Hypothesis (Harris, 1954) which 

argues the meaning of a word can be induced from the contexts in which it appears. 

Historically, these models are categorized into two categories of count-based and 

predictive. There is a detailed description of the models in the Introduction chapter.  

2.3 Compositional Semantic Models 

Compositional semantic models are models that aim to build vectors for expressions 

longer than a word i.e. phrases and sentences. The lexical vector space models are based 

on the distributional hypothesis, which states “Words that occur in similar contexts tend 

to have similar meanings” (Turney & Pantel, 2010). But what is the intuition behind the 

vector spaces for larger expressions? Regarding the larger expressions, there are two 

main approaches: either, extending the distributional hypothesis from words to phrases 

(by phrase we mean every constituent more than one word up to a sentence) and arguing 

that phrases have similar meanings if they occur in similar contexts, or taking a totally 

opposite approach by claiming that the meanings of phrases are derived by the meaning 

of their parts and how those parts are combined. The former fits in the framework of the 

context-theoretic theory proposed by Clarke (2008) and the latter resonates with the 

proponents of compositionality (Werning et al., 2012). These approaches are discussed 

later in more detail. 

2.4 Dependency Parsing 

We define three types of contexts, bag-of-words, syntactic and character n-gram, to build 

three different semantic spaces. For our syntactic context, we had to parse the corpora we 

were working with. Parsing a sentence means assigning a syntactic structure to it. There 
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are two main approaches to parsing a sentence: constituency parsing and dependency 

parsing. A constituency parse tree decomposes a sentence into sub-phrases. The terminals 

are the words in the sentence, the non-terminals in the tree are types of phrases, and the 

edges are unlabeled. On the other hand, a dependency parse tree connects words based on 

their relationships. Each vertex in the tree represents a word, child nodes are words that 

are dependent on the parent, and edges are labeled by the relationship. In this kind of 

parser, first the headword is extracted and its relations with other parts of the sentence are 

discovered.  

These head-dependent relations give an approximation to the semantic relations 

between predicates and their arguments. For example, for the sentence “Who wrote Harry 

Potter?” the headword is wrote which is in relation with who and Harry Potter with the 

former being its nominal subject (nsubject) and the latter its direct object (obj). Having 

this information, it is not difficult for example for a question answering system to find out 

that the user is looking for the author of the book. 

In conclusion, we can use a constituency or a dependency parser depending on our goal; 

the former gives us the sub-phrases in the sentence and the latter provides us with the 

dependency relations between words. Since we were looking for the dependency 

relations, we selected a dependency parser. There are many automatic dependency 

parsers in the field (Dozat & Manning, 2017; Andor et al, 2016) but we decided to choose 

the one which is offered by spaCy. In the following paragraph, we shortly describe this 

parser. 

Spacy is an open-source library written in Cython (which is an extension of Python 

designed to give it a C like performance). It is quite fast and provides us with different 

tools for different tasks from tokenization to dependency parsing. spaCy’s dependency 

parser’s accuracy is within 1% of the best available (Choi et al., 2015). 

Penn Treebank/Wall Street Journal (Marcus et al, 1993) is one of the popular datasets 

which is used by the researchers to evaluate their parsers. Figure 2.1 shows the accuracy 

scores achieved by different parsers including spaCy’s on the dataset.  

https://aclweb.org/anthology/P/P15/P15-1038.pdf
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Figure 2.1. spaCy’s parser’s accuracy compared to the other parsers in the field. 

2.5 Softmax Classifier 

The Softmax function takes an n-dimensional vector of real numbers and transforms it 

into a vector of real numbers in the range of 0 to 1, which add up to 1.  

 

Figure 2.2 Softmax function which takes a vector of real numbers and turns it into probabilities (taken from 

Udacity Deep Learning Slide on Softmax) 

The function breaks the whole (1) with maximal element getting the largest portion of 

the distribution, but other smaller elements getting some of it as well. This property of 
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Softmax function that it outputs a probability distribution makes it suitable for 

probabilistic interpretation in classification tasks (see Figure 2.2). 

2.6 Similarity vs. Relatedness 

WordSim353 (Finkelstein et al., 2001.) is a dataset which is used to evaluate models 

which produce word vectors on the task of measuring similarity. This dataset contains 

353 pairs of words which are annotated by human judges based on their level of 

similarity where the most similar words are given score 10 and the least similar ones 1. 

However, Agirre et al. (2010) argued that some pairs are more related than similar. For 

example, computer and keyboard are related, and train and car are similar. They divided 

the dataset into two sets, WordSim353-Similarity, and WordSim353-Relatedness, and 

classified synonyms, antonyms, identical, and hyponym-hyperonym pairs as similar with 

different degrees (score 1 to 10) of similarity. They grouped meronym-holonym and the 

rest of the pairs (none-of-the-above) as related with different degrees of relatedness (1 to 

10).  

We used the dataset to evaluate our word embedding models, therefore when we talk 

about similar words we mean words which are synonyms, antonyms, identical, and 

hyponym-hyperonym and we refer to words as related, we mean words which are 

meronym-holonym. 
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3 Literature Review 

Sentences are made of words; therefore in order to make proper representations for 

sentences, we need to create appropriate representations for words. This chapter is 

divided into two parts. In the first part, we discuss different methods used by researchers 

to build word vectors and in the second part, we deal with the works related to 

phrase/sentence vectors. Finally, we talk about our own contribution. 

3.1 Building Word Vectors 

The Distributional Hypothesis (Harris, 1954), which argues that the meaning of a word 

can be derived from the contexts in which the word occurs, has proved successful in the 

field of natural language processing. As we explained in the introduction, there are two 

main approaches to building word vectors: count-based and predictive.  

In both methods, the dimensions of each vector are the features (the word’s context 

items) and the coordinates are a measure of the association between the word and the 

features. However, in count-based models, the features are explicitly determined by the 

researcher who is building the vectors, whereas, in the predictive models, the neural 

network itself selects a number of features to represent a word with. The number of 

features representing a word is the dimensionality of word vectors (embeddings)
4
 that can 

be determined by the researcher.  

Many researchers experimented with count-based models (Church & Hanks, 1990; 

Padó & Lapata, 2007; Bullinaria & Levy, 2007) with the aim of improving the quality of 

word vectors. Other researchers (Mikolov et al., 2013; Pennington et al., 2014; Levy & 

Goldberg, 2014) did the same with predictive models. In the following paragraphs, we 

discuss some of these attempts to see what researchers have done so far to build different 

word vectors using both count-based and predictive models. 

                                                 
4 Word vectors are referred to as word embeddings in the predictive models 
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3.1.1 Count-based Approach  

As mentioned earlier, these models represent a word in the form of a finite-dimensional 

vector of real numbers in a vector space. The dimensions of this vector are the word’s 

context items (e.g. co-occurring words) and the coordinates are a measure of the 

association between the word and the context items (e.g. the co-occurrence count). As 

you can see, each vector is defined by two main parameters: the dimension and the 

coordinates. Hence, in order to build word vectors with different characteristics, the best 

thing to do is to tweak these two parameters. Researchers have tried different ways which 

are explained in the following paragraphs. 

3.1.1.1  Weighting Schema  

 In order to improve the performance of our count-based models, we can use a weighting 

function to turn the counts into more informative values. For example, if our target word 

is “shoes”, a good weighting function would intensify more informative words like 

“wear” and down-weight the less informative ones like “these”. Pointwise mutual 

information (PMI) introduced by Church and Hanks (1990) can replace the counts. 

Another variation of this score is positive-PMI which has been used by other scholars 

(Bullinaria & Levy, 2007). Curran (2003) has presented a nice overview of various 

weighting methods in his dissertation. 

3.1.1.2  Other Sorts of Contexts 

 If we use word-word co-occurrences as contexts to create a semantic space, we will end 

up having a space where the closeness of word vectors implies semantic relatedness or 

domain similarity (Turney, 2012). However, the semantic space can be built using other 

types of contexts like the word’s syntactic contexts. These contexts contain the words that 

are related to the target word by a syntactic dependency relation in a sentence (Padó & 

Lapata, 2007). The features extracted from this context make a space in which closeness 

of vectors suggests functional similarity (Turney, 2012) 
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3.1.1.3  Dimensionality Reduction 

As mentioned earlier the rows of the matrix, built through counting the co-occurrences of 

the words, are word vectors. These vectors are very high-dimensional since the number 

of their columns equals the size of vocabulary (V) in the corpus. In fact, there are V
2
 

entries in the matrix which are estimated from the corpus. Considering the huge number 

of entries, this estimation is poor. Furthermore, there are some dimensions which are not 

informative enough and do not provide useful information for distinguishing the words. 

Moreover, some of these entries do not add extra information, for example, similar words 

which are used as column features will represent similar evidence. For these reasons, it is 

important to modify the matrix in a way that the remaining entries provide informative 

and effective information. To this end, some matrix mathematical operations are done on 

the matrix to reduce its dimensionality so that each feature is informative enough. 

There are different ways of conducting these operations and singular value 

decomposition (SVD) is the most widely used one.  SVD factorizes a matrix (M) into the 

products of three matrices UƩV
T
 where U and V are in column orthonormal form (the 

columns are orthogonal and have unit length, i.e., UU
T
=I) and Ʃ is diagonal matrix of 

singular values. The matrices M and Ʃ are of the same rank, thus if the matrix M is of 

rank r, the Ʃ is of rank r too. The lower dimensional projection acquired through SVD has 

shown the ability to identify the latent meaning from the rows and columns of the 

original matrix (Landauer & Dumais, 1997) by reducing the noise in input matrix and 

discovering higher order co-occurrence among the rows of the matrix (Lemaire & 

Denhiere, 2008). 

Other methods of dimensionality reduction include principal component analysis 

(PCA), canonical correlation analysis (CCA), non-negative matrix factorization (NMF), 

etc. Each of these methods has its own pros and cons compared to SVD. This thesis does 

not concern the count-based method and as a result, does not deal with dimensionality 

reduction methods, the explanation of such methods is not considered. However, the 

interested readers are referred to Koren et al. (2009)’s work which provides a 

comprehensive survey on this matter. 
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Latent Dirichlet Allocation (LDA) is another traditional method used to build word 

vectors. Since our main focus in this thesis is predictive models, especially SkipGram 

algorithm, we do not explain LDA, but interested readers are referred to Latent Dirichlet 

Allocation paper by Blei et al. (2003) for comprehensive information. 

3.1.2 Predictive Approach  

In predictive methods, a word’s embedding is built by predicting the word in the context 

it occurs regardless of the order of the words in the context (Mikolov et al., 2013; 

Pennington et al., 2014). These models consider the words occurring both to the left and 

right of a target. Word embeddings trained through such models have shown to represent 

the semantics of the word better than the embeddings created using language modeling 

where only preceding words are considered as the context of the word (Faruqui and Dyer, 

2015). 

3.1.2.1     Context in word embedding with the predictive approach 

 In the Skip-Gram model proposed by Mikolov et al. (2013) the context of a word, ω, are 

the words around it. Moreover, the context vocabulary, C, is the same as word 

vocabulary, W. However, this limitation is not obligatory, and the context set can be 

bigger than the word set. 

Levy & Goldberg (2014) suggested a different kind of context by parsing the corpus 

with a dependency parser and exploiting the syntactic information as extra contextual 

information. In order to understand their model, let’s take this example: “Iranian director 

won the academy award.” Imagine we want to feed the algorithm with (word, context) 

pairs using two different types of contexts. As you can see in Figure 3.1, for the word 

“won”, the context in syntax-based (DEPS) approach is more focused by filtering out the 

co-incidental words (e.g. Iranian) and taking into account the more related word (award) 

even though it is in a long distance from the target word (won). 
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Figure 3.1. Contexts for the word “won” in window-based (BOW) and syntax-based approaches. 

To build word embeddings, two methods have been described so far: BOW and DEPS. 

These methods are similar in the sense that both rely on the neighboring words of a target 

word to create the embeddings of the word. However, they are different in a way that the 

former does not take the syntactic role into account but the latter does. These two 

algorithms provide us with good quality word embeddings, but they fail to create 

embeddings for rare words or the words they have not seen during the training. To tackle 

the problem another algorithm was suggested by researchers at Facebook which is called 

FastText. 

Bojanowski et al. (2016) suggest a new definition for word/context. Their model is 

different from other embedding models in the way it treats each word. In particular, other 

models consider every single word as the smallest unit that we look for its representation, 

whereas FastText treats a word as a combination of n-grams of characters. For example, 

the word funny is composed of [fun, funn, funny], [funny, unny, nny] etc, where n is of 

length one up to the actual length of the word. This way of treating words have some 

benefits over the models which assume the word itself to be the smallest unit. 

One of the advantages of this model is that it can find vector representations for rare 

words. This quality is due to the fact that these words are broken into character n-grams, 

they can share n-grams with words which are more common. The other advantage is that  

we can find vector representations for words which do not exist in the dictionary because 

these words also are broken into character n-grams. It is obvious that other word-based 

methods fail to do so. For example, if the word is fanabsolutastic, which probably does 

not exist in any corpus, Word2Vec algorithm might return either a zero vector or a 
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random one, while FastText might produce vectors better than random vectors and come 

up with a vector which is similar to fantastic.  

3.1.3 Other Models 

All models discussed so far focus on neighboring words to create the embeddings; they 

combine the notion of semantic similarity and conceptual relations. In other words, they 

fail to tell the synonyms and antonyms apart and place them close together in the 

semantic space. For example, words like east and west or cheap and expensive appear in 

the similar contexts therefore, the models learn similar embeddings for them. 

To tackle the problem, some researchers (van der Plas & Tiedemann, 2006) suggest 

other kinds of contexts to build embeddings. They argue that translations of a word into 

other languages which can be found in parallel corpora are a good context to learn word 

embeddings that can make a distinction between synonyms, and antonyms, 

(co)hyponyms and other related words. This argument is justified since the word apple is 

usually translated neither to fruit nor pear; neither is good translated into bad. They 

compared their proposed system with syntax-based models and achieved higher precision 

and recall scores for the task of synonym extraction. Despite our huge interest to 

investigate their proposed model, we could not experiment with that due to the time 

constraints. However, it is at the top of our future work after finishing the current study. 

3.1.4 Evaluating the Word Embeddings 

Using qualitative and quantitative analyses, Levy & Goldberg (2014) demonstrated that 

word embeddings built through syntactic context (DEPS) represent functional similarity 

or co-hyponymy relation. For example, for the word Florida (a state in the U.S) bag-of-

words contexts produce meronyms (counties or cities within Florida) like Gainesville and 

Tallahassee, while dependency-based contexts generate co-hyponyms (other US states) 

like Louisiana and California. 

Melamud et al. (2016) evaluated the performance of word embeddings on different 

intrinsic and extrinsic tasks. They changed the context type and dimensionality for the 

embeddings they built to find out how the performance changes consequently. They used 
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window-based (BOW), syntax-based (DEPS) and lesser-known substitute words 

approach (Yatbaz et al., 2012) (SUB) as different context types and 25, 50, 100, 200, 300, 

and 600 as different dimensions. 

The intrinsic benchmarks used for evaluation include WordSim353 similarity and 

relatedness, Simlex-999 in which they calculated the Spearman’s correlation between the 

rankings of the word pairs induced from human annotations and embeddings and also the 

accuracy of the system for TOEFL task. As for the extrinsic tasks, they put the 

embeddings to the test by evaluating their performances on Dependency Parsing 

(PARSE), Name Entity Recognition (NER), Coreference Resolution (COREF) and 

Sentiment Analysis (SENTI). 

They concluded that the performance on the intrinsic tasks increases as the number of 

dimensions does and it reaches to its optimal point around 300 dimensions for all types of 

contexts. 

As for the context type, there are noticeable differences in results with the most obvious 

one being the WordSim353 relatedness task in which the BOW context with the largest 

window size performs best as expected since it covers topical similarity. On the other 

hand, DEPS and SUB embeddings achieve better results in WordSim353 similarity and 

Simlex-999 datasets. The performance of all sorts of contexts is comparable in TOEFL 

task. 

As for the extrinsic tasks, surprisingly for some tasks like NER, the optimal 

performance can be reached with as few as 50 dimensions. Moreover, increasing 

dimensionality even deteriorates the performance. They relate this behavior to the size of 

training data used by the classifier and emphasize the importance of tuning the 

dimensionality of the embeddings based on the task at hand. 

They found out that the embeddings which work well on functional similarity and badly 

on topical similarity (DEPS, SUB, and W1) work best in PARSE. For the rest of the 

tasks, they couldn’t find a specific context that outperformed the others. 
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In the next step, they experimented with concatenating the embeddings. They reported 

that in order to make the most of concatenation, we should first reach an optimal 

performance with the dimension and then concatenate these optimum dimensions. They 

also stated that the concatenation of window-based method with the window size of 10 

with one of the functional contexts, SUB, DEPS or BOW1, yields the best results. 

The takeaway lessons from Melamud et al (2016) are: 

1. The dimension of embeddings matters with 300 usually being the optimum (but 

not for every task). However, depending on the available data for training 

sometimes lower dimensions work better. 

2. You can get better results by concatenating embeddings resulting from different 

contexts to get better results on condition that each embedding has set to its 

optimum dimension when evaluated on the task individually. 

Bojanowski et al. (2016) evaluated FastText with corpora of different sizes. They found 

that FastText is more robust to the size of the corpus compared to the BOW model. They 

also assessed the model on various word similarity datasets of different languages and 

concluded that FastText outperforms Word2vec algorithms (CBOW, SkipGram) in 

morphologically rich languages. They did not observe any noticeable difference in the 

performance of the algorithms on English datasets. 

3.2 Building Phrase/Sentence Vectors 

When it comes to building phrase vectors, the first thing that comes to mind is to 

combine the vectors of the constituent words through some arithmetic operations. This 

approach has been explored vastly in a series of seminal papers by Mitchell & Lapata 

(2008; 2010). 

In the simple additive model suggested by (Foltz et al., 1998; Kintsch, 2001; Landauer 

& Dumais, 1997), the values in input word vectors are summed to form the phrase vector. 

The logic behind such a model is that if the values in the words vectors show the 

association of these words with the corresponding context, then the vector of the phrase 

that is composed of these words should inherit all these contextual features. 
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As an alternative to the additive model, Mitchel & Lapata (2008; 2010) propose a 

“component-wise multiplication” model in which input vectors are multiplied component 

by component. This way those contextual elements which are not associated with all 

input words vanish and shared elements are heightened. This model is in line with the 

intersection view in formal semantics. 

Some other methods have also been proposed which more or less can be regarded as 

weighted variations of additive models. For example, Mitchell & Lapata (2008; 2010) 

proposed a weighted additive model in which each input vector is multiplied by a fixed 

weight. For example, in case of combining subject-verb vector, the subject vector might 

be multiplied by 0.2 and the verb vector by 0.8, with the intuition that the verb has more 

weight in depicting the sentence meaning rather than the subject. Other summative 

weighted models that are worth mentioning are Guevara (2010) and Zanzotto et al. 

(2010) where each element is output vector is a weighted sum of all elements of input 

vectors.  But the problem with such simplistic methods is that they fail to capture 

important aspects of compositionality like word order, ambiguity, grammatical relations 

and etc. 

A different series of models inspired by formal semantics (Montague, 1970) which is 

the framework of models proposed by Coecke et al. (2010) and Grefenstette et al. (2011) 

look at the composition from the functional approach.  

In functional approaches, not all words have standard distributional vectors but instead 

some words are in the form of arguments which are represented by standard vectors and 

some other words are functors that apply some functions on these arguments. For 

example, in additive models, the vector for dogs bark is created by adding the 

distributional vectors of dogs and bark, whereas in functional approach bark is a function 

that operates on dogs. 

Due to the mathematical considerations, functions that operate on the arguments are 

limited to the class of linear transformation. They are ordered set of weights that can be 

seen as vectors and be fed to other functions as input or output. This property of functions 

allows mapping within and across vector spaces. 
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 Following the functional approach, Baroni and Zamparelli (2010) define adjectives as 

functions and nouns as arguments, each represented by matrices and vectors respectively 

where adjective-noun compositions are obtained by multiplying the adjective matrices by 

the noun vectors. The matrices for adjectives are learned from the corpus by collecting 

adjective-noun pairs and through supervised learning. But the question is whether the 

same method can be used for linguistic units larger than adjective-noun? 

Socher et al. (2012) introduced a recursive neural network model that learns 

compositional vector representations for phrases and sentences of arbitrary syntactic type 

and length. Their model associates each node in a phrase tree with a vector and a matrix 

where the vector contains the meaning of the node and the matrix shows how the node 

changes the meaning of neighboring words or phrases. According to Baroni et al. (2013) 

“This results in a very rich and flexible representation of phrases, although the linguistic 

intuitions behind it are not clear.” 

Le & Mikolov (2014) proposed a paragraph vector to learn representations of sentences, 

paragraphs, and documents based on SkipGram model and by adding an explicit 

paragraph feature to the input of the neural network. They showed better performance 

compared to the bag of words methods. 

Other neural networks based approaches towards meaning representation of sentences 

called sentence embeddings include Conneau et al. (2017) where they trained a universal 

sentence representations using the supervised data of the Stanford Natural Language 

Inference (SNLI) datasets which outperformed unsupervised methods like Skip Thought 

vectors (Kiros et al., 2015) on a wide range of transfer tasks.  

Hill et al. (2016) presented a systematic comparison of different methods of learning 

distributed sentence representations and showed noticeable variation in their performance 

and concluded that the performance of the model depends on the settings the 

representation is going to be applied.  

To sum up, the approaches towards vector representation for sentences can generally be 

categorized into three main classes: first: the sentence vectors are created by simple 
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arithmetic operations on word vectors, the methods that mainly explored by Mitchell & 

Lapata (2008; 2010). 

Second: Functional approach in which some words are functors and the rest are 

arguments, and the representation of phrases is the production of functors acting on 

arguments. These methods have been investigated by many researchers including Coecke 

(2010), Baroni & Zamparelli (2010), Sadrzadeh & Grefenstette (2011).  

Third: The neural-based approaches towards the meaning representation of sentences or 

so-called sentence embeddings examined by Le & Mikolov (2014), Conneau (2017), Hill 

(2016) and so many others. 

3.2.1 Evaluating the Compositional Models 

The composition models are usually evaluated by the existing datasets in the field such as 

the one introduced by Mitchell & Lapata (M&L) (2010). The dataset is made of pairs of 

two-word phrases which were judged by 204 native speakers of English of different age 

and gender and assigned a number on a scale 0 to 7 where 0 represents none and 7 

complete similarity between the pairs.  

Mitchell & Lapata (2010) presented a framework for vector-based semantic 

composition and formulated composition as addition and multiplication and used the 

M&L dataset to evaluate their models. They observed that different combinations of 

composition models and word vectors yield different results. Specifically, the additive 

model performs best if it uses the word vectors resulting from Latent Dirichlet Allocation 

(LDA) and the multiplication works best with the word vectors resulting from simple co-

occurrence model. 

One of the other datasets to evaluate compositional models is Microsoft research 

paraphrase corpus (MSR) (Dolan et al., 2005). Milajevs et al. (2014) investigated the 

addition and point-wise multiplication compositional models, to compare the 

performance of count-based versus predictive word vectors. They evaluated their models 

on MSR dataset and concluded that the combination of additive compositional model and 

predictive word embeddings (BOW) perform best.  
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According to Wieting et al. (2015) even though complicated methods for building 

sentence embeddings (e.g. LSTM) work strongly on the specific task they have been 

trained for, a simple method like representing a sentence’s vector by the average of its 

word vectors outperforms these complicated models in some other tasks like sentence 

similarity and entailment. In other words, while the neural-based models perform well in 

in-domain tasks, they fall short in out-of-domain tasks. On the other hand, word-

averaging shows a robust performance by functioning well both in in-domain and out-of-

domain tasks and even beating the complicated method by a noticeable margin. 

3.3 Contributions 

Researchers have evaluated different models of word embeddings (bag-of-words, 

syntactic, and character n-gram) and reported the results; However, most of these 

evaluations (Levy & Godberg, 2014; Melamud et al., 2016) were done using the 

embeddings which were built with huge corpora (10B words in Melamud et al. (2016)). 

To the best of our knowledge, no one has ever tried to compare the performance of these 

three predictive models with corpora of smaller size. Therefore, we would like to see 

whether the similar results are achieved when the size of the corpus is quite small. 

Moreover, no one has ever tried to combine the word embeddings resulting from the 

syntactic context and character n-gram to build sentence vectors in the paraphrase-

detection task. We use simple composition models (concatenation, summation/averaging, 

and multiplication) to build our sentence vectors. We would like to find the best 

combination of composition model and word embeddings for building sentence vectors. 

Furthermore, Mitchell & Lapata (2010) used the same composition models but with the 

word vectors resulting from the traditional method. We use these composition models 

with neural-based (predictive) word embeddings to see how our results are different from 

theirs.  

From now on, the bag-of-words, syntactic, and character n-gram are also referred to as 

BOW, DEPS, and FastText respectively. 
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4 Methodology 

This chapter is divided into two parts: In the first part, we explain the methodology we 

used to build our word embeddings and in the second part we deal with the composition 

models. 

4.1 Methodology- Word Vectors 

Apart from the main goal of this work, which is to investigate the effect of the type of 

context and the size of the corpus on the word embeddings, we aimed to show that 

everybody can build these embeddings and benefit from them regardless of their 

computational resources and computer science background. In other words, we would 

like to show that the use of neural-based word embeddings is not restricted to people who 

have access to GPUs or have extensive knowledge in deep learning and computer 

programming. Thanks to different tools developed by the programmers in the field of 

natural language processing and free corpora of different sizes, everybody can make their 

own word embeddings with acceptable quality and use them in their research. By 

acceptable quality, we mean acceptable accuracy and F-score for tasks that need semantic 

judgment at word and sentence level. 

With this in mind, we did all the computations, from dependency parsing of the corpora 

to building window-based (BOW, FastText) and syntax-based (DEPS) models on a core-

i5 laptop with 8 Gigabytes internal memory (RAM). We also utilized some easy-to-use 

Python libraries including Gensim, spaCy, NLTK, and pntl (SENNA). In the following, 

we give a full description of the whole procedure of building word embeddings. 

4.1.1 Corpora 

Many of the neural-based models have used huge corpora to build the word embeddings, 

for example Melamud et al. (2016) benefitted from a corpus with approximately 10 

billion words by combining English Wikipedia 2015, UMBC web corpus (Han et al., 
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2013), and English Gigaword newswire corpus (Parker et al., 2011). However, we argue 

that we still can build good quality word embeddings using much smaller corpora. 

Sticking to the idea that all the computations had to be done on the laptop described 

before, we selected two available free corpora to investigate the effect of the size of 

corpus on the resulting word embeddings. These corpora include British National Corpus, 

BNC (Leech et al., 1994) with 100 million words, and Wikicorpus (Reese et al., 2010) 

which is 6 times bigger than BNC with 600 million words. We also built the embeddings 

using a very small corpus, Brown (Francis & Kučera, 1964), with 1 million words), but 

the results are poor which confirms our hypothesis that the size of the corpus affects the 

quality of word embeddings. 

BNC (Leech et al., 1994) is a collection of samples of written and spoken English from 

a broad source with 100 million words. The corpus represents a cross-section of British 

English in the late 20th century whose last version, BNC XML Edition, was released in 

2007. The written part of the corpus comprises 90% of it whereas the spoken part 

accounts for the remaining 10%. The samples for the written part are taken from regional 

and national newspapers, journals for different ranges of ages and interests, academic 

books, school and university essays, and many other sorts of texts. The spoken part 

includes samples of informal conversations which were recorded by volunteers from 

different age group, region, and social classes. 

Wikicorpus (Reese et al., 2010) is a trilingual corpus of English, Spanish, and Catalan 

which is based on 2006 dump of Wikipedia and enriched with linguistic information. The 

corpus is annotated with lemma and part of speech information and is also sense-

annotated using UKB word sense disambiguation algorithm. However, we did not benefit 

from any of these annotations and just utilized the raw-text for English part which is a 

very clean text (was cleaned and pre-processed by the providers) with 600 million words. 

The reason for selecting this corpus was its size. This corpus is big enough, compare to 

BNC, to help us analyze the impact of corpus size on the quality of word embeddings and 

small enough to run everything our laptop. 
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4.1.2 Tools 

Having decided on the corpora, we had to choose one of the available tools (e.g. python 

libraries) to build the embeddings. We singled out Gensim which is created and 

maintained by Řehůřek et al.(2010) . 

Gensim is a free Python library designed to extract efficient and convenient semantic 

information from documents. It can process unstructured raw data. Many algorithms have 

been implemented in Gensim such as Word2Vec (Mikolov et al, 2013), FastText 

(Bojanowski et al, 2016), Latent Semantic Analysis (LSA), and etc. These algorithms 

discover semantic information in the documents and are unsupervised which means they 

need no human intervention. We build our embeddings using SkipGram implementation 

of Word2Vec in Gensim. 

There are several features that make Gensim an ideal tool to build word embeddings 

with. However, the most important one from our point of view is that Genism is memory 

independent. In other words, there is no need to load the whole corpus in RAM. This 

feature makes it possible to work with very large corpora despite having a limited RAM 

capacity. 

4.1.3 Word Embedding Using the SkipGram Algorithm in Gensim 

Gensim’s Word2Vec algorithm expects an iterable of sentences as its input. Each 

sentence is a list of words. The command to build embeddings using Word2Vec includes 

several arguments that we will explain below: 

model=Word2Vec(sentences, size, window, min_count, workers) 

The first argument, sentences, needs to be an iterable of sentences where each 

sentence is a list of words (utf-8). For example, if we have a corpus of two sentences like 

“First sentence” and “Second sentence”, the input needs to be in this form: sentences 

= [['first', 'sentence'], ['second', 'sentence']]. Although keeping the input as a Python list in 

the memory is very convenient, it consumes a lot of RAM and in case of a big corpus, we 

will run out of memory. In order to avoid this problem, we defined a function in which 
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we read the corpus, sentence by sentence, and used yield command to return a list of 

each. Since yield returns a generator, the lists are created on the fly and do not stay in 

RAM. 

Other parameters of the Word2Vec model  are as follows: 

size 

It determines the size of the dense vectors we want to represents the words with (in 

other words the neighboring words or the context). You can specify different sizes and if 

the try up to the size of 600. Melamud et al. (2016) did a study using different sizes of 

embedding from 50 to 600 and found out that 300 is the optimum size across different 

tasks. Following their finding and considering the size of our corpora we set the size to 

300. 

 window 

It is the maximum distance between the target word and its neighboring words. This 

distance is calculated from the left and right side of the target word. If the position of a 

word is bigger than the window size, the word will not be considered as the context of the 

target word. For example, for the sentence “I know that my dog likes chasing cats.” The 

context words within the window size of 2 for the word likes are my, dog, chasing, and 

cats. The remaining words will not be included despite being part of the same sentence. 

min_count 

This is the cut-off frequency. In other words, the model discards the words which do not 

fulfill the min_count. For example, if the min_count is set to 100, every word which 

occurs fewer than 100 times will be ignored by the model. It means that the model just 

builds the embeddings for the target words which occur more than 100 times in the 

corpus. This setting really affects the amount of memory used by the system or storage 

capacity to store the resulting model. 

workers 
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This parameter defines the number of workers to use and really increases the speed 

when benefiting from GPUs. Since we built all the models using a CPU, we set this 

parameter to 1 in all experiments. 

Now that we are familiar with different parts of the Word2Vec model in Gensim, let’s 

see how we used the model to build the word embeddings. 

The final note is that Gensim lets you build a FastText model using the same piece of 

code except that instead of Word2Vec, you should use FastText. Besides, FastText has 

three additional parameters : 

- min_n: min length of char ngrams (Default 3) 

- max_n: max length of char ngrams (Default 6) 

- bucket: number of buckets used for hashing ngrams (Default 

2000000) 

We used the default setting. 

4.1.3.1 Window-based word embedding with Brown, BNC, and Wikicorpus  

Since we already had the NLTK library installed on our system, we had Brown corpus in 

its corresponding folder. However, we wrote a short script to modify the corpus so that 

we could work with it more conveniently. We created a single file out of the corpus 

where each line contains one sentence. Later on, we removed the punctuations and build 

the models on a punctuation-free corpus. 

In order to build a BOW model we used the following piece of code: 

model=Word2Vec(sentences, size=300, window=2,min_count=100, 

workers=1,sg=1,hashfxn=hash) 

The window size is set to 2 because we wanted to build the BOW2 model. For BOW5 

and BOW10, this parameter is set to 5 and 10 respectively. The model’s parameters have 

been already explained in the previous section except for sg, and hashfxn. As you 

remember from the literature review, the Word2Vec algorithm proposed by Mikolov et 

al. (2013) has two flavors: CBOW and SkipGram. By setting the sg value to 1, we tell 

the algorithm that we want it to use the SkipGram model. As for hashfxn, we set the 
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value to hash to make sure that the same model is built by Gensim for different runs on 

the same data. 

Having created BOW2 model with Brown, we carried on by building the models using 

the other corpora. We downloaded the BNC corpus from http://ota.ox.ac.uk/desc/2554. 

The corpus is in XML format, while we needed it to be an iterable. Fortunately, NLTK 

provides a package to read the corpora and we used BNC Corpus Reader to read the BNC 

corpus in our desired form. 

from nltk.corpus.reader.bnc import BNCCorpusReader 

a = nltk.corpus.BNCCorpusReader(root='D:\Thesis\BNC\Texts', 

fileids=r'[A-K]/\w*/\w*\.xml') 

sentences = a.sents() 

After building the model with BNC, we continued taking the same steps to build the 

same model but this time using Wikicorpus, which was 6 times bigger than BNC.  Hence, 

at the end of this step, we had built 3 BOW2 models with three corpora of different size. 

The reason to do so was to study the effect of the size of the corpus on the quality of 

resulting embeddings. 

In the next step, we built two more BOW models, BOW5 and BOW10 with the 

Wikicorpus. The aim here was to verify the findings of other researchers’ (Levy & 

Goldberg,2014; Melamud et al., 2016) who argue that the smaller window-size will lead 

to more functional similarity while the larger one produces embeddings which reflect 

more topical similarity. Therefore, we kept the size of the corpus fixed (we only used 

Wikicorpus) and changed the size of the window (5 and 10) to see how it affected the 

quality of resulting word embeddings. 

The Wikicorpus we used was already pre-processed and cleaned by the providers, 

therefore we did not do any pre-processing, neither did we lower-case the words. In other 

words, we kept the text intact. Some researchers prefer to lower-case the corpus but we 

believe that it is not needed since the corpus is big enough to build quality word 

embeddings. Besides, since the models differentiate between a word in capital or in 
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lower-case, it builds two separate embeddings for apple (a kind of fruit) and Apple (the 

company). 

FastText embeddings were built in the same fashion. 

4.1.3.2 Syntax-based word embeddings with BNC and Wikicorpus  

After building the BOW and FastText embeddings, we started creating the syntax-based 

ones. To build these embeddings, we had to first parse the corpora with a proper 

dependency parser. Among all dependency parsers in the field, we decided to go with the 

one provided by spaCy. As explained in the first chapter the parser has a good level of 

accuracy compared to the other parsers, besides it is fast and easy to use.  

Then we had to process the corpora to make it a suitable input for Gensim. By suitable 

we mean that Gensim could receive one target-context pair at a time. We wrote a piece of 

code to make sure that after parsing each sentence, each target word was paired with all 

the context words it was in dependency-relation with; and the context words were labeled 

in the exact same way they were labeled in Levy & Goldberg’s (2014) proposed method. 

To check the correctness of the written code, we purposefully tried the same sentence 

used by Levy & Goldberg (2014) to see if the output of the code (which is the input of 

the Gensim Word2Vec algorithm) was what it was supposed to be. Hence, we gave the 

code this sentence: “Australian scientist discovers star with telescope”. The output is 

what you can see in Table 4.1. 

Word Contexts 

Australian scientist/amod-1 

scientist Australian/amod, discovers/nsubj-1 

discovers scientist/nsubj,star/dobj,telescope/prep_with 

star discovers/ dobj-1 

telescope discovers/ prep_with-1 

 

Table 4.1. The target, context pairs produced by the parser to be fed to Gensim Word2Vec. 
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As you can see, the (target, context) pairs are exactly the same as what Levy & 

Goldberg (2014) extracted for their model. For example for a target word,   , which has 

modifiers m1,…, mk  and a head word h, the following contexts are extracted: (m1,lb1), 

…, (m1,lbk), (m1,lb-1), where lb is the type of dependency relation between the head and 

the modifier (e.g nsubj) and lb-1 is used to signify the inverse relation. It is also clear that 

relations that include a preposition are “collapsed” prior to context extraction, by directly 

connecting the head and the object of the preposition, and subsuming the preposition 

itself.  

After making sure that the code provided us with the intended input for Gensim, we 

started to parse the Brown corpus. It took 30 minutes to parse the corpus and the result 

was saved in a file. Each line of the file contains two words with the first being the target 

and the second the context. For example, if the corpus was just one sentence like the 

sentence of Table 4.1, the first line of the output file would be “Australian, 

scientists/amod-1”. This was exactly we what we wanted as our input to the Gensim 

Word2Vec model. The next step was to build the model. We used the following code to 

build our syntax-based embeddings: 

model=Word2Vec(sentences,size=300,window=1,min_count=100, 

workers=1,sg=1,hashfxn=hash) 

We treated each line of the input file as a two-word sentence and since the window size 

was set to 1, each word was paired with all its syntactic contexts one by one.  

The next corpus to be prepared was BNC. The whole corpus was parsed after 24 hours 

and the result was saved in a file. To build the same model with Wikicorpus, we followed 

the same steps it took 6 days for the corpus to be parsed, which was what we had 

estimated given that the corpus was 6 times bigger than BNC. After having the parsed 

corpus, we used the same code to build the embeddings. 

4.1.3.3 Semantic-based word embeddings  

The last model that we were aiming to build and evaluate was the semantic-based model. 

The model suggests the same algorithm which is used in the syntactic-based model 
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except that, this time, context words are labeled with their semantic roles in the sentence 

rather than their syntactic roles. We argue that this kind of context represents meaning at 

a deeper level than a simple syntactic structure. For example, consider the following 

sentences: 

1- Iranian director won the academy award.  

2- The academy award was won by Iranian director. 

The syntactic and semantic contexts for the word won are described in Table 4.2: 

 

Sentence Number Syntax-based context Semantic-based context 

1 …, award/dobj,... …, award/A1, ... 

2 …, award/nsubjpass, ... …, award/A1, ... 

 

Table 4.2. In syntax-based context, the word award, as the context of the word won, is labeled differently 

depending on the voice of the sentence; whereas, it is labeled the same in semantic-based context. 

As you can see in Table 4.2, the semantic-based context is not affected by the voice of 

the sentence and award is labeled as A1 (argument 1) of the verb won regardless of the 

sentence being active or passive. 

Hoping to build word embeddings which are less susceptible to the surface structure of 

the sentence, we started to first label the corpora at hand with a proper semantic role 

labeler and then extract target-context pairs and build the models. After a thorough search 

in the field, we selected SENNA (Collobert, 2011)which is a fast and reliable automatic 

semantic role labeler. In order to access SENNA, we utilized nlpnet which is a free 

python library.  

In order to extract (word, context) pairs, we first used SRL to extract verbs and their 

arguments. Then we discarded all stop words (in NLTK) from the arguments and then 

paired each verb with its arguments. Each argument was labeled with its semantic role. If 
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an argument contained more than 2 words, only the first two words were paired with the 

verb individually and the rest were discarded. For example for the sentence: “The disease 

infected both her family and friends.” you can see the target-context pairs in Table 4.3. 

Sentence: The disease infected both her family and friends. 

Word context 

Infected disease/A0, family/A1, friends/A1 

disease Infected/ A0-1 

family Infected/A1-1 

friends Infected/A1-1 

 

Table 4.3. Target-context pairs for semantic-based context for the sentence:  ”The disease infected both her 

family and friends.” 

As you can see from the Table 4.3, verbs are emphasized which is, in fact, the essence 

of SRL whose task is to discover the relations between a verb and other parts of the 

sentence. With this method, words which are occurring with the same verbs are pushed 

close together and so are the verbs which are appearing with the same words.  

Similar to the usual routine, we started with the Brown corpus and it took 12 hours to 

label the corpus and extract the target-context pairs. Then we carried on with the other 

corpora, beginning with BNC, and we noticed that we need at least 50 days (100*12 

hours) to perform the same procedure with the BNC corpus let alone the Wikicorpus. We 

realized that we would not be able to finish the process within the time limits for this 

thesis. Therefore, we did not continue with this model. 

4.2 Methodology-Phrase/Sentence Vectors 

Compositional models aim to represent the meaning of a sequence of words by a vector 

which is built by combining the vectors of the words within the sequence. There are 

various ways of combining word vectors which are classified into three main approaches, 
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as discussed in the literature review: simple models which combine word vectors 

regardless of their order or their syntactic or semantic relations, models which take linear 

word order into account, and models which incorporate complex grammatical structure. 

The first series of models utilize simple arithmetic operations to blend word vectors; for 

example, Mitchell & Lapata (2008) used vector addition and point-wise multiplication by 

ignoring word order. Such a method cannot make a distinction between the sentences 

“John loves Mary” and “Mary loves John”. Other approaches which are neural-network 

based and consider the grammatical structure of sentences (Socher et al., 2012, Conneau 

et al. 2017). In this work, we did not consider the neural-based approach because they are 

task-specific (Wieting et al., 2015) while we were aiming for a more general approach 

toward compositionality, as mentioned in the introduction. 

We experimented with three different simple ways of combining word vectors which 

include: summation/averaging, element-wise multiplication and concatenation. The 

following paragraphs describe the process in more details. 

4.2.1 General Framework 

We applied three different operations to build our compositional models. We also used 

two different sets of word embeddings: 1- off-the-shelf embeddings (BOWs and DEPS 

provided by Levy & Goldberg, 2014, and FastText by Bojanowski et al., 2016), 2- the 

embeddings we trained on Wikicorpus using different contexts. In the following sections, 

we explain our methodology in more detail. 

4.2.2 Composition Models 

For a sequence of words   w1w2w3… wn, we define the vector as s=w1∴ w2∴…∴wn, where 

∴ is the operator we use to combine the constituent words vectors. Since our goal is to 

experiment with simple composition models to compare our results with those of 

Mitchell & Lapata (2010), we decided ∴ to be summation (+), point-wise multiplication 

(●), and nothing, which is when we concatenate vectors. Here is an example of building 

the sequence vector given its constituent word vectors; Imagine the vector for the word 
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happy is: [1 0 4 7] and the vector for the word ending is: [2 3 0 9]; The resulting vector 

for the phrase “happy ending” is [3 3 4 16] using summation and [0.75 0.75 1 4]  using 

Averaging. The phrase’s vector using point-wise multiplication is [2 0 0 63], and finally, 

concatenation gives us [1 0 4 7 2 3 0 9] as the vector of the phrase. 

4.2.3 Evaluation Sets 

We evaluated our compositional model at two different levels: phrase-level and sentence 

level. For the phrase-level evaluation we used Mitchell & Lapata’s (M&L) 2010 dataset 

and for the sentence level, we utilized Microsoft Research Paraphrase Corpus (MSR). In 

the following paragraphs, we introduce these datasets briefly. 

4.2.3.1    M&L 

Mitchell & Lapata’s 2010 dataset (M&L) contains three types of phrases: adjective-

nouns, noun-nouns, and verb-objects. The phrases are taken from BNC and are frequent 

to avoid any confusion from unfamiliar constructions. Each line of the dataset contains a 

pair of two-word phrases. The pairs were judged by 204 native speakers of English of 

different age and gender and assigned a number on a scale of 0 to 7 where 0 represents 

none and 7 complete similarity between the pairs.  

4.2.3.2    MSR 

Microsoft research paraphrase corpus (MSR) (Dolan et al., 2005) contains 5801 sentence 

pairs with a binary human judgment of whether or not each pair is a paraphrase. Three 

raters were used to judge the pairs according to the given guidelines. There is 82.20% 

inter-rater agreement between rater 1 and 2 and 84.70% agreement between rater 1 and 3. 

There are 4076 and 1725 pairs in the training and test sets respectively. Table 4.5 

demonstrates state of the art results on the Microsoft paraphrase corpus for 

comparison.  
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Algorithm Reference Description Supervision Accuracy F 

Vector Based 

Similarity 

(Baseline) 

Mihalcea et 

al. (2006) 

cosine similarity with tf-

idf weighting 
unsupervised 65.4% 75.3% 

ESA Hassan (2011) explicit semantic space unsupervised 67.0% 79.3% 

KM 

Kozareva and 

Montoyo 

(2006) 

combination of lexical 

and semantic features 
supervised 76.6% 79.6% 

LSA Hassan (2011) latent semantic space unsupervised 68.8% 79.9% 

RMLMG 
Rus et al. 

(2008) 
graph subsumption unsupervised 70.6% 80.5% 

MCS 
Mihalcea et 

al. (2006) 

combination of several 

word similarity measures 
unsupervised 70.3% 81.3% 

STS 
Islam and 

Inkpen (2007) 

combination of semantic 

and string similarity 
unsupervised 72.6% 81.3% 

SSA Hassan (2011) salient semantic space unsupervised 72.5% 81.4% 

QKC 
Qiu et al. 

(2006) 

sentence dissimilarity 

classification 
supervised 72.0% 81.6% 

ParaDetect 
Zia and Wasif 

(2012) 

PI using semantic 

heuristic features 
supervised 74.7% 81.8% 

Vector-based 

similarity 

Milajevs et al. 

(2014) 

Additive composition of 

vectors and cosine 

distance 

unsupervised 73.0% 82.0% 

SDS 
Blacoe and 

Lapata (2012) 

simple distributional 

semantic space 
supervised 73.0% 82.3% 

matrixJcn 

Fernando and 

Stevenson 

(2008) 

JCN WordNet similarity 

with matrix 
unsupervised 74.1% 82.4% 

FHS 
Finch et al. 

(2005) 

combination of MT 

evaluation measures as 

features 

supervised 75.0% 82.7% 

PE 
Das and 

Smith (2009) 
product of experts supervised 76.1% 82.7% 

WDDP 
Wan et al. 

(2006) 

dependency-based 

features 
supervised 75.6% 83.0% 

SHPNM 
Socher et al. 

(2011) 

recursive autoencoder 

with dynamic pooling 
supervised 76.8% 83.6% 

MTMETRICS Madnani et al. combination of eight supervised 77.4% 84.1% 
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(2012) machine translation 

metrics 

L.D.C Model 
Wang et al. 

(2016) 

Sentence Similarity 

Learning by Lexical 

Decomposition and 

Composition 

supervised 78.4% 84.7% 

Multi-Perspective 

CNN 

He et al. 

(2015) 

Multi-perspective 

Convolutional NNs and 

structured similarity layer 

supervised 78.6% 84.7% 

REL-TK 
Filice et al. 

(2015) 

Combination of 

Convolution Kernels and 

similarity scores 

supervised 79.1% 85.2% 

SAMS-RecNN 

Cheng and 

Kartsaklis 

(2015) 

Recursive NNs using 

syntax-aware multi-sense 

word embeddings 

supervised 78.6% 85.3% 

TF-KLD 

Ji and 

Eisenstein 

(2013) 

Matrix factorization with 

supervised reweighting 
supervised 80.4% 85.9% 

 

Table 4.4  State of the art results for MSR 

4.2.4 Word Embeddings Used in Composition Models 

As word vectors we used two different sets: first, off-the-shelf word embeddings trained 

on huge corpora. In this case, BOW2, BOW5, and DEPS are taken from Levy & 

Goldberg’s (2014) paper where for DEPS, after excluding the words occurring less than 

100 times, there are 175,000 words with over 900,000 distinct syntactic contexts. The 

second set is the embeddings we built using the Wikicorpus with 600 million words. 

Among all different types of embeddings we trained on the corpus, we used BOW2, 

BOW5, DEPS, FastText-W2. As stated in the previous section, the first two embeddings 

(BOW2, BOW5) were built using the BOW  model (Mikolov et al., 2013), the DEPS is 

the syntax-based embedding suggested by Levy & Goldberg (2014), and the last two 

models are based on the model proposed by Bojanowski et al. (2016) with the window 

size of 2 and 5 respectively. All models were built using SkipGram algorithm (Mikolov 

et al., 2013).  
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4.2.5 Procedure 

We began with the M&L dataset where each pair contains two phrases which in turn are 

composed of two words. The vector for each phrase was created using the additive 

model.  In this model, we add word vectors to build phrase vectors as discussed in the 

beginning of this chapter. The similarity between the vectors of the phrases was 

calculated using the cosine similarity measure. Then the result was multiplied by 7 to 

comply with the scoring scale of the dataset. After computing the cosine similarity for all 

phrase pairs in the dataset, we calculated the Spearman correlation between the similarity 

scores produced by our system and the Gold Standard. The same steps were taken for 

multiplicative and concatenation models. 

MSR was the other dataset we used to evaluate our compositional models with. As 

mentioned in the previous paragraphs, the dataset contains pairs of sentences (not two-

word phrases) as opposed to M&L. Since the sentences are of variable length, we used 

averaging instead of summation to build each sentence’s vector. To build such a vector 

we added the sentence’s constituent words’ vectors and then divided it by the number of 

words in the sentence. For instance, imagine the vectors for She, is and smart are as 

follows: She = [1 1 1 0]; is = [0 1 1 1]; smart = [1 0 1 1]; the vector for the sentence She 

is smart = [0.66 0.66 1 0.66]; the reason to use averaging instead of summation was that 

we did not want the model to be biased toward sentences of longer length. 

We did not use the multiplication model on this dataset, because after running the 

experiments on the M&L dataset, we observed that this model did not yield good results. 

We did not use concatenation either due to the fact that sentences in each pair were of 

different length, therefore concatenation would have resulted in vectors of different 

length which were not comparable. Moreover, the concatenation model had not produced 

good results on M&L dataset. 

The MSR dataset is binary, in order to set a cut-off point between a paraphrase and non-

paraphrase we defined a number of different thresholds for each model and tested them 

on the training set, which we used as a development set; in each case, the threshold which 

yielded the highest F-score was selected for the test set. In particular, we specified the 
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thresholds to be 0.69, 0.79, and 0.89; it means if the threshold was 0.69 and the similarity 

score between two sentences in a pair was bigger than 0.69 (it could be a number 

between 0 and 1), the pair was considered as a paraphrase. 

As our evaluation metrics, we used precision, recall and F-score like the other 

researchers (Milajevs et al., 2014) which are reported in the next section. These metrics 

are defined as follows: 

Precision=
  

     
 

Recall=
  

     
 

F_score=2  
                  

                
 

, where TP (true positive) equals the number of paraphrases in the dataset which were 

detected as a “paraphrase” by the system. TN (true negative) means the number of non-

paraphrases which were detected as a “non-paraphrase” by the system. FP (false positive) 

represents the number of non-paraphrases recognized as a “paraphrase” and FN (false 

negative) are those pairs which were a paraphrase but was identified as a “non-

paraphrase”. 

 

5 Results and Discussion 

In previous chapters we argued that the type of context and the size of corpus affect the 

quality of the resulting word embeddings. To verify this, we built three different semantic 

spaces using three different contexts (bag-of-words, syntactic, and character n-gram) and 

two corpora of different sizes (British National Corpus and Wikipedia). We evaluated the 

resulting embeddings in various tasks qualitatively and quantitatively. Then we defined 

three composition models (summation/averaging, concatenation and multiplication) to 

build sentence representations using the previous word embeddings. These models are 

evaluated in two different tasks (phrase and sentence similarity), this chapter is divided 
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into two parts. In the first part, we report the results for the word- embeddings and 

discuss them; in the second part, we deal with the results and discussion of the 

composition models. 

5.1 Results and Discussion: Word Embeddings 

Following Levy & Goldberg’s (2014) tradition, we evaluated the quality of the word 

embeddings both qualitatively and quantitatively.  In the following parts, we discuss 

these methods of evaluation in more details. 

5.1.1 Qualitative Evaluation 

In the qualitative evaluation, we calculated the most similar words to a set of target 

words. The cosine similarity was used to measure the similarity between the vectors and 

some of the target words were selected from the words chosen by Levy & Goldberg 

(2014). We intentionally chose some similar target words to see if the results we got were 

different from their results. 

Table 5.1 shows five most similar words to the selected target words. The first word is, 

Batman, which shows similar sets of results across different embeddings. This is what we 

observed for many other target words. However, there are some other words which show 

obvious differences between embedding models. 

In case of Hogwarts, which is the school of magic in the Harry Potter story, it can be 

easily seen that BOW contexts represent more of a similarity in topic compared to 

syntax-based contexts which reflect the semantic type of the target word. In other words, 

the first top five most similar words to Hogwarts in BOW contexts are words related to 

the topic words that all exist in the Harry Potter story. On the other hand, the first five 

most similar words induced by syntactic context are names of different schools having 

the same functionality as the word’s. 

The same behavior can be observed for the word Turing, the English scientist, and 

many other similar nouns. BOW models present the words that are associated with 

Turing like non-deterministic, computable, etc., while the syntactic context produces the 
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names of other scientists. The kind of similarity represented by BOW context is described 

as topical similarity whereas the one by syntactic context is known as functional 

similarity (Turney, 2012).  

Another interesting observation is for the word Florida. The difference between the 

results of different embedding models can be interpreted in terms of an ontological 

difference; BOW contexts induce meronyms (by showing counties or cities within 

Florida), while syntactic model provides co-hyponyms (states in US other than Florida). 

The same behavior was observed for many other geographical locations. 

The last two examples illustrate that similarities resulting from syntax-based context 

share syntactic features. For instance, for the word driving, BOW models yield other 

forms of the verb (simple past, past participle), whereas in DEPS we see only verbs of the 

same form (gerund) in which the first four are related to the concept of transportation. 

The same applies to the word not, where BOW contexts induce words which imply the 

concept of negativity, while DEPS not only does produce the words which convey the 

concept of negativity, but all these words are of the same part of speech (adverb). 

Finally, after inspecting many more examples, which we do not present here due to 

space constraints, we concluded that syntactic contexts (DEPS) induce embeddings 

which reflect more functional similarity between words and BOW context yield 

embeddings which represent more topical similarity between the words. 

All in all, the DEPS model represents more functional and the BOW model more 

topical similarity; furthermore, as the size of the window increases (from 2 to 10) the 

similarity becomes more and more topical. For example, for the word driving, we even 

observe words like car and driver when the size of the window is 10 (BOW10). 

 It is worth mentioning that what we are reporting here is what we achieved using 

Wikicorpus with 600 million words because we wanted to get the results for the same 

words as Levy and Goldberg’s and some of the words used by them were not in the BNC. 

However, the same quality can be seen in embeddings built with the BNC as long as the 

word exists in the corpus. Here, we do not report the performance of the embeddings 

resulting from the Brown corpus due to their low quality. We do not report the results of 
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FastText embeddings either, because no noticeable differences were seen between them 

and BOW embeddings (at least for these examples). 

Target Word BOW 2 BOW 5 BOW10 DEPS 

  

 Batman 

Superman 

SpiderMan 

Batgirl 

Nightwing 

Catwoman 

Superman 

Nightwing 

Batgirl 

Joker 

Catwoman 

Batmans 

Batgirl 

Joker 

Nightwing 

Catwoman 

Superman 

Catwoman 

Avengers 

Wolverine 

Godzilla 

   

Hogwarts  

Dumbledore 

Hagrid 

Slytherin 

Gryffindor 

Snape 

Dumbledore 

Hagrid 

Malfoy 

Slytherin 

Slughorn 

Dumbledore 

Malfoy 

Hagrid 

Weasley 

HalfBlood 

Haileybury 

Bridlington 

Aligarh 

Earlham 

Godalming 

   

Turing 

Turings 

Nondeterministic 

Polynomialtime 

Gödel 

probabilistic 

Turings 

Computable 

Nondeterministic 

Gödel 

computability 

Turings 

computable 

computability 

nondeterministic 

computation 

Ramanujan 

Gödel 

Feynman 

Faraday 

Dirac 

   

Florida 

Alabama 

Fla 

Tallahassee 

Jacksonville 

Sarasota 

Tallahassee 

Jacksonville 

Sarasota 

Fla 

Gainesville 

Tallahassee 

Jacksonville 

Tampa 

Floridas 

Sarasota 

Louisiana 

Minnesota 

Oregon 

Michigan 

Colorado 

 

driving 

Drove 

Driven 

Speeding 

Idling 

drive 

Drove 

Driven 

Driver 

Drive 

speeding 

Drove 

Driven 

car 

Driving 

driver 

Cruising 

Flying 

Walking 

Traveling 

kicking 

 

not 

NOT 

Indeed 

Isnt 

Wasnt 

never 

Never 

Neither 

Indeed 

Nor 

wasnt 

Neither 

Never 

Nor 

indeed 

necessarily 

Never 

Not 

NOT 

Nt 

never 

Table 5.1. Target words and their 5 most similar words, as captured by different embeddings. 

Here, we also report the performance of the embeddings resulting from the Brown 

corpus, although the results are low quality still they are informative and should be 

provided. Table 5.2 demonstrates examples of the brown corpus results.  
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Target Word BOW 2 DEPS 

  

 written 

apparently 

served 

known 

lived 

established 

 

born 

held 

drawn 

shown 

taken 

   

not  

Neither 

Also 

Never 

Actually 

indeed 

never 

no 

Not 

Slowly 

together 

 

Table 5.2.  Examples of the brown corpus results 

 

5.1.2 Quantitative Evaluation 

We utilized some commonly used benchmarks to evaluate the word embeddings to see 

how well they resemble human judgments of semantic similarity of words. One of the 

most popular datasets is WordSim353 which was introduced by Finkelstein et al. in 2001. 

The dataset includes 353 word pairs manually annotated with a degree of similarity. For 

instance, tiger-cat is annotated with 7.35, indicating a high degree of similarity. 

Agirre et al. (2009) argued that the dataset does not make a distinction between 

similarity and relatedness. In other words, the words in the pair computer.keyboard are 

more related than similar. Hence the dataset could not distinguish between the models 

which induced similarity compare to the models which reflected relatedness. Following 

the argument, they split the dataset into two subsets of word similarity and word 

relatedness where the former contains pairs which are considered similar (synonyms, 

antonyms, identical, or hyponym-hyperonym, etc), the latter includes related pairs 

(meronym- holonym, etc). We used these two subsets to evaluate the model's 

performance in judging the similarity and relatedness between pairs. 



49 

 

The other gold standard that we employed was SimLex-999. The dataset was created by 

Hill et al. (2014) and is larger than the previous one with 999 annotated pairs, with the 

aim of focusing on similarity (as opposed to the relatedness). 

The resulting embeddings were evaluated by calculating the cosine similarity between 

the vectors of the words in each pair. Since the cosine similarity function produces a 

number between 0 and 1, the results were multiplied by 10 so that they could be 

compared with the gold standard scores.  Finally, the Spearman’s correlation between the 

rankings of word pairs induced from Gold Standard and the rankings that results from the 

embeddings was computed and reported. Table 5.3, illustrates a summary of the obtained 

results across different models. 

Model WordSim353-Similarity WordSim353-Relateness Simlex999 

BOW2-BNC 69% 50% 38% 

FastText BOW2-BNC 69% 42% 32% 

DEPS-BNC 54% 18% 27% 

 

Table 5.3. Spearman’s correlation between the scores generated by different systems and the Gold Standard 

scores. All the models were trained with BNC which contains 100 million words. 

We kept the size of the corpus fixed (only BNC) and changed the type of the context to 

see which one produced better representation for words for the task of similarity and 

relatedness. As you can see, the BOW model outperforms all other models, except for the 

WordSim353-Similarity task where it is on par with FastText.  The DEPS (syntax-based 

context) performs worst in relatedness task which is in line with what has been already 

reported in the literature (Levy & Goldberg, 2014; Melamud et al., 2016). However, the 

model did not produce quality embeddings for the task of similarity either. This is not 

expected. From the qualitative evaluation in our study and the literature as well (Levy & 

Goldberg, 2014; Melamud et al., 2016), we expect the DEPS model to reflect (functional) 

similarity between the words yielding higher scores on WordSim353-Similarity and 

SimLext-999 datasets. We argue that this discrepancy might be related to the size of the 

corpus (the corpus used by Melamud et al. (2016) contained 10 billion words). So let us 
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see what the results are for DEPS embeddings built using a bigger corpus (Wikipedia 

with 600 million words). 

Model WordSim353-Similarity WordSim353-Relateness Simlex999 

DEPS-BNC 54% 18% 27% 

DEPS-Wikicorpus 59% 18% 31% 

 

Table 5.4. Spearman’s correlation between the scores generated by DEPS model and the Gold Standard’s 

scores. 

 A glance at Table 5.4 shows the improvement in the model’s performance by 4 to 5 

percent on similarity task; however, on the relatedness task, the model’s performance is 

similar no matter the size of the corpus. This confirms that syntax-based (DEPS) models 

do not induce relatedness between words regardless of the size of the corpus they are 

trained with. Moreover, despite the enhancement in the model’s performance in the 

similarity task, the model still lags behind the BOW model by a noticeable margin. Table 

5.5 confirms this by illustrating the results achieved by these two models on similarity 

and relatedness tasks. 

 

Model WordSim353-Similarity WordSim353-Relateness Simlex999 

BOW2-Wikicorpus 79% 60% 40% 

DEPS-Wikicorpus 59% 18% 31% 

 

Table 5.5. Spearman’s correlation between the scores generated by different models and the Gold Standard 

scores. All the models were trained with Wikicorpus. 

It seems that the DEPS (syntax-based) method requires much bigger corpora to induce 

quality embeddings. Levy & Goldberg (2014) had 175,000 words and 900,000 contexts 

in their vocabulary, whereas we had 92,970 and 186,953 in our word and context 
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vocabulary respectively (in the Wikicorpus). For example, imagine the following 

scenario where the corpus contains only two sentences (articles are removed). 

Scientist discovered star. 

Star discovered by scientist. 

In the BOW model with the window size of 2, star is considered as the context of the 

word discovered two times, while in DEPS method discovered is paired with star in two 

different ways. For the first sentence we have (discovered, star/dobj) and for the second 

sentence, we have (discovered, star/nsubjpass). So in order to have the same 

number of target-context co-occurrences for the syntax-based (DEPS) model we 

need a corpus twice as big.  

Another point is that other researchers (Levy & Goldberg, 2014; Melamud et al., 2016) 

lowercased the corpus before building the DEPS word embeddings. This also affects the 

number of target-context co-occurrences. 

The final point worth mentioning is that for the BOW model even though we used a 

smaller corpus (Wikicorpus with 600 million words), we achieved a correlation score 

close to what other researchers obtained using much bigger corpora (Melamud et 

al.,2016, Corpus of 10 Billion words). This shows that for the BOW model the size of the 

corpus does not affect the quality of produced embeddings after a certain level and the 

only reason to use huge corpora could be the issue of word coverage. 

5.2 Results and Discussion:  Sentence Vectors 

The first series of the results are the ones obtained on the M&L dataset. Table5.6 shows 

the Spearman correlation between the scores produced by summative, multiplicative and 

concatenation models using different word embeddings as the input.  
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Word Model Composition Model Correlation  

BOW2 Summation 47% 

BOW5 Summation 48% 

DEPS  Summation 45% 

BOW2 Multiplication 34% 

BOW5 Multiplication 35% 

DEPS  Multiplication 35% 

BOW2 Concatenation 45% 

BOW5 Concatenation 46% 

DEPS  Concatenation 40% 

 

Table 5.6. Spearman Correlation between the scores produced by different composition models on M&L 

dataset. The word models are off-the-shelf embeddings trained on huge corpora. 

The word models reported in Table 5.6 are those trained on the huge corpora which are 

available on their creators’ websites. The reason to use these embeddings is that we 

wanted to see how the results produced by them might be different from ones produced 

by embeddings we built on smaller corpora.  

As you can see the winner is the composition model which uses BOW5 as its word 

embedding model and summation as its composition function. Mitchell and Lapata 

(2010) used traditional models to build word vectors (word co-occurrence and topic-

based). For them, the multiplication worked best when they used co-occurrence based 

model for the words and summation was preferable when they used word vectors built 

using the topic-based model. They reported the correlation coefficients for different sets 

of phrases (Adjective-Noun, Noun-Noun, and Verb-object) separately with 49% being 

the highest using Multiplication as composition model and co-occurrence based model 

for word vectors on Noun-Noun phrase pairs. 

In the next step, we did the same experiment but this time with the word embeddings 

that we had created on Wikicorpus which is considered a small corpus compared to the 

corpora the previous word embeddings have been trained on. Here, we want to 

investigate the effect of the size of training corpora on the quality of the resulting word 

embeddings in an extrinsic task. Table 5.7 shows the Spearman correlation coefficients of 
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composition model’ predictions using word embeddings trained on a smaller corpus. At 

this step, the only composition model we used was summation due to its superior 

performance in the previous step. 

Word Model Composition Model Correlation  

BOW2-Wikicorpus Summation 48% 

BOW5- Wikicorpus Summation 48% 

DEPS-Wikicorpus Summation 32% 

FastText-W2 Summation 48% 

FastText-W5 Summation 48% 

 

Table 5.7. Spearman correlation between the scores produced by the summative model on the M&L 

dataset. The word models are our embeddings (BOW2,BOW5,DEPS,FastText-W2, and FastText-W5) 

trained on a smaller corpus. 

As shown in Table 5.7, the embeddings show equal or in some cases (BOW2) even 

better performance (1% improvement) despite the smaller size of the corpus they were 

trained on. However, in the case of syntax-based context (DEPS), we observe that the 

performance drops by a noticeable margin (13%) which is what we expected given the 

results achieved before at the word level. This confirms the hypothesis that this kind of 

context requires big corpora to work well. 

We followed our experiments by testing the quality of embeddings in the task of 

paraphrase detection and for that purpose, we used the MSR dataset. Table 5.8 

demonstrates the results across different semantic spaces using off-the-shelf word 

embeddings which were built on huge corpora. Table 5.9 shows the same results but for 

the embeddings acquired with the Wikicorpus. 

Word_Model Composition Threshold Precision Recall F_score 

BOW5 Averaging >0.79 70% 95% 80% 

BOW2 Averaging >0.79 68% 97% 80% 

DEPS Averaging >0.79 67% 99% 80% 

wiki-news-1MFastText.vec Averaging >0.89 67% 100% 80% 
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Table 5.8. The precision, recall, and F-score for different semantic spaces, Wikipedia and FastText using 

off-the-shelf word embeddings. 

As you can see there is not any difference between the results achieved by different 

semantic spaces and all show the same F-scores. All models have a high recall (95% to 

100%) and acceptable precision score (67% to 70%). It means that the models can return 

most of the paraphrases (95% to 100%) and 67% to 70% of what they return are actually 

paraphrased. 

Word_Model Composition Threshold Precision Recall F_score 

BOW2 Averaging >0.79 68% 99% 80% 

BOW5 Averaging >0.79 67% 100% 80% 

DEPS Averaging >0.89 68% 98% 80% 

FastText2 Averaging >0.79 68% 99% 81% 

FastText5 Averaging >0.89 73% 91% 81% 

 

Table 5.9. The precision, recall, and F-score for different semantic spaces using the word embeddings built 

with Wikicorpus (the small corpus). 

Interestingly, decreasing the size of the corpus the embeddings were built with has led 

to a better performance and FastText embeddings with window sizes of 2, and 5 both 

show 81% F-score. The FastText embeddings in Table 5.8 were built by combining 

Wikipedia and Google news corpora, whereas the embeddings in Table 5.9 are the result 

of a much smaller corpus (Wikicorpus with 600 million words). One reason could be the 

quality of the text in the corpus (Wikicorpus is very clean) and the topic it covers. 

Moreover, one of the features of the FastText model is to produce high-quality word 

embeddings with small corpora which is what we observed in this experiment. However, 

it is worth mentioning that building the word embeddings using BOW was much faster 

than building them through FastText. It took 8 hours for us to build BOW5 embeddings 

with Wikicorpus corpus while the same process took more than 3 days for the 

FastTextW5 model.  
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6 Conclusion and Future work 

We built different word and phrase/sentence embeddings using different contexts and 

corpora of various sizes. We observed that syntax-based (DEPS) embeddings induce 

functional similarity when we evaluated it qualitatively; however, it needs to be trained 

on bigger corpora to demonstrate the same quality in quantitative evaluation. Character 

N-gram (FastText) proved to be less dependent on the size of the corpus and produces 

high-quality embeddings with a corpus of a small size. However, building word 

embeddings using FastText is very time consuming especially when the size of the 

window increases. BOW is the fastest and least time-consuming model to build. 

Another point is that representing a sentence by averaging the vectors of its constituent 

words is a robust composition model. This type of sentence representation works well 

across different tasks (Wieting et al., 2015) including paraphrase detection. Moreover, 

FastText embeddings are the most suited embeddings to represent the sentence’s 

constituent words in the task of paraphrase detection, especially when the size of the 

corpus is small. 

In the future, we would like to continue working on semantic-based word embeddings 

as mentioned in the methodology chapter. We would like to know what kind of semantic 

relation can be captured using this kind of context. We would also like to explore the 

potential of multilingual word embeddings in distinguishing between synonyms, and 

other types of relations such as antonyms and (co)hyponyms (van der Plas and 

Tiedemann, 2006). This is an important quality which cannot be captured by the above-

mentioned embedding models. 

As for the composition models, we would like to investigate the possibility of a general 

composition model that works across domains and will not be task specific, unlike 

neural-based composition models. This model will aim to take into account the order of 

words in the sentence. It is an important quality, especially when we consider sentences 

like “John laughed at Mary.” and “Mary laughed at John.” Our simple composition 
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models in this thesis fail to understand that these two sentences are opposite and consider 

them similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

References 

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A. (2009). A study 

on similarity and relatedness using distributional and wordnet-based approaches. 

In Proceedings of Human Language Technologies: The 2009 Annual Conference of 

the North American Chapter of the Association for Computational Linguistics (pp. 19-

27). Association for Computational Linguistics. 

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K, Collins, M. 

(2016). Globally Normalized Transition-Based Neural Networks. Proceedings of the 

54th Annual Meeting of the Association for Computational Linguistics (Volume 1: 

Long Papers). doi:10.18653/v1/p16-1231 

Baroni, M. (2013). Composition in distributional semantics. Language and Linguistics 

Compass, 7(10), 511-522.  

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: 

Representing adjective-noun constructions in semantic space. In Proceedings of the 

2010 Conference on Empirical Methods in Natural Language Processing (pp. 1183-

1193). Association for Computational Linguistics. 

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't count, predict! A systematic 

comparison of context-counting vs. context-predicting semantic vectors. 

In Proceedings of the 52nd Annual Meeting of the Association for Computational 

Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 238-247). 

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic 

language model. Journal of machine learning, research, 3,1137-1155. 

 Blacoe, W., & Lapata, M. (2012). A comparison of vector-based representations for 

semantic composition. In Proceedings of the 2012 joint conference on empirical 

methods in natural language processing and computational natural language 

learning (pp. 546-556). Association for Computational Linguistics.  



58 

 

Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. The Journal of 

Machine Learning Research, 3, 993-1022. 

Bojanowski, P., Grave, E., Julian, A., & Mikolov, T. (2016). Enriching word vectors with 

subword information. Transactions of the Association for Computational Linguistic 

(TACL), 5:135–146.. 

 Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations from word 

co-occurrence statistics: A computational study. Behavior research methods, 39(3), 

 .510-526

Clark, S. (2015). Vector space models of lexical meaning. The Handbook of 

Contemporary semantic theory, 493-522. 

Coecke, B., Sadrzadeh, M., & Clark, S. (2010). Mathematical foundations for a 

compositional distributional model of meaning/. Lambek Festschrift Linguistic 

Analysis, 36. 345–84.  

Collobert, R. (2011).Deep Learning for Efficient Discriminative Parsing, in International 

Conference on Artificial Intelligence and Statistics (AISTATS).  

Cornea, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised 

learning of universal sentence representations from natural language inference 

data.  In Proceedings of the 2017 Conference on Empirical Methods in Natural 

Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, 

pages 670– 680. 

Dolan, B., Quirk, C., & Brockett, C. (2004). Unsupervised construction of large 

paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of the 

20th international conference on Computational Linguistics(p. 350). Association for 

Computational Linguistics. 

Dozat, T., & Manning, C. D. (2017). Deep biaffine attention for neural dependency 

parsing. ICLR. 

http://ronan.collobert.com/pub/matos/2011_parsing_aistats.pdf


59 

 

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2015). 

Retrofitting word vectors to semantic lexicons. In NAACL HLT 2015, The 2015 

Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 

5, 2015, pages 1606–1615. .  

Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.'s 

negative-sampling word-embedding method. CoRR, abs/1402.3722, 2014.. 

 Grefenstette, E., & Sadrzadeh, M. (2011). Experimenting with transitive verbs in a 

discocat. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of 

Natural Language Semantics (pp. 62-66). Association for Computational Linguistics. 

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162. 

Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999: Evaluating semantic models 

with (genuine) similarity estimation. Computational Linguistics, 41(4), 665-695.  

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent 

semantic analysis theory of acquisition, induction, and representation of 

knowledge. Psychological review, 104(2), 211. 

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. 

In International Conference on Machine Learning (pp. 1188-1196). 

Leech, R. Garside, and M. Bryant. (1994). CLAWS4: The tagging of the British National 

Corpus. In Proceedings of the 15th International Conference on Computational 

Linguistics (COLING), pages 622-628, Kyoto, Japan. 

Lemaire, B., & Denhiere, G. (2006). Effects of high-order co-occurrences on word 

semantic similarity. Current psychology letters. Behavior, brain & cognition, (18, Vol. 

1, 2006). 

Levy, O., & Goldberg, Y. (2014). Dependency-based word embedding. In Proceedings of 

the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 

2: Short Papers) (Vol. 2, pp. 302-308). 



60 

 

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with 

lessons learned from word embedding. Transactions of the Association for 

Computational Linguistics, 3, 211-225. 

Marcus, M. (1993). Building a Large Annotated Corpus of English: The Penn Treebank. 

doi:10.21236/ada273556 

Melamud, O., McClosky, D., Patwardhan, S., & Bansal, M. (2016). The role of context 

types and dimensionality in learning word embeddings. . In NAACL-HLT, pages 

1030–1040.Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). 

Distributed representations of words and phrases and their compositionality. 

In Advances in neural information processing systems (pp. 3111-3119). 

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic 

composition. proceedings of ACL-08: HLT, 236-244. 

Mitchell, J., & Lapata, M. (2010). Composition in distributional models of 

semantics. Cognitive science, 34(8), 1388-1429. 

Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space 

models. Computational Linguistics, 33(2), 161-199. 

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word 

representation. In Proceedings of the 2014 conference on empirical methods in natural 

language processing (EMNLP) (pp. 1532-1543).  

Quirk, C., Brockett, C., & Dolan, B. (2004). Monolingual machine translation for 

paraphrase generation, In Proceedings of the 2004 Conference on Empirical Methods 

in Natural Language Processing, Barcelona Spain.  

Reese, S., Boleda Torrent, G., Cuadros Oller, M., Padró, L., & Rigau Claramunt, G. 

(2010). Word-sense disambiguated multilingual Wikipedia corpus. In 7th International 

Conference on Language Resources and Evaluation.  



61 

 

Rehurek, R., & Sojka, P. (2010). Software framework for topic modeling with large 

corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP 

Frameworks. 

Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis to represent 

syntagmatic and paradigmatic relations between words in high-dimensional vector 

spaces (Doctoral dissertation).  

Socher, R., Huang, E. H., Benin, J., Manning, C. D., & Ng, A. Y. (2011). Dynamic 

pooling and unfolding recursive autoencoders for paraphrase detection. In Advances in 

neural information processing systems (pp. 801-809). 

Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality 

through recursive matrix-vector spaces. In Proceedings of the 2012 joint conference 

on empirical methods in natural language processing and computational natural 

language learning (pp. 1201-1211). Association for Computational Linguistics. 

Turney, P. D. (2012). Domain and function: A dualspace model of semantic relations and 

compositions. Journal of artificial intelligence research, 44,533– 585. 

 Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of 

semantics. Journal of artificial intelligence research, 37, 141-188. 

Van der Plas, L., & Tiedemann, J. (2006). Finding synonyms using automatic word 

alignment and measures of distributional similarity. In Proceedings of the 

COLING/ACL on Main conference poster sessions (pp. 866-873). Association for 

Computational Linguistics. 

Wieting, J., Bansal, M., Gimpel, K., & Livescu, K. (2015). Towards universal 

paraphrastic sentence embedding. In International Conference on Learning 

Representations (ICLR), 2016a  

 

 


