
Saarland University
Department of Language Science and Technology

Master’s Thesis

Exploring Features for Multi-label
Hate Speech Detection

Submitted in partial fulfilment of the requirements for the degree Master of Science
(MSc) in Language Science and Technology, as part of the European Masters
Program in Language and Communication Technologies (LCT) at Saarland

University and University of Groningen.

Md Ataur Rahman
shaoncsecu@gmail.com

Supervisors:
Prof. Dr. Dietrich Klakow
Prof. Dr. Malvina Nissim

February, 2020

mailto:shaoncsecu@gmail.com

Dedicated To My Loving Wife . . .

Declaration of Authorship

I, Md Ataur Rahman, hereby confirm that this thesis titled, ‘Exploring Features
for Multi-label Hate Speech Detection’ and the work presented in it are my own. I
confirm that:

• This work was done wholly while I was a candidate for the degree of Master of
Science(MSc) in Language Science and Technology, as part of the European Mas-
ters Program in Language and Communication Technologies (LCT) at Saarland
University and University of Groningen.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all the main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

I also assure that the electronic version that I have submitted is identical in content
to the printed version of the Master’s thesis.

Signed:

Date and Place:

SHAON
Typewriter
28/02/2020, Saarbrücken

Acknowledgements

First and foremost, I want to express my unswerving gratitude to the Almighty
Allah for his immeasurable kindness and blessings for retaining my mental and physical
fitness to finish this sophisticated work.

This research would not have gotten its structure without the general support and
aid from the Erasmus+ program of the European Union which offered me with the op-
portunity for my Master’s studies through scholarship. The completion of this disser-
tation is not a consequence of my individual effort but is an aggregate of the combined
effort of many people.

I want to express my sincerest gratitude to my supervisor, Prof. Dr. Dietrich
Klakow, who is one kind of turning point in my life. His broad expertise in Machine
Learning and Linguistics and interest to spread that wisdom and knowledge are really
praiseworthy. I honestly admire his aptitude of understanding and endurance in dealing
with students and wish to have such kind of qualities in me. I do not hesitate to accredit
him as one of the most exceptional academic scholars I have encountered so far.

I would like to convey my esteemed indebtedness to my second supervisor, Prof.
Dr. Malvina Nissim from the University of Groningen for her guidance, patience
and support, specially for encouraging my research by allowing me to pursue my own
interests. I consider myself very fortunate for being able to work with a very considerate
and supportive person like her.

I also would like to thank Dr. Gosse Bouma for supporting me whenever I en-
counter some difficulty; his constant supports, motivation, guidance, and advice will
always hold a strong influence in my life. Special thanks to Ms. Bobbye Pernice and
all the other coordinators giving me suggestions and directions directly or indirectly
throughout various stages of my studies.

I also want to recollect all of my classmates who always inspired, helped and mo-
tivated me. Special thank goes to Morgan Wixted and Xinia for their support during
the submission of my thesis. I also wish to thank Ms Dana Ruiter for her continuous
support during my thesis work.

Finally, I would like to show my gratitude to all of my teachers who helped me a
lot during my Master’s program, without their teaching, it would have been impossible
for me to learn even a bit of what I have learned all these years.

“We have to bear in mind that words can kill, words kill as bullets do."

- Adama Dieng

Abstract

The correlation between opinions and text has been an enchanting topic for centuries.
Today the web has become an excellent means of expressing opinions about anything,
especially with the increasing popularity of social media. Such social platform seems
to be a fertile ground for hate speech and hateful comments. Hate speech is commonly
defined as any communication that disparages a person or a group based on some
characteristics such as race, colour, ethnicity, gender, sexual orientation, nationality,
religion, or other characteristics [1]. In simple terms, any communication that may
hurt the feelings of a particular group or person is termed as hate speech. Due to
the massive size of online contents that is being produced on a daily basis, it is quite
impossible to manage and separate all these hateful allusions from good contents. This
far-fetched problem of manually managing online hate speech annexed the need for au-
tomated detection and classification of hateful activities. As automated computational
approaches based on machine learning (ML) techniques became a popular means of
tackling these hateful speeches, feature selection plays an important role in terms of
the performance of the classification. In this thesis, we intend to explore the different
combination of features, including state-of-the-art input representation such as Byte
Pair Encoding (BPE) and word/document embeddings with classical ML algorithms
such as Support Vector Machines (SVM) for the classification of hate speech from text.
The incentive behind selecting classical ML came from the fact that given the size and
nature of different hate-speech corpora, whether or not it is possible to compete with
state-of-the-art models such as BERT [2] if we incorporate advanced features.

Contents

Abstract

Contents

1 INTRODUCTION 1
1.1 Motivation and Research Objectives . 1
1.2 Structure of the Thesis . 2

2 BACKGROUND AND RELATED RESEARCH 5
2.1 The Backdrop . 5

2.1.1 What is Hate Speech? . 5
2.1.2 Related Terminologies . 6

2.2 Applications of Hate Speech Detection 7
2.3 Literatures . 8

2.3.1 Lexicon Based Approaches and Shallow Features 8
2.3.2 Language Models: Word and Character n-grams 9
2.3.3 Word Embedding Techniques 9
2.3.4 Sentence and Document Embeddings 10
2.3.5 Classical Vs. Deep Learning Techniques in Recent Shared Tasks 11

2.4 Challenges of Hate Speech Detection 13

3 DATASETS 15
3.1 External Corpora . 15

3.1.1 Founta Corpus . 16
3.1.2 Davidson Corpus . 16
3.1.3 Waseem and Hovy Corpus . 16
3.1.4 SemEval 2019 - Task 5 Corpus 16
3.1.5 Kaggle Corpus . 16
3.1.6 TRAC - 1 Corpus . 17
3.1.7 GermEval Corpus . 17

3.2 HASOC Dataset . 17
3.3 Mapping Between Corpora . 18

Contents

4 RESEARCH METHODOLOGY 21
4.1 Defining the Specific Task . 21

4.1.1 Task-A . 21
4.1.2 Task-B . 22

4.2 System Architecture . 22
4.2.1 Preprocessing . 22
4.2.2 Traditional Features . 24
4.2.3 Unconventional Features and Input Representations 25
4.2.4 Classifier . 28

5 EVALUATION AND RESULTS 29
5.1 Results on Task-A . 29

5.1.1 English . 29
5.1.2 German . 31
5.1.3 Hindi . 31

5.2 Results on Task-B . 32
5.2.1 English . 32
5.2.2 German . 32
5.2.3 Hindi . 33

5.3 Discussion . 34

6 CONCLUSIONS 35

Bibliography 37

Chapter 1

INTRODUCTION

Hate - a mental state in which someone tries to humiliate a person or group by rejecting
or attacking their faith or other identity factors. It can be seen as a mutation of
the seven deadly sins [3], namely pride, greed, lust, envy, gluttony, wrath and sloth.
Throughout history, it is evident that almost all hate crimes are preceded by hate
speech. The genocide against the Tutsi in Rwanda started with hate speech. The
holocaust did not derive from the gas chambers, it began long before with hate speech.
What we have seen in Myanmar against the Rohingya population, also sprang from
hate speech. And today what we are witnessing around the world, when we see the way
migrants and refugees are being vilified, is because of the rise of extremists everywhere.
We need, therefore, to make every effort to address this hate speech.

1.1 Motivation and Research Objectives

For ages, social platforms such as YouTube, Facebook and Twitter have been struggling
with the problem related to hateful posts and comments. Nearly hundreds of millions
of money and a countless number of human resource are being invested each year to
tackle this problem [4]. Still, they are failing to crack it down mainly because such
measures mostly involves human intervention and manual review of the online contents
to distinguish and to remove the offensive materials. This process is time-consuming,
labour intensive and not scalable or feasible in reality [5][6].

One of the critical hurdles of automatic detection of hate speech from social media
data that comes in the form of text is to define the border that separates hateful
contents from other instances of language. A detection methods that rely only on the
lexical features, tend to classify all such documents containing some particular terms
or keywords as hateful text. As a result, those systems typically have low precision.
The urge for an automated, scalable scheme of detecting hate speech has captivated an
escalating number of researchers from both the Machine Learning (ML) and Natural
Language Processing (NLP) domains in the recent years. State of the art systems that
try to solve this problem mainly categorize it as a supervised text classification task
[7]. It is thus typically tackled using two categories of algorithms: classical machine
learning and more advanced neural networks that incorporate deep learning paradigm.
The former approach heavily relies on hand-crafted feature engineering, which is then

1

2 INTRODUCTION

fed to a classifier such as Logistic Regression (LR), Naive Bayes (NB) or Support
Vector Machine (SVM). Because of the lack of appropriate datasets and computational
complexity, relevant research has shown that traditional Machine Learning methods
perform significantly better than their neural network counterparts in the hate speech
domain if we tweak them with advanced feature engineering techniques.

Thus, the main incentives behind this thesis was to investigate whether or not it
is possible to beat state-of-the-art neural based methods using more conventional fea-
ture based classifiers such as SVM’s in the realm of textual hate speech classification.
We explored many preprocesing and features selection techniques in this thesis. We
investigated both traditional features such as char n-grams, Tf-Idf etc., and more ad-
vanced features such as byte pair encoding, sentence/document embeddings on various
settings in both binary and multi-level classification task for three different languages
(English, German and Hindi). By employing a combination of Byte Pair Encoding
with document-level embeddings we found out that our system was able to beat al-
most all the top performing models (including our own BERT model [8]) in the Hate
Speech and Offensive Content Identification in Indo-European Languages (HASOC)
shared task 2019 [9].

Thus the main objectives of this thesis was:

• To explore different combination of features with classical ML techniques (e.g.,
SVM) for hate speech detection from text.

• To check the performance of such classifiers using unconventional input represen-
tation techniques such as byte-pair/word/document embeddings and compare
them with state-of-the-art neural models such as BERT.

• To undertake an additional investigation to understand the impact of external
data and feature engineering in classic methods in the domain of multilingual
hate speech.

1.2 Structure of the Thesis
This remaining of this thesis will be structured as follows:

Chapter 2 introduces some of the background knowledge and related work:

• Definitions and related terminologies.
• An overview of the application fields of hate speech detection.
• Some of the most recent approaches to hate speech detection.
• And finally this chapter ends with a discussion of the challenges of detecting hate

speech.

In chapter 3, we present several hate speech corpora that was being used during
our experimentation.

Chapter 4 presents an overall interpretation of the methodology and design of our
hate speech models including a discussion of the specific tasks that we have solved.

1.2 Structure of the Thesis 3

In the 5th chapter, we’ve discussed about the results and evaluation of our system.
Starting with a detail discussion about the evaluation data sets, followed by a descrip-
tion of the evaluation strategy, and finally we’ve conclude this chapter by manifesting
a comparative performance with state-of-the-art models.

Finally, we conclude this thesis with a discussion of the implication of our system
and an overall epilogue in Chapter 6.

Chapter 2

BACKGROUND AND RELATED
RESEARCH

This chapter will provide a summary of the work conducted so far on hate speech de-
tection. We address the topic systematically, providing both theoretical and practical
aspects and giving an overview of the most recent approaches. While doing so, we
will focus on several shared tasks in our literature survey that are aiming at improving
the field constantly. The first section concentrates on defining hate speech and un-
derstanding the hate speech related terminologies with a follow-up discussions on the
importance of this research and application fields. Finally, we will try to throw a light
on the possible challenges that one might encounter when investigating the topic.

2.1 The Backdrop

2.1.1 What is Hate Speech?

Different organizations and scholars have defined hate speech based on different per-
spectives over the year. Some of the most influential definitions of hate speech are
conferred below:

• According to the definition of the Council of Europe’s Committee of Ministers
in 2005 - “Hate speech shall be understood as covering all forms of expression
which spread, incite, promote or justify racial hatred, xenophobia, antisemitism
or other forms of hatred based on intolerance, including intolerance expressed by
aggressive nationalism and ethnocentrism, discrimination and hostility against
minorities, migrants and people of immigrant origin”. In this sense, hate speech
covers comments which are necessarily directed against a person or a particular
group of people.

• In 2010, ILGA-Europe defined hate speech as “the public expressions which spread,
incite, promote or justify hatred, discrimination or hostility towards a specific
group. They contribute to a general climate of intolerance which in turn makes
attacks more probable against those given groups”.

5

6 BACKGROUND AND RELATED RESEARCH

• Facebook defines hate speech as a “directed attack on people based on what we call
protected characteristics - race, ethnicity, religious affiliation, sexual orientation,
sex, gender, gender identity and serious disability or disease”.

• Twitter’s guideline says “Users may not promote violence against or directly at-
tack or threaten other people on the basis of race, ethnicity, national origin, sexual
orientation, gender, gender identity, religious affiliation, age, disability, or serious
disease. We also do not allow accounts whose primary purpose is inciting harm
towards others on the basis of these categories. The consequences for violating
the Twitter rules vary depending on the severity of the violation. The sanctions
span from asking someone to remove the offending Tweet before they can Tweet
again to suspending an account

• According to YouTube’s policy - "We encourage free speech and try to defend your
right to express unpopular points of view, but we don’t permit hate speech. Hate
speech refers to content that promotes violence against or has the primary purpose
of inciting hatred against individuals or groups based on specific attributes, such
as race or ethnic origin, religion, disability, gender, age, veteran status, sexual
orientation/gender identity. There is a fine line between what is and what is
not considered to be hate speech. For instance, it is generally okay to criticize a
nation-state, but if the primary purpose of the content is to incite hatred against a
group of people solely based on their ethnicity, or if the content promotes violence
based on any of these core attributes, like religion, it violates our policy.

• The most widely accepted definition of hate speech was given by Davidson et
al. [10], which defines it as “speech that targets disadvantaged social groups in a
manner that is potentially harmful to them”.

2.1.2 Related Terminologies

Before diving deep into the problem of classifying hate speech, it is important to know
about hate speech related terminologies and its sub-types.

• HATE - is an emotion that can invoke feelings of animosity, anger, or resentment,
which can be directed against certain individuals, groups, entities, objects, be-
haviors, concepts, or ideas [11]. In an abstract way, all the subcategories of hate
speech can also be termed as hete and thus making it a general expression of
hatred.

• OFFENSIVE - speech or writings which are degrading, dehumanizing, insulting an
individual, threatening with violent acts [9].

• PROFANITY - usage of profane/swear words such as ass, pissed-off, fuck, etc. How-
ever, this most likely does not have any particular target [9].

• INSULT - act or speech that clearly wants to offend someone. For example ‘you
are fake’.

2.2 Applications of Hate Speech Detection 7

• ABUSE - unlike INSULT, this does not just insult a person but represents the
stronger form of abusive language (e.g., fucking retard).

• TOXIC - some form of rude, disrespectful comment that is likely to make someone
leave a discussion (e.g., Atheism is full of bias shit).

• THREAT / AGGRESSION - is an action or response by an individual that delivers
something unpleasant or the intention to harm another person [12][13]. It might
be overt or covert, often harmful, social interaction with the intention of inflicting
damage or other unpleasantness upon another individual and may occur either
reactively or without provocation [14].

• IDENTITY HATE - is a homophobic or transphobic hate incident if the victim
thinks it was carried out because of hostility or prejudice based on sexual orien-
tation or transgender identity [15].

• Sexism - any act, attitude, or institutional configuration that systematically sub-
ordinates or devalues women. Built upon the belief that men and women are
constitutionally different, sexism takes these differences as indications that men
are inherently superior to women, which then is used to justify the nearly uni-
versal dominance of men in social and familial relationships, as well as politics,
religion, language, law, and economics [16]. One such example of sexiest comment
could be - ‘She swims like a man’.

2.2 Applications of Hate Speech Detection

Although hate speech is not a new thing but with the dominance of social media usages
such as in Facebook, Twitter and YouTube, the problem is becoming more prominent
and visible as ever. Now more and more people are being exposed to hate crimes,
and social media platforms are acting as an ignition to these hateful activities. Thus
the impact of accurately detecting such offensive speech is enormous, and numerous
application areas will be profoundly influenced. Some of the implications are listed
below:

• Hate speech is undoubtedly a common phenomenon on the Internet [17][18] and
in extreme cases, it can be the cause of individuals being severely harmed. Thus
the significance of identifying and managing hate speech is apparent from the
obvious association between hate speech and actual hate crimes.

• The classification of posts or tweets in social media platforms into specific type
of hate expressed (e.g., homophobic, abusive, xenophobic etc.) could be utilised
as a source of data by legal organizations to tackle this problem.

• Such systems could be adapted in other domains such as police investigation, gen-
der violence, counter-terrorism, or for cyberbullying prevention, and thus extend-
ing knowledge and capacities of such organisations to identify possible criminal
content.

8 BACKGROUND AND RELATED RESEARCH

• Prediction and advanced warning systems could allows us to take early action
against the possible impact of hateful crimes that might happen due to the orig-
inal hate speech.

• Automatic removal of toxic content from social media platform is a direct appli-
cation as it will ensure safeguarding the integrity of moderate users.

• Given the alarming outgrowths that cyber aggression has on the victims, and the
accelerated extent among the users of the internet, especially within youngsters,
it is imperative to realise how it occurs to halt this from escalating. This has
great significance on the apprehension of cybercrime, cyberextremism and hateful
propaganda.

2.3 Literatures

The literature reviews in this section is arranged in a way that reflects both feature
variations and modelling techniques.

2.3.1 Lexicon Based Approaches and Shallow Features

Lexical or dictionary-based methods are the most fundamental strategies in natural
language processing. These techniques mostly use a table of lexicon such as WordNet
[19] to find out certain words or its meaning representations to be used as features.
One such approach is to store a typical list of abusive words that be can be used for
blacklisting specific offensive terms or to classify them further [20]. Apart from black-
listing, Gitari et al. compiled a collection of hate verbs that represents violent actions
or behaviour in an endeavour to construct a resource that enables lexical methods to
be more accurate and applicable in hate speech domain [20].

Shallow or surface features also played a pivotal role in the improvement of earlier
systems and are still useful today. These features can also be used in addition to lexical
sources to mitigate their dependency to a specific knowledge base and to improve the
accuracy. Surface features typically include elements such as punctuation symbols,
document length, emoticons, capitalisation or foreign words and numerals [7]. These
are usually extracted manually during the pre-processing step.

A study done by Davidson et al. provided more insights into the role of certain
words with variations of spelling in determining the categories and extent of hate speech
as features [10]. The authors also suggested adding sentiment scores aid in achieving
better accuracy while distinguishing abusive language from other groups of hate.

One of the biggest deficiency of lexicon-based methods is the bag of word assump-
tion. It considers each idea or concept through a single word without acknowledging
contextual information or semantics. But words in any languages can have more than
one meaning depending on the context and thus could be ambiguous. This also leads
to the problem of dealing with a very large vocabulary, as denotational representation
normally have a localist meaning which leads to a very large embedding vector [21].
Another dilemma of lexical scheme is that it fails to capture the implicit forms of hate

2.3 Literatures 9

that do not contain any profane or abusive words. It is also hard to capture permuta-
tions of characters in different swear words that are in euphemistic spelling form (e.g.,
b*tch, bth) [22].

2.3.2 Language Models: Word and Character n-grams

Language models oppose the concept of denotational representation (lexical approach)
by asserting that individual word in a document often fails to imply intended meaning
without its context; that is why lexical methods are not very powerful. In other words,
this is saying that “you shall know a word by the company it keeps" [23]. This idea was
later expanded on by Zellig Harris in 1954, who stated that “the restrictions on relative
occurrence of each element are described most simply by a network of interrelated
statements, certain of them being put in terms of the results of certain others” [24].
Interestingly, this distributional approach to quantifying word meanings is still used in
most techniques today.

A simple yet elegant example of this distributional approach is n-gram methods.
In the context of computational linguistics, an n-gram is a contiguous sequence of n
items, where the item in question is usually a character or a word. For example, the
character tri-grams of the name banana would be ban, ana, nan, ana. By collecting
a large number of n-grams over a large corpus, the n-grams can act as a probabilistic
language model that predicts the next item (i.e. a character or a word) in a sequence.

Greevy et al. [25] used SVM’s with simple features like bag of words and bi-grams
to categorize racist web pages. With a small dataset of around 1k documents they
achieved 92.78% precision score using a polynomial kernel.

Perhaps one of the most common dataset for English hate speech is the Waseem
and Hovy corpus [6]. The corpus is around 17k based on sexism, racism and none.
They have also used a Logistic Regression (LR) model and considered the influence
of various features such as word/character n-grams, gender, location and length to
evaluate their model on the dataset. Character based n-gram (n = 1 to 4) along with
gender feature produced an average f1 score of 0.7393 on a 10-fold cross validation
using the LR classifier.

Applied to hate speech, Mehdad et al. also found that character n-grams outperform
state-of-the-art lexical methods as well as word n-gram methods [22]. However, n-
gram models also have their shortcomings. For instance, in bag-of-n-grams, the word
order is not preserved, implying that different sentences can have precisely the same
representation, as long as the same words are being used. For example, the sentences
“I want tea instead of coffee” and “I want coffee instead of ice tea” would result in the
same representation, although they are opposing statements. Moreover, bag-of-word
models would pool ambiguous words together, such as “break”, which can be seen as a
noun or a verb. Badjatiya et al’s comparative study showed that n-grams performed
the worst out of all tested embeddings methods [26].

2.3.3 Word Embedding Techniques

The most widespread embedding method employed in natural language processing is
the word embeddings (such as Word2Vec) [27]. It can be seen as a shallow two-layer

10 BACKGROUND AND RELATED RESEARCH

Neural Network, trained to reconstruct linguistic contexts of words. This in terms
produces a more sophisticated version of a feature vector where semantically related
words may end up having similar vector representations relative to each other (e.g.
‘earth’ and ‘world’ will most likely to have a similar word vector). Therefore, capturing
the relative semantics of a word, similar to Harris’ idea of the “network of interrelated
statements” [24]. The word vectors can then be used as a classification feature and
have been shown to outperform bag-of-words approaches for a number of general NLP
learning tasks [7] as well as hate speech specific classification tasks [26].

Word vectors can either be trained directly using the training data or can be ob-
tained from pre-trained models such as FastText [28] which provides already trained
word vectors from a large text corpus. The main advantage of using FastText over
self-trained vectors is the inclusion of character n-grams, which allows computing word
representations for words that did not appear in the training data. FastText has
proven to generate better word embeddings for rare words or out-of-vocabulary (OOV)
words. FastText outperformed pre-trained Word2Vec models on a larger text corpus
(e.g. Google News, Wikipedia Corpus) [29] [28].

A slightly more effective extension of word2vec is Global Vectors (GloVe) introduced
by Pennington et al. [30]. Global vectors are computationally less expensive as com-
pared to word2vec. While word2vec captures the co-occurrence of words one window
at a time, GloVe counts the co-occurrences of two words within the entire text corpus
in a large co-occurrence matrix and then minimizes the square distance between the
dot product center and context vectors and the log product of the co-occurrences [30].
On top of its improved computational efficiency, GloVe has been proven to outperform
Word2Vec and FastText on a range of learning tasks [30] and came out top in Bad-
jatiya et al.’s comparative hate speech study [26]. However, the performance of GloVe
is similar to that of other word embedding techniques which are heavily dependent on
the training corpus.

2.3.4 Sentence and Document Embeddings

Pre-trained embeddings have become a core trend in Natural Language Processing
(NLP), largely due to its capabilities for representing complex semantic characteristics
that natural language possesses. Whether in their guise as a representation that it
holds for the neural network to work with or simply as the agglutinating property of
language units that can be described by similar units in a certain way, it is truly one
of the major breakthroughs in the computational representation of languages.

For years word embedding methods such as word2vec [27] or GloVe [30] are the
most popular means of text representation and seems to be the only de facto when it
comes to working with neural nets. While words are good way to represent meanings
in some extent, it often fails to show us the big picture in contrast to sentences. There
are two significant intricacies of applying word vectors for hate speech classification.
Firstly, hate comments require to be classified as sentences and documents instead
of merely taking the sum of individual tokens or words. Furthermore, the length of
words in each comment differs, which is problematic while using neural networks, as
they require a fixed-size input [31]. A simple way to resolve this problem is to either
take the word centroid, which adds all the word vectors of words in the sentence

2.3 Literatures 11

together, or averaging the word vectors. From this, we would be able to compute the
similarity between two sentences by looking at its centroid distance. This technique of
sentence embedding is not new and people have been trying several other methods
such as mapping word vectors to sentence vectors through the use of more conventional
architectures like RNN and CNN variants [31–35] or through the use of unsupervised
approach like SkipThought vectors [36] to construct embeddings from sentences.

A commonly practised approach for combining word vectors within sentences is to
apply CNN on top of the word vectors such as in [34]. The author suggested padding
the vectors in order to convert them into an equal dimension, then mapping the words
in the new sentences into word embeddings, employing a convolutional layer followed
by a pooling and a fully-connected layer to get the final sentence representation. The
paper confirms that this procedure achieves better results by utilizing word2vec even
without any tuning or random initialization and also proved to be quite useful in both
Zhang’s [29] and Badyathia’s [26] investigation of deep learning approaches.

However, with these methods, one runs into the same problem as with n-gram
methods, i.e. corresponding vectors for sentences containing the same words but having
contradicting meanings. Moreover, averaging word vectors for sentence representations
are found not to be very efficient [22]. This is also the reason we restrained ourselves
from using averaged word vectors.

Doc2Vec

Although few more recent work on sentence embeddings such as Google’s “Univer-
sal Sentence Encoder”1 [37] that uses transformer-based architecture and Facebook’s
“Universal Sentence Representations”2 [38] shows promising results on some transfer
learning tasks (e.g., sentiment analysis, semantic textual similarity), they are however
not generalized, and it takes a lot of computing power in order to train them from the
sketch.

Currently, Doc2Vec [31] is the state-of-the-art technique for comment or sentence
embedding, which proposes to train a paragraph vector as an unsupervised learning
algorithm that learns fixed-dimensional distributed feature representations for variable-
length pieces of texts. Mikolov and Le have shown that this technique achieves better
results than any other embedding technique on a sentiment classification task [31]. In
addition to this, Doc2Vec was found to be the most effective technique for a binary hate
speech classification problem from Yahoo Research [39]. This is the primary reason for
which we adhere to using Doc2Vec (using gensim library [40]) in our research.

2.3.5 Classical Vs. Deep Learning Techniques in Recent Shared
Tasks

This section will start briefly with a more generalized discussion about a few of the
earlier work on hate speech detection that compares classical machine learning with
deep learning methods. We will try to conclude our literature survey by throwing

1https://tfhub.dev/google/universal-sentence-encoder/4
2https://github.com/facebookresearch/InferSent

https://tfhub.dev/google/universal-sentence-encoder/4
https://github.com/facebookresearch/InferSent

12 BACKGROUND AND RELATED RESEARCH

light on the more recent shared tasks on hate speech detection since our work mainly
revolves around the recent HASOC [9] shared task. This, in essence, will also consolidate
the importance of classical machine learning approaches in tackling hateful contents.

A comparison between SVM, Seq2Seq and FastText classifier was shown in one of
the paper [41] by Akshita et al.. They build a corpus on top of Waseem and Hovy
dataset which incorporated benevolent, hostile and others to categorize hateful activi-
ties. Even with only tf-idf (term frequency–inverse document frequency) feature, SVM
performed quite well on average compared to the seq2seq model. For class benevolent
and others SVM scored highest among all the classifiers.

In a paper [10], the authors fond that racist and homophobic tweets are more likely
to be classified as Hate Speech. while offensive (but not hate speech) tweets are those
that are are generally classified as sexist tweets. This paper can be considered as one of
the most influential paper that combines almost all the popular classical approaches to
machine learning with a big set of feature selection techniques. They used lowercasing,
stemming, n-gram(1, 3), tf-idf, parts of speech (POS), sentiment lexicon score and
char/word/syllables length features. With an f1-score of 0.90, Logistic Regression
classifier showed the best result among the other classifiers (Naïve Bayes(NB), Decision
Tree (DT), Random Forests (RF) and SVM).

Perhaps the best comparison between classical machine learning technique with
state-of-the art deep neural network model was done by Zhang et al. [42]. They
have used seven publicly available English datasets on a CNN and Long short-term
memory (LSTM) based model to compare the outputs with SVM’s that uses feature
engineering. As features they have used fairly simple set such as Tf-Idf, word n-gram (1,
3), mentions, hashtags, lengths (char and word), POS-ngrams (1, 3), Sentiment features
etc. On the biggest corpus (WZ-L), SVM outperformed the DNN based model. SVM
with feature selection scored an f1 of 81.4 the CNN and LSTM based model scored
80.2 respectively.

On a dataset of unshared task for the Workshop on Abusive Language Online
(ALW1), Ji Ho et al. used Logistic Regression, SVM and Hybrid Convolutional Neural
Network(CNN) models consisting of wordCNN and CharCNN [43]. They used one step
and two step methods where in one step method three way multi-class classification
was done. In contrast, the two step classifier consisted of two binary classification task
between none vs abusive and a subsequent racism vs sexism (if abusive). Although,
LR classifier in two step classification showed the best result (f1-score of 0.824) but
SVM on the single racism vs sexism task gave unparalleled performance scoring 0.952
points on f1.

In one of the recent GermEval 2018 Shared Task [44], a total of 20 teams participated
to tackle the problem of offensive language identification from German tweets. The
task was divided into two categories (binary vs multi-class) and the best teams from
each of the discipline scored 79.53 (coarse grained) and 73.67 (fine grained) in terms
of accuracy measure. One of the teams from Saarland University [45] participated on
the Binary task of detecting offensive (or non-offensive) language. They tried three
different methods namely – Lexicon based, SVM and Neural Network, and tried to
compare the results for these classifiers on both monolingual and crosslingual settings.
As lexicon, they semi-automatically created a total of 1566 unigrams by translating
English abusive words and also manually adding German abusive words from Wik-

2.4 Challenges of Hate Speech Detection 13

tionary. They reported a best SVM model based on character n-grams(n=6), word
embeddings using COW16 [46] and the task-specific lexicon as features which acquired
an F1 macro score of 77.4. The team also experimented with two versions of neural
nets (LSTM and GRU) and the GRU achieved 73.5 in terms of F1 macro score. Their
best submission containing an ensemble of all the 3 best classifiers gained an accuracy
of 75.62 and F1 (macro) of 72.05 on the final task.

Another team [47] used a combination of CNN and RNN (with GRU) to tackle the
same problem. For their experiment with different combinations of features, they have
used 10-fold cross validation techniques over the training data. They also separated
the final 500 examples from the training set to finally evaluate the best versions of each
of their models. They claimed that bidirectional gated recurrent units (GRU) performs
better than LSTM in the case of RNN because of small number of training examples
and also lowercasing the words seems to give higher results. Among three runs, the
best ensemble produced an accuracy of 77.27% and a macro F1 of 74.64.

In another multi-lingual shared task named TRAC (2018) [48], a total of 30 teams
submitted their test runs to classify overtly aggressive, covertly aggressive, and non-
aggressive texts. The best system obtained a weighted F-score of 0.64 for both Hindi
and English on the Facebook test sets, while the best scores on the surprise set were
0.60 and 0.50 for English and Hindi respectively.

In a recent shared task named “Hate Speech and Offensive Content Identification in
Indo-European Languages" (HASOC) [9], our team LSV-UdS [8] participated on Task-
A (binary classification task - hate vs. non-hate) and Task-B (multi-class classification
task - profane/offensive/hate/none) for all three of the languages (Hindi, German
and English). During the competition, we employed both BERT and SVM based mod-
els and explored the possibility of data augmentation by incorporating and mapping
other hate speech corpora. Note that during the shared task, the SVM classifier that
we employed, only used more traditional features such as tf-idf, word/byte-pair/char
level n-grams etc. Even with that, we got quite a surprising result that was able to
compete with our BERT based model in several categories. We secured 1st position
for German Task-B and 2nd position for German Task-A. Our Hindi model was also
able to achieve 2nd position for the binary task. Chapter 5 delineates a brief about our
results.

From this point on, during the original thesis work, we tried to go beyond just using
conventional features. With more unconventional features and input representations
that are quite popular with deep learning methods, we were able to beat most of the
ranked teams by a significant margin. We achieved better results than our own state-
of-the-art BERT models by using a vanilla SVM classifier. To best of our knowledge,
this is the first such research effort that combines Doc2Vec and Byte Pair Encoding
(BPE) along with SVM to tackle hate speech task.

2.4 Challenges of Hate Speech Detection

This section will highlight various aspects which makes the task of automatic hate
speech classification tricky. Firstly, we will focus on the fact that there is a great dispute
among the most traditional definitions of the term hate speech and its subcategories.

14 BACKGROUND AND RELATED RESEARCH

Then we will discuss about the limitations regarding the interchangeability of corpus
for different hate speech task.

• The term hate is vague by nature, that is one sentence that may look like hateful
to a person or in one culture could be treated as sarcasm in another part of the
world. Also, detection of offensive contents is not as simple as keyword look-up
problem. It depends on the context and in the inherent nature of the topic being
dealt with.

• Hate speech is a fore-and-aft phenomenon that evolves in parallel with language
evolution. Its apprehension can be difficult when it comes to classifying the lan-
guage being used by the youngsters as they use a metaphorical way of commu-
nication [49]. Thus, the socio-linguistic attribute of this phenomena in different
social media is of significant interests for researchers [50].

• The complexity of annotating hate speech into different sub-classes are heavily
biased towards the cultural, social, political and religious belief of the annotators.
For example, if someone is annotating something related to socio-politics, (s)he
needs to have proper background knowledge about political parties and voters in
that particular region where the text originated.

• Annotators agreement in most of the cases are observed to be very low [51],
meaning that the same task would probably be quite difficult for the machine
learning systems. For instance, if we want to annotate tweets about migrants, we
might need to include real immigrants in order to realize their perspective. The
same thing which might look like terrorism to one country could also be seen as
resistance to the forced occupation.

• Most of the offensive languages in social media such as tweeter are spelled in in-
formal or with ungrammatical forms. People even use asterisk or other symbols
instead of characters inside profane words (e.g., f**k, d@#$k) which is unpre-
dictable and challenging to interpret for the algorithms.

• Finally, there is considerable confusion even within the sub-classes of hate, such
as abusive vs. insult and so on. A clear distinction is often impossible in such
scenarios. Thus, although a prediction is incorrect when compared to the gold
label, it might actually not the case.

Chapter 3

DATASETS

Hate speech is a highly sophisticated phenomenon which is heavily dependent on the
geo-political background and the data being analyzed. Moreover, there is no clear
standardization when it comes to the subcategorization of hateful speech, and almost
all the available datasets differ in the way they have looked into the problem and
categorized them. Thus each of the datasets has its own version of class labels, and it
is difficult to use external data that really helps. Nevertheless, we have used several
external corpora apart from the primary HASOC evaluation corpus in our experiments
which we are going to discuss in this chapter.

3.1 External Corpora

Almost all the datasets in hate speech domain are for English, and we could find
only a handful of gold standard corpus for other languages (German and Hindi). The
availability of datasets for other languages apart from English is another motivation
to use classical ML approaches. We have used the following external datasets in our
experiments (Table 3.1):

Name Lang. Source Size Categories

Founta en Twitter 100 k abusive, hateful, normal, spam
Davidson en Twitter 27 k hate, offensive, other
Waseem en Twitter 24 k racism, sexism, other
SemEval en, es Twitter 13+6.6 k hateful/not, aggressive/not
Kaggle en Wikipedia 300+ k toxic, severe-toxic, obscene, threat, insult,

identity-hate
TRAC en, hi Facebook 15 k overtly aggressive, covertly aggressive,

non-aggressive
GermEval de Twitter 5 k profanity, insult, abuse, other

Table 3.1: External Hate Speech Datasets for Different Languages.

We will briefly describe each of the above datasets below.

15

16 DATASETS

3.1.1 Founta Corpus

The Founta (FO) [52] corpus1 is based on around 100k English twitter data collected
using boosted random sampling techniques. It focuses on spam, hateful and abusive
speech. The annotation was mainly done via crowdsourcing.

3.1.2 Davidson Corpus

The Davidson (DA) [53] corpus2 is also known as the Cornell University hate corpus,
is a collection of around 27k tweets. The corpus was collected based on crowd-sourced
offensive keywords. Three or more Figure Eight3 (formally known as CrowdFlower)
users coded the tweets into either offensive, hate speech or other.

3.1.3 Waseem and Hovy Corpus

With a total of 24k tweets, theWaseem and Hovy (WA) [54] corpus4 tried to distinguish
between racist and sexist tweets. The authors employed a keyword search method
based on slur to collect the data, and the inter-annotator agreement was K = 0.84.
They also produced a list of most indicative features (character n-grams) from their
dataset.

3.1.4 SemEval 2019 - Task 5 Corpus

The SemEval 2019 - Task 55 (SE) also known as hatEval6 shared task [55] was mainly
concerned about hateful and aggressive content against women and immigrants
in twitter. There was both Spanish (13k) and English (6.6k) annotated tweets where
around 9k data contained hateful speech regarding immigrants, and nearly 10.5k tweets
were against women. We only used the English dataset in our research. They also used
the Figure Eight platform for the annotation.

3.1.5 Kaggle Corpus

The Kaggle (KA) [56] corpus7 is a huge collection of Wikipedia comments that was
mainly used for Toxic Comment Classification Challenge by Kaggle during 2018. It
includes more than 300k hate-related contents which belongs to classes ranging from
toxic, severe toxic and obscene to threat, insult and identity hate. The
dataset was also collected using a boosted random sampling method. One downside of
this corpora is that around 60% of the data belongs to none label.

1https://github.com/ENCASEH2020/hatespeech-twitter
2https://github.com/t-davidson/hate-speech-and-offensive-language
3https://www.figure-eight.com/
4https://github.com/zeerakw/hatespeech
5http://alt.qcri.org/semeval2019/index.php?id=tasks
6https://competitions.codalab.org/competitions/19935
7https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

https://github.com/ENCASEH2020/hatespeech-twitter
https://github.com/t-davidson/hate-speech-and-offensive-language
https://www.figure-eight.com/
https://github.com/zeerakw/hatespeech
http://alt.qcri.org/semeval2019/index.php?id=tasks
https://competitions.codalab.org/competitions/19935
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

3.2 HASOC Dataset 17

3.1.6 TRAC - 1 Corpus

We used the TRAC-1 2018 (TR) shared task [48] corpus8 that focuses on the overtly,
covertly and non-aggressive Facebook comments. This dataset contained around
15k data from both Hindi and English. This dataset is a subset of another larger
corpora developed by Kumar et al. [57]. There are however, two major issues regard-
ing this dataset. Firstly, the English dataset contains code-mixed English-Hindi data
as well. The second problem is regarding the annotations, as some of the examples
contains implausible class labels. Nevertheless, this dataset gave us a huge boost in
the results when applied with HASOC dataset mostly due to the nature of the data
(as both the corpora came from the Indian subcontinent).

3.1.7 GermEval Corpus

In order to augment the German data, we opt the GermEval 2018 (GE) [44] corpus9.
The data in this corpus mainly has four categories namely - profanity, insult, abuse
and other which aggregates to around 5k tweets.

3.2 HASOC Dataset

Since this is the primary evaluation dataset for this thesis, we will have an elaborate
discussion on the data. We mainly worked with both binary and multi-lebel cate-
gories of data from three of the languages (Hindi, German and English). The binary
class contains hate and offensive (HOF) vs. non-hate (NOT) while the multi-
label data further divides the HOF into more fine-grained categories namely - hate
(HATE), offensive (OFFN) and profanity (PRFN). The definitions of each of the
above categories can be found in section 2.1.2. For all the three languages, the dataset
was sampled partially from Facebook and mostly from Twitter following a systematic
guideline. According to the original paper [9] -

“At first, the organisers sought for heuristics that typically describes hate
speech in popular online discussion forums. They pinpointed relevant topics
toward which various hate content might be generated. Based on those
topics, keywords and different hashtags were collected and utilised in order
to extract the tweets for all three languages. For randomly found tweets,
the id of some of the authors were also collected in order to get the entire
timelines tweet. To increase the variety, they also crawled the previous posts
of every user they collected the tweets from. Thus making the system less
susceptible to bias. This technique was inspired by the GermEval shared
task [44].”

In a nutshell, the tweets were extracted through the use of keywords and hashtags,
which included hateful content. Below (Table 3.2) the statistics of the HASOC training
and test set is given based on the class distribution.

8https://sites.google.com/view/trac1/shared-task
9https://github.com/uds-lsv/GermEval-2018-Data

https://sites.google.com/view/trac1/shared-task
https://github.com/uds-lsv/GermEval-2018-Data

18 DATASETS

Data Lang. NOT HOF HATE OFFN PRFN Total

Training en 3591 2261 1143 667 451 5852

de 3412 407 111 210 86 3819

hi 2196 2469 556 676 1237 4665

Test en 865 288 124 71 93 1153

de 714 136 41 77 18 850

hi 713 605 190 197 218 1318

Table 3.2: Class Distribution for Official HASOC Training and Test Set.

3.3 Mapping Between Corpora

In our investigation, we have experimented with several external hate-speech corpora
(Table 3.1) and their impact on the classification performance. A mapping between
comparable classes was done in such cases, which are delineated in table 3.3 along with
the task-specific distribution of classes for each of the languages.

Corpora Source Task A Task B Mappings (A) Mappings (B)

Kaggle en 143.3/16.2 0.3/14.5/1.4 ∀c = 0 →NOT obsc →PRFN
∃c = 1 →HOF id.hate →HATE

rest →NONE

Davidson en 2.5/12.3 0/11.5/0.8 none →NOT offn →OFFN
hate, off →HOF hate →HATE

Founta en 53.9/32.1 0/27.2/5.0 normal →NOT abusive →OFFN
hateful, abusive →HOF hateful →HATE

TRAC en 7.4/9.8 none →NOT
aggr →HOF

hi 3.4/13.8 none →NOT
aggr →HOF

GermEval de 3.3/1.7 0.1/0.6/1.0 none →NOT prfn →PRFN
hate →HOF ins →OFFN

hate →HATE

SemEval en 5.8/4.2 not →NOT
hate, aggr →HOF

Waseem en 11.1/5.1 other →NOT
racism, sexism →HOF

Table 3.3: The mappings between classes in the external corpora to HASOC. The
distribution of classes for Task A (NOT/HOF) and Task B (PRFN/OFFN/HATE) are reported
in thousands.

3.3 Mapping Between Corpora 19

However, as different corpora concentrate on various facets of hateful data, a direct
one-to-one correspondence among the labels of the HASOC (listed in section 3.2) and
the labels of other external datasets (obscene (obs), identity hate (id.hate), none,
offense (offn), hate, other, overtly/covertly agressive (aggr), profane (prfn), insult
(ins)) is often not possible. Thus, in most cases, we only used the external data where
applicable (mostly in Task B with our BERT model). For the SVM model, we only
used them in the binary (Task A) classification task. Also note that, as there was a lot
of data for English, we tried to get an aggregated balanced corpora out of them. This
balancing was also experimented with the Hindi training data after adding the TRAC
data. Although for English the balanced set improved the results, for Hindi it was not
that much helpful. We used a balanced set of around 90.2k for each of the HOF/NOT
labels for our binary classification task for English.

Chapter 4

RESEARCH METHODOLOGY

This chapter will outline the technical detail and the methods used in the implemen-
tation of our system. At first, we will introduce the tasks that we are solving which
include both binary and multi-label hate speech detection. After that, we will talk
about the pre-processing and features that we used during the first phase of our sys-
tem development. Finally, we will concentrate on our best models that make use of
byte-pairs with document embeddings.

4.1 Defining the Specific Task

Given some text (e.g., tweets), we aimed to use computational methods to determine
the type of hate in those texts. The task of hate speech detection can be either coarse-
grained such as hate vs. non-hate (binary) or more fine-grained (multi-label). In this
thesis, we tried to deal with both of the above problems of classification, which is
defined as Task-A and Task-B accordingly by following the definitions from HASOC
as below:

4.1.1 Task-A

Task-A focuses on Hate speech and Offensive language identification for Hindi, German
and English language. This task is coarse-grained binary classification in which we tried
to classify tweets into two class, namely: Hate and Offensive (HOF) and Non-Hate and
offensive (NOT).

• Non Hate-Offensive (NOT): Posts that does not contain any hate speech or
offensive content.

• Hate and Offensive (HOF): Post containing Hate, offensive, and profane con-
tent falls under this category.

In the additional data as well, we mapped a post as HOF if it contains any form of
non-acceptable language such as hate speech, aggression, profanity etc.

21

22 RESEARCH METHODOLOGY

4.1.2 Task-B

Task-B is the fine-grained classification. Hate-speech and offensive posts from the
Task-A are further classified into the following three categories.

• Hate speech (HATE): Describing negative attributes or deficiencies to groups
of individuals because they are members of a group (e.g. all poor people are
stupid). Hateful comment toward groups because of race, political opinion, sexual
orientation, gender, social status, health condition or similar.

• Offensive (OFFN): Posts which are degrading, dehumanizing, insulting an indi-
vidual, threatening with violent acts.

• Profanity (PRFN): Does not involve directly insulting anyone but the usage of
profane/swear words such as ass, pissed-off, fuck.

Thus we may see this problem as a 3-way (multi-label) classification task. The
choice of language in this intended experiment includes English, German and Hindi.
Note that we did not use additional data for this category in our SVM model.

4.2 System Architecture

The main idea of this thesis was to use a combination of the following things with the
classic ML techniques such as SVM’s:

• Preprocessing techniques.

• Traditional feature selection.

• Unconventional features and input representations.

We will describe each of the aforementioned components throughout this section.

4.2.1 Preprocessing

We have tried a bunch of preprocessing techniques with the initial data. Although
most of the preprocessing was done for the purpose of the experiment, we only kept
those that really helped improve the results in our final model. Nevertheless, here we
will be discussing all the preprocessing that we have tried out.

Tokenization

Tokenization is the process of segmenting sentences or words from a document. In
our experiment, we have used the word tokenizer’s1 from spaCy [58] for all the three
languages.

1https://spacy.io/api/tokenizer

https://spacy.io/api/tokenizer

4.2 System Architecture 23

Lowercasing

Lowercasing refers to converting all the characters into a smaller letter. We have tried
this preprocessing for Engish and German in our experiment. For Hindi, it was not
applied since Hindi is a case insensitive language.

Truecasing

Truecasing is the problem of finding the proper capitalization of words within a text
where such information is unavailable. For example, in English, such capitalization
might occur at the beginning of a sentence or when we use proper nouns. We have
only tried dealing with the first characters in a word if it’s the first word in that
sentence. We have used NLTK’s [59] sent_tokenize() function2 in order to get the
sentences. Again for Hindi, it was not applicable since Hindi scripts do not have a
distinction between uppercase and lowercase letters.

Normalizing URL

Since theoretically, URL’s should not contribute that much on the performance, and
some literature’s [44] report about removing URL helps, we tried replacing them with
the keyword URL. This did not help in our case, and for some languages (e.g., Hindi)
it even reduced the results by fractions.

Removing Stopwords

Stopwords are the words which occur regularly in a text but do not generally contribute
that much in meaning. Instead, they carry more grammatical functions. Examples of
such stopwords in English are - a, of, the etc). At first, we tried out NLTK’s default
stopword list for English and German. For Hindi we sought out the stopword list3 from
spaCy. Although the default list of stopwords did not improve the results that much
but by removing the negative polarity items (such as no, not, nor, against etc.) we
were able to improve our results by at least 1 point in f1 score.

Stemming

Stemming usually refers to a crude heuristic process that chops off the ends of words
in the hope of achieving this goal correctly most of the time, and often includes the
removal of derivational affixes [60]. For example the words - compute, computer, com-
puting, computation, computerization all might be converted into comput when we
apply stemming on them. Although after stemming, a stemmed token might not mean
anything but it can be useful for enhancing the retrieval effectiveness, especially for text
search in order to solve the mismatch problems. In our study, we have experimented
with both Porter [61] and Snowball [62] stemmer from NLTK4. Snowball seems to be
a bit better as it does not break with a big dataset.

2https://www.nltk.org/api/nltk.tokenize.html
3https://github.com/explosion/spaCy/blob/master/spacy/lang/hi/stop_words.py
4https://www.nltk.org/howto/stem.html

https://www.nltk.org/api/nltk.tokenize.html
https://github.com/explosion/spaCy/blob/master/spacy/lang/hi/stop_words.py
https://www.nltk.org/howto/stem.html

24 RESEARCH METHODOLOGY

Lemmatization

Lemmatization usually refers to doing things properly with the use of vocabulary and
morphological analysis of words, normally aiming to remove inflectional endings only
and to return the base or dictionary form of a word, which is known as the lemma [60].
If confronted with the token saw, stemming might return just s, whereas lemmatization
would attempt to return either see or saw depending on whether the use of the token
was as a verb or a noun. In our implementation, we have tried out both the WordNet
lemmatizer5 from NLTK and spaCy lemmatizer6, and both performed more or less
similarly in terms of effectiveness.

4.2.2 Traditional Features

By traditional feature, we mean those that are commonly used with the classical ma-
chine learning techniques. These are mostly hand-crafted features that we have de-
scribed in our literature (section 2.3.1 - 2.3.2). Here we will be discussing about their
implementation in our system in more detail.

Count or Bag of Word

Text Analysis is a significant application field which extensively uses machine learning
algorithms. However, the raw text data cannot be fed directly to these classifiers
as most of them expect numerical feature vectors with a fixed size rather than the
raw text documents with variable length. The “Bag of Words" representation is the
strategy that combines counting and normalization to characterize a document by
word frequencies instead of taking into account the relative position and semantic
orientation of the words in the text. In the case of count feature or count vectorizer,
each individual tokens frequency (sometimes normalized occurrence) is treated as a
feature. In our implementation, initially we have explored this feature from scikit-
learn [63] library which is known as CountVectorizer7. The term vectorizer came
from vectorization, which is is the process of converting a cluster of text documents
into numerical feature vectors. Later we discarded using the count vectorizer as it
performs poorly in comparison with other feature vectors (such as tf-idf).

Tf-Idf

Term frequency-inverse document frequency in short tf-idf is a statistical way of rep-
resenting the importance of a word in relation to its document [64]. Term frequencies
represent how important a term is within a document. Inverse document frequencies
show how informative a term is in general, e.g., a term that occurs in very few docu-
ments is probably more informative than a term (such as the or and) that occurs in
every document. To calculate the tf-idf, we take the product of the term frequency, i.e.
the number of times a term occurs in a document, and the inverse document frequency,

5https://www.nltk.org/_modules/nltk/stem/wordnet.html
6https://spacy.io/api/lemmatizer
7https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.CountVectorizer.html

https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://spacy.io/api/lemmatizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

4.2 System Architecture 25

i.e. number of all documents given the documents that contain the term. The equation
is given by:

tfterm,doc =
no. of times term occurs in doc

maximum occurrences

idfterm = log(
no. of all documents

number of documents that contains the term
)

tf.idfterm,doc = tfterm,doc ∗ idfterm

Here maximum Occurrences is the number of times that the most frequent term
of the document occurs in the document. Here also, we have used the scikit-learn’s
implementation of TfidfVectorizer8.

Word and Character n-grams

As described in section 2.3.2, we have also incorporated the n-gram model to es-
timate the probability of the last word/character of an n-gram given the previous
words/characters. We have looked into both word and character variants of n-gram
features. In the case of word n-grams, we have considered the range 1 to 3 that is
uni-grams, bi-grams and tri-grams. As characters, we used a char n-gram with values
of n ranging from 1 to 7.

4.2.3 Unconventional Features and Input Representations

By unconventional, we mean those features and input representations that people do
not generally use with conventional machine learning algorithms such as SVM’s.

Byte-Pair Encoding

Byte Pair Encoding (BPE) is a special kind of sub-word tokenization technique that
originally falls under the category of lossless data compression algorithm [65]. It works
by replacing common pairs of consecutive bytes or characters with a byte that does
not appear in that data. In simple terms, it breaks down words into sub-words and
forms unknown words together from smaller bits and pieces. For example, we might
represent the word ‘Stratford ’ as ‘_strat ’ and ‘ford ’, which in terms can have an idea
about the word ford. BPE has the following advantages over words:

• Subwords allow guessing the meaning of unknown / out-of-vocabulary (OOV)
words. E.g., the suffix -shire in Melfordshire indicates a location.

• Byte-Pair Encoding gives a subword segmentation that is often good enough,
without requiring tokenization or morphological analysis. In the above case the
BPE segmentation might be something like - [melf, ord, shire].

8https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

26 RESEARCH METHODOLOGY

• Pre-trained byte-pair embeddings work surprisingly well, while requiring no tok-
enization and being much smaller (in size) than alternative word embeddings.

Byte-pair embeddings are also good at learning relationships. For example, if the
model learned the relationship between old, older, and oldest, it does not tell the model
anything about the relationship between smart, smarter, and smartest. However, in
this case, if we use some sub-tokens such as er and est, and the model learned the
relationship between ‘old’, ‘older’, and ‘oldest’, it will tell the model some information
about the relationship between ‘smart’, ‘smarter’, and ‘smartest’.

In our implementation, we have used the pre-trained BPE model from BPEmb [66]
library9. It covers almost all the major languages and is really easy to use. Although
we have experimented with different vocabulary size as the parameter of the BPE, the
best performance was achieved using a vocabulary size of 10k.

Note that, for our subsequent experiments with the byte-pairs, we have treated
them as words that is when we use word/document embeddings, we are actually using
them over sub-words or byte-pairs instead of actual words.

(Sub)Word Embeddings (Word2Vec)

In order to process natural language, a mechanism for representing text is required
since computers are unable to understand the concepts of words or phrases. One
such representation is the word embeddings. In word embeddings – words from the
vocabulary are mapped to vectors of real numbers. Each word is represented by a
point in the embedding space and words with similar meanings are locally clustered
within the space (Figure 4.1). This in terms captures some form of meaning or context
about these words. Some of the most popular neural word embedding methods are the
word2vec, GloVe and FastText.

Figure 4.1: Concept of words represented by points in the embedding space.10

On the other hand, bag of words (BoW), term frequency–inverse document frequency
(Tf-Idf) and distributional embeddings using co-occurrence matrix representation are
three of the most commonly used traditional vector representations that are used with
statistical models. While BoW and Tf-Idf do not capture contextual meaning from the
surrounding words, the distributional and neural word embeddings encapsulate some
form of context [67].

9https://nlp.h-its.org/bpemb/
10Image Source: http://bit.ly/2B7yzxa

https://nlp.h-its.org/bpemb/
http://bit.ly/2B7yzxa

4.2 System Architecture 27

For simplicity we will limit our explanation within word2vec neural embeddings
which is a predictive embedding model. There are two main word2vec architectures
(Figure 4.2) that are used to produce a distributed representation of words:

• Continuous bag-of-words (CBOW) — uses each of the contexts to predict
the current word. The order of context words does not influence prediction (bag-
of-words assumption).

• Skip-gram— model uses the current word to predict the surrounding window of
context words and weighs nearby context words more heavily than more distant
context words. While order is still ignored, each of the context vectors are weighed
and compared independently.

Figure 4.2: CBOW vs. skip-gram word2vec architectures.11

Note that, CBOW is faster while skip-gram does a better job for infrequent words.
Although, initially we started experimenting with word (actually sub-words) em-

beddings by trying to learn the embeddings using word2vec model from HASOC dataset
(we did not use any pre-trained embeddings), at the end, we have used document
embedding (doc2vec) for all of our models as they perform better [31] [31] [39].

Sub-word level Document Embeddings (Doc2Vec)

Doc2Vec is an extension of the Word2Vec method described above. Similarly to the
idea to predict a word given its context, a paragraph will contribute to the prediction
task of the word vector at the sentence level. In other words, the additional paragraph
vector captures semantic properties of the sentence, which is more appropriate to the
hate speech learning task at hand [31]. Formally, this paragraph vector is treated as
just another word that captures these higher-level semantics.

For our implementation purpose, we are using doc2vec12 from gensim [40] library.
Like word2vec above, doc2vec also comes with two kinds of architecture - DM (similar
to CBOW) and DBOW (similar to skip-gram). In our experiments, we have tested both
the doc2vec flavors, and in every case, DBOW model performed better than the DM

11Image Source: http://bit.ly/2B4qR72
12https://radimrehurek.com/gensim/models/doc2vec.html

http://bit.ly/2B4qR72
https://radimrehurek.com/gensim/models/doc2vec.html

28 RESEARCH METHODOLOGY

variants. We also tried combining them, but it did not give any better results than
DBOW itself.

As we have stated earlier, we did not use any kind of pre-trained embeddings. Thus
we trained our own document embeddings using the sub-words or byte-pairs. We used
50 epochs to train our model with a vector size of 512. Starting with a alpha of 0.105
we reduced the value of our alpha by 0.002 in each epoch.

4.2.4 Classifier

SVM’s

For the choice of classifier, we have used SVM (both linear and non-linear versions).
From the literature, we saw that SVM is the most popular choice among the classical
ML methods and are shown to perform better for hate speech related text classification
task in general. For simplicity, initially, we started our experimentation only with the
binary classification task (hate vs. non-hate) on only English datasets. Later we con-
sidered the multi-class classification in multi-lingual settings. In all our implementation
of the classifier, we have used the version of SVM13 from scikit-learn [63] library.

A grid search over both the linear and non-linear SVM models was initially per-
formed based on the different C and Gamma parameter values of the classifier. Note
that we have used three different versions of the non-linear kernels, namely - Sigmoid,
Polynomial and a Radial Basis Function (RBF) kernel in our study. In most of the
cases, we have used the default values of the parameters with these kernels.

BERT

For the comparison, We used pre-trained BERT [2] models (that we have also used
during the shared task) to encode a tweet into a single vector. For this, we use mono-
lingual cased BERT-base for English (BERTen)14 and German (BERTde)15 as well as
multilingual cased BERT (BERTmulti)16. The classifier is a linear layer of depth 1, map-
ping the encoded tweets to labels. To deal with the unbalanced nature of the training
data with this BERT model, we perform randomized weighted re-sampling of the data
at each epoch. The weights given to a class is calculated such that underrepresented
classes are given a larger weight and vice versa.

13https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
14https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
15https://deepset.ai/german-bert
16https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_

A-12.zip

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://deepset.ai/german-bert
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip

Chapter 5

EVALUATION AND RESULTS

This chapter assesses the results produced by the feature combination and classification
models described in the previous chapters. We went on experimenting with different
feature selection techniques and with varying datasets combination (from Table 3.1).
In all the cases, our primary evaluation was done using the HASOC corpus (Table 3.2),
and we augment the training and/or the embedding data using the external corpora.
During the discussion, we will divide our sections based on the Task and Languages
we have evaluated. In each of these sections, we will discuss the results achieved by
more traditional feature at first, followed by the results of more advanced features to
show the improvement. We will also compare our results with our own BERT model
(discussed in section 4.2.4) and with the models that other teams have submitted
during the HASOC shared task.

5.1 Results on Task-A

For Task A, during the shared task, both BERT and SVM models, as well as an
ensemble of both, were submitted. For each language, run 1 is the ensemble of all 10
folds of the top-scoring BERT model. As the recall of the NOT class is generally low,
it was boosted by labelling a test sample as NOT whenever any of the folds suggested
this label. For run 2, an SVM version trained on the whole dataset was submitted.
Lastly, run 3 was the ensemble of all ten BERT folds and the SVM, using the same
voting scheme as for run 1. Note that, we have used a 10 fold cross-validation over the
HASOC training data in all of our model development and tested using the HASOC
test set. Below we discuss the results on each of the languages separately.

5.1.1 English

As we have discussed about the pre-processing (section 4.2.1) and the traditional fea-
tures (section 4.2.2), not all the combination of feature yields the best results. And
we have experimented with numerous such combinations for each of the languages and
tasks. Thus we will try to highlight mostly on our best scores during each of the sec-
tions. Nevertheless, to give an idea, in this section, we will also show the results of a
few of the insignificant combinations of features that we experimented with.

29

30 EVALUATION AND RESULTS

Features Data Cross
(Mean)

Test

tf-idf HSen A = 0.614
F1 = 0.381

A = 0.411
F1 = 0.292

tf-idf + stem + lemma + lowercase + char
n-gram(1,7)

HSen A = 0.631
F1 = 0.610

A = 0.562
F1 = 0.562

tf-idf + stem + lemma + lowercase + word
n-gram(1,3)

HSen A = 0.641
F1 = 0.618

A = 0.545
F1 = 0.543

tf-idf + BPE + word n-gram(1,3) HSen A = 0.639
F1 = 0.616

A = 0.568
F1 = 0.568

tf-idf + BPE + word n-gram(1,3) + stopword HSen A = 0.632
F1 = 0.631

A = 0.583
F1 = 0.581

tf-idf + BPE + word n-gram(1,3) + stopword HSen
+TRen

A = 0.665
F1 = 0.636

A = 0.622
F1 = 0.616

Table 5.1: Scores as calculated using mean 10-fold cross validation: Accuracy (A)
and F1 (micro) for Task A (NOT/HOF) for various feature combinations.

Table 5.1 shows the results of our linear SVM model (with a C=8.5). Here the last
row shows our best combination of initial features. We also submitted the same model
during HASOC shared task. In Table 5.2, we describe our results during the shared
task and also compare the results with the best team as well as our own BERT model.
We also show the results from our advanced features (BPE and document embeddings)
in the final row.

Against
Best Team

Our EN
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

YNUwb

0.78/0.83
BERT HSen

+KA
– – 0.63/0.52 0.58 0.60

SVMlin HSen
+TRen

– tf-idf + BPE +
word n-gram(1,3)
+ stopword

0.68/0.54 0.61 0.64

Ens. – – – 0.78/0.59 0.69 0.73

Doc2Vec
Model

SVMsig HSen
+TRen

HSen−full

+TRen

BPE + stopword 0.74/0.48 0.61 0.67

Table 5.2: Our submissions on the official HASOC sub task-A for English (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task A
(NOT/HOF) as well as the average macro and weighted F1 scores. Top scoring runs
are in bold.

From the Table 5.2, we can see that the initial score of the SVM model was higher

5.1 Results on Task-A 31

than that of the corresponding BERT model (0.61 vs. 0.58). Although our Ensembled
model was able to get up to 0.61 in terms of f1 (macro) score, it was no-where near
the best team (YNUwb). On the other hand, the doc2vec model with sub-word level
embeddings achieved a higher score than our ensembled models that we have submitted
during the actual run.

5.1.2 German

We also submitted our run for the German language during the shared task. The
submissions were same as with the English models. There were however, differences
in the usage of external corpora. Table 5.3 illustrates the official submission scores as
well as the results produced by our doc2vec model.

Against
Best Team

Our DE
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

Hate
Monitors
0.62/0.79

BERT HSde
+GE

– – 0.89/0.32 0.61 0.80

SVMlin HSde
+GE

– tf-idf + BPE +
word n-gram(1,3)
+ stopword

0.89/0.19 0.54 0.78

Ens. – – – 0.87/0.32 0.59 0.78

Doc2Vec
Model

SVMpoly HSde
+GE

HSde−full

+GE
BPE + stopword 0.89/0.39 0.64 0.81

Table 5.3: Our submissions on the official HASOC sub task-A for German (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task A
(NOT/HOF) as well as the average macro and weighted F1 scores. Top scoring runs
are in bold.

Based on the above results (in Table 5.3), we can see how much we have improved
our results using subword level document embeddings. We are able to beat the best
performing team by a margin of 0.2 on f1 macro score. Our BERT model was also
really close to the winning team in terms of the scores, and stood 2nd for this subtask.

5.1.3 Hindi

In terms of our Hindi model, we were able to score pretty high during the shared task.
The position of our team was also 2nd for this subtask as well. We can have an idea
of the scores from the Table 5.4 below. From the table, we can also observe that our
doc2vec model trained only on the HASOC Hindi corpus was able to beat our own
ensembled model and was nearly as good as the top-scoring team. Note that, here we
only used the HASOC training and test data for training our document embeddings.

32 EVALUATION AND RESULTS

Against
Best Team

Our HI
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

Qut Noc-
turnal
0.81/0.82

BERT HSen+de+hi– – 0.67/0.75 0.71 0.71

SVMlin HShi
+TRhi

– tf-idf + BPE +
word n-gram(1,3)

0.78/0.79 0.78 0.78

Ens. – – – 0.80/0.90 0.80 0.80

Doc2Vec
Model

SVMrbf HShi HShi BPE + stopword 0.83/0.80 0.81 0.81

Table 5.4: Our submissions on the official HASOC sub task-A for Hindi (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task A
(NOT/HOF) as well as the average macro and weighted F1 scores. Top scoring runs
are in bold.

5.2 Results on Task-B

For task B, only BERT models were taken into consideration during the shared task.
As the test data provided still contained non-hateful comments, run 1 uses the BERT
ensemble from task A (run 1) to pre-select hateful comments, which are then further
classified by an ensemble of the 10-folds of the top-scoring BERT model in task 2. Here,
a majority vote approach was taken, such that the label with the most votes is accepted.
For run 2, alternative models are trained on HS data only and were ensembled using
the majority vote approach. Finally, run 3 is the ensemble of both run 1 and 2. In the
case of our doc2vec model, we considered 3 way classification of Profanity (PRFN),
Offensive(OFFN) and Hate Speech(HATE).

5.2.1 English

Our English model for the Task-B uses a pipeline from Task-A as described above.
From the results (in Table 5.5) it is apparent that our doc2vec is slightly better (0.48)
than our BERT model (0.47) in terms of the macro f1 score. But all of our models are
way behind the winning team in this task.

5.2.2 German

In terms of German subtask B, our best model consisting of piped monolingual BERT
also came 1st during the competition. Using that model, we were able to get a score
of 0.35 in macro f1 based measure. The results, as compared to our advanced doc2vec
SVM model, is shown in the Table 5.6. In this case, however, our doc2vec model later
was able to beat our own top scoring BERT model by a fraction of 0.01 in terms of
macro f1 score.

5.2 Results on Task-B 33

Against
Best Team

Our EN
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

3Idiots
0.54/0.75

BERTpipe HSen – – 0.63/0.62/0.23 0.44 0.57

BERT HSen – – 0.68/0.65/0.25 0.47 0.61
Ens. – – – 0.58/0.62/0.21 0.42 0.53

Doc2Vec
Model

SVMsig HSen HSen−full

+TRen

BPE +
stopword

0.58/0.19/0.66 0.48 0.52

Table 5.5: Our submissions on the official HASOC sub task-B for English (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task B
(PRFN/OFFN/HATE) as well as the average macro and weighted F1 scores. Top
scoring runs are in bold.

Against
Best Team

Our DE
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

LSV_UdS
0.35/0.77

BERTpipe HSde – – 0.89/0.17/0.18 0.35 0.77

BERT HSde – – 0.89/0.00/0.06 0.26 0.75
Ens. – – – 0.66/0.04/0.36 0.28 0.58

Doc2Vec
Model

SVMpoly HSde HSde BPE +
stopword

0.16/0.65/0.30 0.36 0.48

Table 5.6: Our submissions on the official HASOC sub task-B for German (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task B
(PRFN/OFFN/HATE) as well as the average macro and weighted F1 scores. Top
scoring runs are in bold.

5.2.3 Hindi

We were also able to get quite far using the unconventional features with our SVM in
the case of Hindi subtask B. The winning team for this subtask had a macro f1 score
of 0.58 while our doc2vec model achieved 0.57 on the same task. However, we were
far behind on the weighted f1 score.

34 EVALUATION AND RESULTS

Against
Best Team

Our HI
Models

Train
Data

Embed.
Data

Features F1 Macro Weight.

3Idiots
0.58/0.71

BERTpipe HSen+de+hi– – 0.67/0.79/0.40 0.54 0.60

BERT HSen+de+hi– – 0.78/0.80/0.43 0.57 0.66
Ens. – – – 0.78/0.79/0.40 0.58 0.66

Doc2Vec
Model

SVMpoly HShi HShi BPE +
stopword

0.76/0.41/0.52 0.57 0.58

Table 5.7: Our submissions on the official HASOC sub task-B for Hindi (first row)
against the best team (macro/weighted F1) and the Doc2vec model with Byte-Pair
Embeddings (second row). The scores are shown in F1 based measure for Task B
(PRFN/OFFN/HATE) as well as the average macro and weighted F1 scores. Top
scoring runs are in bold.

5.3 Discussion
Throughout section 5.1 to 5.2, we have tried to compare our best models with the
state-of-the-art systems. In several of the sub-task, our SVM model consisting of the
subword level document embeddings was able to beat the top scores. From the
results, we found that embedding contributes a lot on the performance of a classi-
fier and even a statistical classifier such as SVM could benefit from the embeddings.
It is beneficial in situations where there are fewer data available. To summarise, we
can say that combining and optimizing the preprocessing, manual feature extraction,
document embedding and byte-pair encoding; confirms the hypothesis that - using
unconventional input representations and advanced features as part of a classical ma-
chine learning architecture leads to more accurate classification of hate speech in this
dataset. We also observed that, although adding external corpora can boost the classi-
fication performance for a binary task, in the case of fine-grained detection of different
types of hate, it does not benefit much from external corpora due to the incompatibility
between different definitions of hate and its subtypes as well as the subjectivity of the
matter.

Chapter 6

CONCLUSIONS

In this thesis, our main target was to experiment with different feature selection and
input representation techniques with classical machine learning algorithms for the clas-
sification of both binary and multi-label hate speech from text. We have tried to tackle
this classification task with variants of SVM classifiers. A few of the most recent related
works have shown that unconventional input representation such as word-embeddings
could be useful for this task even with the conventional classifiers. So far, we have not
seen anyone using Byte Pair Encoding (BPE) or embeddings and sentence/document
embeddings with the classical machine learning approaches in the hate speech realm.
So our prime aspirations were to experiment with these features and input representa-
tions.

We were successful in combining traditional preprocessing techniques and features
along with an unconventional input representation technique, namely document em-
beddings (doc2vec) with byte-pair encoding (BPE). Our results using the settings
mentioned above showed significant overall improvements as compared to the state-
of-the-art models, and we learned a lot during these experiments.

We also observed that hate speech detection is a difficult task to accomplish, and
is data-driven. We also saw that not all the datasets could help achieve good results,
specially because of the nature of the datasets and annotation schemes. Hate speech
also heavily depends on the culture and geo-location of the text being encountered. It
varies between language to language and from time to time. Presently almost all of
the works and datasets rely heavily on only the English language, and there is still a
shortage of gold standard datasets for even the highly resourced languages like German
and Hindi. Current literature shows that classical ML approach with fine-tuned feature
engineering could compete with state-of-the-art deep neural network-based models and
in many ways are better. Our findings also support this hypothesis.

In a nutshell, our efforts in this thesis can be seen as:

• We have tried to implement classical ML models (using SVM’s) for the task
of binary (Hate vs. Non-hate) and multi-label (Hate, Offensive, Profane) hate
speech classification from the text.

• We did not want to restrict ourselves only in English. Thus we planned to
build multilingual models and experiment farther with feature selection and input

35

36 CONCLUSIONS

representation techniques for other languages such as German and Hindi.

• We have experimented with an unconventional feature (BPE) and input rep-
resentation (document embeddings) that is not common with the classical ma-
chine learning approaches. We have seen improvements after using these fea-
tures/representations techniques.

• We also compared our results with the results from state-of-the-art deep learning
models such as BERT [68] and with other top-performing teams from the HASOC
shared task.

We want to conclude our thesis with an open question for the readers -

“Are all these classifiers that good !?
Or is it just the way wee feed data to them ? ”

Bibliography

[1] W. Warner and J. Hirschberg. Detecting hate speech on the world wide web. In
Proceedings of the second workshop on language in social media, pages 19–26.
Association for Computational Linguistics, (2012).

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, (2019). Association for Computational
Linguistics.

[3] A. Tilby, The Seven Deadly Sins: Their origin in the spiritual teaching of Evagrius
the Hermit, SPCK (2013).

[4] B. Gambäck and U. K. Sikdar. Using convolutional neural networks to classify
hate-speech. In Proceedings of the first workshop on abusive language online, pages
85–90, (2017).

[5] Y. Chen, Y. Zhou, S. Zhu, and H. Xu. Detecting offensive language in social media
to protect adolescent online safety. In 2012 International Conference on Privacy,
Security, Risk and Trust and 2012 International Confernece on Social Computing,
pages 71–80. IEEE, (2012).

[6] Z. Waseem and D. Hovy. Hateful symbols or hateful people? predictive features for
hate speech detection on twitter. In Proceedings of the NAACL student research
workshop, pages 88–93, (2016).

[7] A. Schmidt and M. Wiegand. A survey on hate speech detection using natural
language processing. In Proceedings of the Fifth International Workshop on Natural
Language Processing for Social Media, pages 1–10, (2017).

[8] D. Ruiter, M. A. Rahman, and D. Klakow, LSV-UdS at HASOC 2019: The Prob-
lem of Defining Hate, .

[9] T. Mandl, S. Modha, P. Majumder, D. Patel, M. Dave, C. Mandlia, and A. Patel.
Overview of the HASOC Track at FIRE 2019: Hate Speech and Offensive Content
Identification in Indo-European Languages. In Proceedings of the 11th Forum for
Information Retrieval Evaluation, FIRE ’19, page 14–17, New York, NY, USA,
(2019). Association for Computing Machinery.

37

38 Bibliography

[10] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech detec-
tion and the problem of offensive language. In Eleventh international aaai confer-
ence on web and social media, (2017).

[11] A. S. Reber, The Penguin dictionary of psychology, Penguin Press (1995).

[12] A. H. Buss, The psychology of aggression, Wiley (1961).

[13] C. A. Anderson and B. J. Bushman, Human aggression, Annual review of psy-
chology 53 (2002).

[14] Aggression - Wikipedia. https://en.wikipedia.org/wiki/Aggression. (Ac-
cessed on 02/11/2020).

[15] Sexual orientation and transgender identity hate crime - Citizens Advice.
https://www.citizensadvice.org.uk/law-and-courts/discrimination/
hate-crime/sexual-orientation-and-transgender-identity-hate-crime/.
(Accessed on 02/11/2020).

[16] S. Lipczynska, The Greenwood Encyclopedia of Love, Courtship & Sexuality
through History, Reference Reviews (2008).

[17] This Female Game Developer Was Harassed So Severely On Twitter She Had To
Leave Her Home | Business Insider. https://www.businessinsider.com.au/
brianna-wu-harassed-twitter-2014-10. (Accessed on 02/12/2020).

[18] H. H. Kettrey and W. N. Laster, Staking territory in the “World White Web”
an exploration of the roles of overt and color-blind racism in maintaining racial
boundaries on a popular web site, Social Currents 1, 257–274 (2014).

[19] G. A. Miller, WordNet: a lexical database for English, Communications of the
ACM 38, 39–41 (1995).

[20] N. D. Gitari, Z. Zuping, H. Damien, and J. Long, A lexicon-based approach for hate
speech detection, International Journal of Multimedia and Ubiquitous Engineering
10, 215–230 (2015).

[21] J. L. Elman, Distributed representations, simple recurrent networks, and gram-
matical structure, Machine learning 7, 195–225 (1991).

[22] Y. Mehdad and J. Tetreault. Do characters abuse more than words? In Proceed-
ings of the 17th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, pages 299–303, (2016).

[23] J. R. Firth, The semantics of linguistic science, Lingua 1, 393–404 (1949).

[24] Z. S. Harris, Distributional structure, Word 10, 146–162 (1954).

[25] E. Greevy and A. F. Smeaton. Classifying racist texts using a support vector ma-
chine. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 468–469. ACM, (2004).

https://en.wikipedia.org/wiki/Aggression
https://www.citizensadvice.org.uk/law-and-courts/discrimination/hate-crime/sexual-orientation-and-transgender-identity-hate-crime/
https://www.citizensadvice.org.uk/law-and-courts/discrimination/hate-crime/sexual-orientation-and-transgender-identity-hate-crime/
https://www.businessinsider.com.au/brianna-wu-harassed-twitter-2014-10
https://www.businessinsider.com.au/brianna-wu-harassed-twitter-2014-10

39

[26] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma. Deep learning for hate speech
detection in tweets. In Proceedings of the 26th International Conference on World
Wide Web Companion, pages 759–760, (2017).

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[28] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov, Fast-
Text.zip: Compressing text classification models, arXiv preprint arXiv:1612.03651
(2016).

[29] Z. Zhang, D. Robinson, and J. Tepper. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In European semantic web conference,
pages 745–760. Springer, (2018).

[30] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, (2014).

[31] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
International conference on machine learning, pages 1188–1196, (2014).

[32] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, (2013).

[33] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network
for modelling sentences, arXiv preprint arXiv:1404.2188 (2014).

[34] Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 (2014).

[35] H. Zhao, Z. Lu, and P. Poupart. Self-adaptive hierarchical sentence model. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, (2015).

[36] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. Skip-thought vectors. In Advances in neural information processing
systems, pages 3294–3302, (2015).

[37] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, et al., Universal sentence encoder, arXiv
preprint arXiv:1803.11175 (2018).

[38] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, Supervised learning
of universal sentence representations from natural language inference data, arXiv
preprint arXiv:1705.02364 (2017).

[39] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidi-
pati. Hate speech detection with comment embeddings. In Proceedings of the 24th
international conference on world wide web, pages 29–30, (2015).

40 Bibliography

[40] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, (2010). ELRA. http://is.muni.cz/
publication/884893/en.

[41] A. Jha and R. Mamidi. When does a compliment become sexist? analysis and
classification of ambivalent sexism using twitter data. In Proceedings of the second
workshop on NLP and computational social science, pages 7–16, (2017).

[42] X. Wei, H. Lin, L. Yang, and Y. Yu, A convolution-LSTM-based deep neural net-
work for cross-domain MOOC forum post classification, Information 8, 92 (2017).

[43] J. H. Park and P. Fung, One-step and two-step classification for abusive language
detection on twitter, arXiv preprint arXiv:1706.01206 (2017).

[44] M. Wiegand, M. Siegel, and J. Ruppenhofer, Overview of the germeval 2018 shared
task on the identification of offensive language, (2018).

[45] M. Wiegand, A. Amann, T. Anikina, A. Azoidou, A. Borisenkov, K. Kolmorgen,
I. Kröger, and C. Schäfer. Saarland University’s Participation in the GermEval
Task 2018 (UdSW) – Examining Different Types of Classifiers and Features. In
J. Ruppenhofer, M. Siegel, and M. Wiegand, editors, Proceedings of the GermEval
2018 Workshop, 14th Conference on Natural Language Processing, KONVENS
2018, pages 21–26, Vienna, (September 21, 2018). Austrian Academy of Sciences.

[46] R. Schäfer, Processing and querying large web corpora with the COW14 architec-
ture, (2015).

[47] D. Stammbach, A. Zahraei, P. Stadnikova, and D. Klakow. Offensive Language
Detection with Neural Networks for Germeval Task 2018. In J. Ruppenhofer,
M. Siegel, and M. Wiegand, editors, Proceedings of the GermEval 2018 Workshop,
14th Conference on Natural Language Processing, KONVENS 2018, pages 58–62,
Vienna, (September 21, 2018). Austrian Academy of Sciences.

[48] R. Kumar, A. K. Ojha, S. Malmasi, and M. Zampieri. Benchmarking aggression
identification in social media. In Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying (TRAC-2018), pages 1–11, (2018).

[49] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language
detection in online user content. In Proceedings of the 25th international conference
on world wide web, pages 145–153, (2016).

[50] E. Raisi and B. Huang, Cyberbullying identification using participant-vocabulary
consistency, arXiv preprint arXiv:1606.08084 (2016).

[51] I. Kwok and Y. Wang. Locate the hate: Detecting tweets against blacks. In Twenty-
seventh AAAI conference on artificial intelligence, (2013).

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

41

[52] A. M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn, G. Stringh-
ini, A. Vakali, M. Sirivianos, and N. Kourtellis. Large scale crowdsourcing and
characterization of twitter abusive behavior. In Twelfth International AAAI Con-
ference on Web and Social Media, (2018).

[53] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech de-
tection and the problem of offensive language. In Eleventh International AAAI
Conference on Web and Social Media, (2017).

[54] Z. Waseem and D. Hovy. Hateful Symbols or Hateful People? Predictive Features
for Hate Speech Detection on Twitter. In Proceedings of the NAACL Student
Research Workshop, pages 88–93, San Diego, California, (2016). Association for
Computational Linguistics.

[55] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M. R. Pardo, P. Rosso,
and M. Sanguinetti. Semeval-2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, (2019).

[56] B. van Aken, J. Risch, R. Krestel, and A. Löser. Challenges for toxic comment
classification: An in-depth error analysis. In Proceedings of the 2nd Workshop on
Abusive Language Online, EMNLP 2018, Brussels, Belgium, October 31, 2018,
pages 33–42, (2018).

[57] R. Kumar, A. N. Reganti, A. Bhatia, and T. Maheshwari, Aggression-annotated
corpus of hindi-english code-mixed data, arXiv preprint arXiv:1803.09402 (2018).

[58] M. Honnibal and I. Montani. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. To appear,
(2017).

[59] E. Loper and S. Bird, NLTK: the natural language toolkit, arXiv preprint
cs/0205028 (2002).

[60] Stemming and lemmatization. https://nlp.stanford.edu/IR-book/
html/htmledition/stemming-and-lemmatization-1.html. (Accessed on
02/26/2020).

[61] M. F. Porter et al., An algorithm for suffix stripping., Program 14, 130–137 (1980).

[62] M. F. Porter. Snowball: A language for stemming algorithms, (2001).

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in Python, Journal of machine learning research 12, 2825–2830 (2011).

[64] M. Dillon. Introduction to modern information retrieval: G. Salton and M. McGill.
McGraw-Hill, New York (1983). xv+ 448 pp., 32.95ISBN0 − 07 − 054484 −
0, (1983).

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

42 Bibliography

[65] P. Gage, A new algorithm for data compression, The C Users Journal 12, 23–38
(1994).

[66] B. Heinzerling and M. Strube. BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In N. C. C. chair), K. Choukri, C. Cieri, T. De-
clerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo,
A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga, editors, Proceedings of
the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan, (2018). European Language Resources Associ-
ation (ELRA).

[67] A. Bornstein. Beyond Word Embeddings Part 2, (2018).

[68] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, arXiv preprint
arXiv:1810.04805 (2018).

	Abstract
	Contents
	INTRODUCTION
	Motivation and Research Objectives
	Structure of the Thesis

	BACKGROUND AND RELATED RESEARCH
	The Backdrop
	What is Hate Speech?
	Related Terminologies

	Applications of Hate Speech Detection
	Literatures
	Lexicon Based Approaches and Shallow Features
	Language Models: Word and Character n-grams
	Word Embedding Techniques
	Sentence and Document Embeddings
	Classical Vs. Deep Learning Techniques in Recent Shared Tasks

	Challenges of Hate Speech Detection

	DATASETS
	External Corpora
	Founta Corpus
	Davidson Corpus
	Waseem and Hovy Corpus
	SemEval 2019 - Task 5 Corpus
	Kaggle Corpus
	TRAC - 1 Corpus
	GermEval Corpus

	HASOC Dataset
	Mapping Between Corpora

	RESEARCH METHODOLOGY
	Defining the Specific Task
	Task-A
	Task-B

	System Architecture
	Preprocessing
	Traditional Features
	Unconventional Features and Input Representations
	Classifier

	EVALUATION AND RESULTS
	Results on Task-A
	English
	German
	Hindi

	Results on Task-B
	English
	German
	Hindi

	Discussion

	CONCLUSIONS
	Bibliography

