
UNIVERSITY OF LORRAINE

UNIVERSITY OF THE BASQUE COUNTRY

MASTER THESIS

Deep Learning For Robust And Reliable
Grapheme-To-Phoneme Converter

Author:
Sandipana DOWERAH

Supervisor:
Denis JOUVET

Vincent COLOTTE
Miguel COUCEIRO

A thesis submitted in fulfillment of the requirements
for the degree of Erasmus Mundus Master of Science in Language and

Communication Technology

Based on work done during an internship with the

Multispeech team, Loria, Inria
University of Lorraine

August 24, 2019

https://www.univ-lorraine.fr/
https://www.ehu.eus
https://fr.linkedin.com/in/sandipana-dowerah-b3695360/
http://www.loria.fr/en//
http://www.loria.fr/en//
http://www.loria.fr/en//
https://team.inria.fr/multispeech/
https://www.univ-lorraine.fr/

iii

Declaration of Authorship
I, Sandipana DOWERAH, declare that this thesis titled, “Deep Learning For Robust
And Reliable Grapheme-To-Phoneme Converter” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Aim for the high mark and you will hit it. No, not the first time, not the second time and
maybe not the third. But keep on aiming and keep on shooting for only practice will make
you perfect. Finally you’ll hit the bull’s-eye of success.”

Annie Oakley

vii

UNIVERSITY OF LORRAINE

Abstract
Multispeech team, Loria, Inria

University of Lorraine

Erasmus Mundus Master of Science in Language and Communication Technology

Deep Learning For Robust And Reliable Grapheme-To-Phoneme Converter

by Sandipana DOWERAH

Grapheme-to-phoneme (G2P) converters are critical modules for speech recogni-
tion and speech synthesis systems. Their role consists in generating the pronuncia-
tion of the words; that is converting a sequence of letters to a sequence of phonemes
(sounds of the language). For speech synthesis, the G2P converter needs to produce
the ‘standard’ pronunciation of the words, whereas for speech recognition appli-
cations, the G2P converter must produce the usual pronunciation variants of the
words. Over the time, many different approaches have been elaborated for such
tasks. This includes rule-based approach (Divay and Vitale, 1997) where the rules are
manually defined and many data-driven approaches relying either on decision trees
(Andersen et al., 1996), on joint-sequence models (Bisani and Ney, 2008), on hidden
markov models (Taylor, 2005), on conditional random fields (Illina, Fohr, and Jouvet,
2011) and more recently on neural network approaches (Rao et al., 2015); (Yao and
Zweig, 2015). All these approaches lead to good performance, especially on common
words, but performance tends to degrade on proper names. Also, it was observed
that when an approach is wrong on a given word, another one may be correct; and
thus combining several approaches was useful in speech recognition (Jouvet, Fohr,
and Illina, 2012). The proposed approach relies on a set of G2P converters that is
combined to produce results that are more reliable than those provided by a single
G2P converter. Such an idea is somewhat similar to the combination of speech recog-
nition systems which is frequently used in speech transcription to obtain improved
performances (Fiscus, 1997). The goal of the proposed study is to elaborate a reliable
and robust approach for predicting the pronunciation of words for speech synthesis
purpose.

The first approach involves analyzing the outputs of two G2P converters. The
underlying idea is that when they produce identical results, we assume that the
generated pronunciation is correct, whereas, when the pronunciation differs, a man-
ual decision is applied to decide which pronunciation is correct. Besides training
various G2P converters, experiments have been carried out to assess the above as-
sumption. As it is impossible to involve human interactions in the text-to-speech
synthesis process for a manual decision. In such a case, a fully automatic approach
is proposed using deep neural networks. We proposed a novel approach of using
ensemble learning with multiple generator adversarial network for a robust frame-
work of choosing the best G2P conversion model output. The proposed approach
relies on the application of a Recurrent Neural Network (RNN) based classifier to
decide on the best combination (or best choice) in each case. With our approach
of combining various G2P models, we have achieved better performance than each
individual G2P model on the English dataset.

HTTPS://WWW.UNIV-LORRAINE.FR/
https://team.inria.fr/multispeech/
https://www.univ-lorraine.fr/

ix

Acknowledgements
I am thankful to my supervisors Denis Jouvet and Vincent Colotte for their immense
help during this whole internship period for sharing their knowledge, experience
and wisdom. I would like to express my gratitude to Denis Jouvet for his continual
support and guidance throughout the thesis work, he enriched my research experi-
ence. I am grateful to my local coordinators Miguel Couceiro and Maxime Amblard
for their support and guidance throughout the academic year in Lorraine. I am
thankful to my co-supervisor Inma Hernez from my first year University (Univer-
sity of the Basque Country).

I am indebted to my family for their continual support and encouragement . . .

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Thesis Objectives . 2
1.2 Thesis Overview . 2

2 An Overview of Grapheme-to- Phoneme Approaches 3
2.1 Rule-based Approach . 3
2.2 Data-driven Approach . 3

2.2.1 Techniques based on Local classification 4
2.2.2 Techniques based on Probabilistic based sequence modelling . 4

Hidden Markov Model (HMM) based approach 5
Joint Multigram approach . 5
Conditional random fields based approach 6
Acoustic data-driven approach 6

2.3 Neural Networks based Approach . 6

3 Deep Learning for Robust and Reliable Grapheme-to-Phoneme Converter 9
3.1 Deep Learning . 9

3.1.1 Feedforward neural network . 10
Sigmoid function . 10
Cross-entropy loss . 11

3.1.2 Recurrent neural network . 11
Long short-term memory (LSTM) 12
Bi-directional long short-term memory (BLSTM) 14

4 Encoder-decoder framework for Grapheme-to- Phoneme Conversion 17
4.1 Sequence-to-sequence Architecture . 17

Adaptation of sequence-to-sequence architecture for G2P 18
4.2 Attention Mechanism . 19

Global attention . 20
4.3 Transformer Network . 20

Multi-head attention . 21

5 Ensemble Learning with Multiple Generator Adversarial Network 25
5.1 Ensemble Learning . 25
5.2 Multiple Generator Adversarial Network 26
5.3 Model Description . 26
5.4 Architecture of the Classifier . 27

5.4.1 Embedding . 27

xii

5.4.2 RNN LSTM . 28
5.4.3 Max pooling layer . 28
5.4.4 Feed forward layer . 28

6 Experimentation and Results 29
6.1 Experimental Setup . 29

6.1.1 Datasets . 29
6.1.2 Model Configuration . 30

Sequence-to-sequence (seq2seq) 30
Transformer Model . 30
Classifier . 30

6.2 Training . 31
6.3 Evaluation . 31
6.4 Result and Analysis . 32

6.4.1 Performance of individual G2P models 32
6.4.2 Performance analysis of G2P models without the classifier . . . 33
6.4.3 Analysis of the grapheme-to-phoneme models 34
6.4.4 Result and analysis of the G2P models with the classifier 34

7 Conclusion 37

Bibliography 39

A List of items that failed to be to generated by G2P systems for English 43

B List of items that failed to be generated by G2P systems for French 45

xiii

List of Figures

2.1 The input of the encoder is “cat” grapheme sequence and the decoder pro-
duces “k a t” as the phoneme sequences. The left side is the encoder and the
right side is the decoder. The model stops making predictions after generating
the “end-of-line (EOL)” tag. 7

3.1 Feed forward neural network. 10
3.2 Sigmoid activation function (source: Internet). 11
3.3 Schematic view of a recurrent neural network with self-connected hidden

layer. The recurrent connections in the hidden layer allow information to
persist from one time input to the next one. 12

3.4 Graphical representation of vanishing gradient descent problem in RNN.
(Graves, 2012). 13

3.5 Schematic view of Long short-term memory cell (Graves, Mohamed, and
Hinton, 2013). 14

3.6 Bi-directional Long short-term memory(Graves, Mohamed, and Hinton,
2013). 15

4.1 RNN encoder-decoder framework (Cho et al., 2014). 17
4.2 Encoder-decoder architecture of OpenNMT (Luong, Pham, and Manning,

2015). 18
4.3 The attention layer returns an output based on the input query and its mem-

ory (Zhang et al., 2019). 20
4.4 Simplified graphical representation of the transformer model. 21
4.5 Multi-Head Attention consists of several attention layers running in parallel

(Vaswani et al., 2017). 22

5.1 Schematic view of ensemble learning. The three models M1, M2 and M3
are trained for solving the same problem. The idea is to combine the indi-
vidual predictions of the three models in order to obtain the best predictive
performance. 25

5.2 Multiple generator network with ensemble learning for best model output. . . 26
5.3 Graphical representation of the RNN LSTM classifier. 27

6.1 WER and PER on test data having the same predicted pronunciations by two
or more G2P systems. 33

xv

List of Tables

6.1 Data split. 30
6.2 Results obtained by individual models. 32
6.3 Different pronunciations by 2 models for French data. 34
6.4 Underscore and hyphenated words in English dataset. 34
6.5 Underscore and hyphenated words in French dataset. 34
6.6 Results obtained by combination of two different G2P models on the

English dataset. Improvement is estimated with respect to the best
individual model’s WER and PER. 35

6.7 Results obtained by combination of two different G2P models on the
French dataset. Improvement is estimated with respect to the best
individual model’s WER and PER. 35

6.8 Results obtained by combining all the G2P models on the English
dataset. 36

6.9 Results obtained by combining all the G2P models on the French dataset. 36

A.1 List of items that failed to be to generated by Sequitur for English. . 43
A.2 List of items that failed to be to generated by Phonetisaurus for En-

glish. 44

B.1 List of items that failed to be to generated by Sequitur for French. . . 45
B.2 List of items that failed to be to generated by Phonetisaurus for

French. 47

xvii

List of Abbreviations

G2P Grapheme to Phoneme
TTS Text To Speech
RNN Recurrent Neural Network
LSTM Long Short Term Memory
BLSTM Bidirectional Long Short Term Memory
GAN Generative Adversarial Network
HMM Hidden Markov Model
WFST Weighted Finite State Transducer
EM Expectation Maximization
CRF Conditional Random Fields
CTC Connectionist Temporal Classification
WER Word Error Rate
PER Phone Error Rate

xix

Dedicated to my loved ones. . .

1

Chapter 1

Introduction

The human communication system consists of mainly two forms: speech and writ-
ten forms. The smallest unit of the writing system in any language is the ortho-
graphic character termed as grapheme and the smallest unit of the sound system
describing how a word is pronounced is the phoneme. Over the years, with the evo-
lution of computers, electronic media, etc., technological advancement has changed
human communication as well as the thinking process. The technology has en-
abled the machines today to converse with their creators by endowing them with the
power of “intelligence” or “understanding capacity” together with speech recogni-
tion and speech synthesis capabilities.

The knowledge of reading and understanding language is of utmost importance
to make the speech technology a successful endeavour. It is indeed a difficult and
time-consuming task to learn a language. To understand a word or learn to pro-
nounce a word is not a difficult task for humans. But, this is not an easy task for
computer application technologies. Therefore, phonological or phonetic knowledge
is taken into account for the pronunciation quality of the machines.

As humans have the memorizing and understanding ability, it is natural to ac-
quire the ability to learn the pronunciation rules of a specific language. Although
it was like an impossible thing for machines to adapt this quality, the scientists
had made this possible by creating the first computer-based speech synthesis sys-
tem in the late 1950s, and the first sophisticated text-to-speech (TTS) system in 1968
(Polyàkova, 2014). And since then, the text-to-speech system has emerged as one
of the interesting research areas by attracting many research scientists in the field of
speech processing. One important part of a text-to-speech system is the grapheme-
to-phoneme conversion.

The grapheme-to-phoneme conversion aims at finding the proper pronunciation
of a given word. It can be defined as the task of converting a sequence of charac-
ters into a sequence of pronunciation symbols. For example, given the word book,
the task is to output its pronunciation /buk/. The symbolic or phonemic repre-
sentation of a language’s orthographic word is of utmost importance in many Nat-
ural Language Processing applications. It plays a vital role in the text-to-speech
system for proper pronunciation knowledge of a word enriching with information
about emphasis, sentence structure or such other linguistic information. Automatic
Speech Recognition system is another such application where the use of grapheme-
to-phoneme conversion is used for obtaining knowledge about a language’s word
pronunciation for allowing a recognition component to distinguish as well as recog-
nize individual words in continuous audio signals.

The speech technologies interface or connect two different forms of commu-
nication, i.e. the spoken form and the written form. As a result, these types of
technologies need to model the relationship between the sound (phoneme) and the
textual unit (grapheme). However, modeling the relationship between phoneme

2 Chapter 1. Introduction

and grapheme directly is not trivial. And, the relationship between phoneme and
grapheme depends on whether the language is shallow or deep. It is evident that
there is no language where all the sounds are completely represented by its ortho-
graphic units (graphemes), but there are some languages where they have a close
representation between its sounds and letters. For instance, Italian and Finnish have
a shallow writing system representing the close correlation of its orthography with
its sound system. Whereas, French and English have a deep orthography depicting
the dissimilarity between spelling and pronunciation.

The complexity of French having a deep orthography can be seen in the case of
pronouncing one sound or combination of sounds. One sound can be written in var-
ious ways but there is one specific way of pronouncing a particular vowel letter or
combination of vowel letters. For instance, the letter [e] can be pronounced as /ε/
as in ‘quel’ and in ‘femme’ the first [e] is pronounced as /a/ and the second one is
not pronounced. Whereas in English, the complexity stands from the occurrence of
double graphemes and double phonemes. For French and English, the pronuncia-
tion may depend on the grammar category or the verb tense: in French "président"
(Noun/Verb) and English "read" (present/past tense). However, this kind of differ-
ence is not in the scope of this thesis.

1.1 Thesis Objectives

The objective of the proposed study is to elaborate a reliable and robust approach
for predicting the pronunciation of words for speech synthesis purpose. Our ap-
proach relies on a set of various grapheme-to-phoneme models for producing more
reliable results compared to an individual model. We also studied different kinds of
deep neural network architectures and methods for grapheme-to-phoneme conver-
sion. We have proposed a novel approach of robust framework for the grapheme-to-
phoneme conversion using ensemble learning with multiple generator adversarial
network to choose the best model output. The idea is influenced by Ian Goodfel-
low’s Generative Adversarial Network or GAN in short (Goodfellow et al., 2014).
But, unlike GAN, our model has multiple generators which are different grapheme-
to-phoneme models and a classifier instead of discriminator which will decide the
best grapheme-to-phoneme model among them.

1.2 Thesis Overview

The structure of the thesis work is designed as follows: Chapter 2 is an overview of
the grapheme-to-phoneme conversion methods; Chapter 3 gives a detailed descrip-
tion about the experimentation of various deep learning approaches that have been
carried out in this work as well as an introduction to the terminology that has been
used throughout this study; Chapter 4 describes the encoder-decoder framework for
the conversion of grapheme-to-phoneme; Chapter 5 presents a detailed description
of Ensemble learning and Multiple Generator Adversarial Network and how it has
been implemented for the task of grapheme-to-phoneme conversion. In Chapter 6
we presented our experimental setup as well as evaluation and analyze the results
obtained. And finally concluding remarks and directions for future work are given
in Chapter 7 .

3

Chapter 2

An Overview of Grapheme-to-
Phoneme Approaches

The conversion of letter-to-sound or grapheme-to-phoneme (G2P) goes back cen-
turies and can be found in many of the older descriptive grammars of languages
in the world. Many studies have been done for grapheme-to-phoneme conversion
applying various approaches over the years. The automatic grapheme-to-phoneme
conversion was first considered in the context of text-to-speech (TTS) systems. The
input text needs to be converted into a sequence of pronunciation symbols after nor-
malization to be used to control the speech synthesizer. Dictionary look-up being
the simplest technique in this aspect has many limitations. It is difficult to make
a pronunciation dictionary of significant size by hand as it is a tedious and costly
task. The database can be problematic too; also a finite dictionary will have a lim-
ited coverage whereas TTS systems are expected to deal with arbitrary words. To
overcome the limitations of dictionary look-up, rules were formed for developing
grapheme-to-phoneme converters. In this chapter: Section 2.1 discusses rule-based
approaches, Section 2.2 gives a detailed description of data-driven approaches, and
finally Section 2.3 talks about neural network-based approaches.

2.1 Rule-based Approach

The rule-based systems were developed as a solution to overcome the single dictio-
nary lookup. A rule-based method is based on a set of grapheme-to-phoneme rules
(Elovitz et al., 1976). The approach requires some linguists for developing such a
system. Such an approach is expensive as building the rules for some languages
with complex writing-system is labor-intensive and time-consuming. Moreover, it
is not feasible to define a set of rules for covering all the linguistic information of a
language. As in the case of English, sometimes there is an ambiguous association of
graphemes with phonemes, thus, resulting in the rules approaching the size of the
lexicon which is undesirable (Kominek and Black, 2006).

2.2 Data-driven Approach

In the data-driven method, the probabilistic relationship between grapheme and
phoneme is learned through the data used as a set of words or expressions with their
associated pronunciation. There are mainly two major steps in this type of method,
the alignment step, and the phoneme generation step. The data-driven method re-
quires the computation of alignment between the letters and the phonemic symbols
(Jiampojamarn, Cherry, and Kondrak, 2008).

4 Chapter 2. An Overview of Grapheme-to- Phoneme Approaches

The alignment step can be viewed as one of the common processes in the G2P
conversion approaches. The utilization of learning and inference methods differs
the G2P approaches from one another. Different techniques have been proposed for
the G2P conversion and among them, the local classification-based (Sejnowski and
Rosenberg, 1987; Pagel, Lenzo, and Black, 1998) and probabilistic sequence-based
(Taylor, 2005; Bisani and Ney, 2008) are the ones that gained wide attention.

2.2.1 Techniques based on Local classification

The various G2P approaches require or create an alignment of training data between
letters and phonemes in a different preprocessing step. The alignment is established
in a way that each alignment element contains exactly one letter. The corresponding
phonemes can be zero or one or more than one. The alignment is termed as 1-to-n
alignment (Bisani and Ney, 2008). For instance; the alignment for the word “sing”
below:

Alignments can be created either manually (handcrafted rules) or by an iterative
estimation of alignment probabilities. In general, the input sequence is processed
sequentially, for instance, from left to right. A phoneme sequence is chosen from a
small set of acceptable references for each input character. The prediction of the out-
put phoneme is based on the context of the current grapheme. Therefore, it can be
said that this is termed as local classification because the decision for each position is
taken before moving to the next. In local classification-based techniques, a decision
tree (Pagel, Lenzo, and Black, 1998) or a neural network (Sejnowski and Rosenberg,
1987) can be trained, given the alignments, to learn the G2P relationships from the
trained data. These are the most common techniques used for doing the predictions.
Although decisions taken locally about each phoneme is not optimal from the theo-
retical point of view, this strategy avoids the need for using a search algorithm which
is necessary for a globally optimal solution. There are few works on G2P conversion
where they have used neural networks methods for the classification problem. (Se-
jnowski and Rosenberg, 1987) as well as (McCulloch, Bedworth, and Bridle, 1987)
have applied neural networks for the classification problem. In their approach, they
have used a three-layer network for the classification problem.

2.2.2 Techniques based on Probabilistic based sequence modelling

Another approach that several researchers have applied for carrying out the G2P
conversion task is the probabilistic based sequence modeling approach. In the prob-
abilistic approach, the prediction of the next phoneme is based on the symmetric
window of graphemes and left-sided window of phonemes. It can be done by cre-
ating 1-to-n alignments of the training data by using a context-independent channel
model.

2.2. Data-driven Approach 5

There have been various G2P models based on the probabilistic sequence mod-
eling approach, the below sections gives an overview on some of these approaches;

Hidden Markov Model (HMM) based approach

The G2P task has been formulated in the standard HMM way by applying inde-
pendent and identical distribution and first-order Markov Model assumptions by
(Taylor, 2005). It is expressed formally as;

S∗ = argmaxP(S, G)

= argmaxP(G|S)P(S)

= argmax ∏
n

P(gn|sn)P(sn|sn−1)
(2.1)

Where S = [s1,, sn, ..., sN] represents the hidden sequence of phoneme and
G = [g1, ..., gn,, gN] denotes the sequence of grapheme observations. In this
framework, each HMM represents a phoneme which emits up to four grapheme
symbols. Unlike the local classification approach where alignments are obtained
as a pre-processing step, the alignments can be obtained during the training of the
HMM with the Baum-Welch algorithm. As for the inference, the Viterbi algorithm is
used for obtaining the most probable phoneme sequence from the input grapheme
sequence.

Joint Multigram approach

The idea of the joint multigram approach is that the input-output relationship can be
generated from a common sequence of joint units thus carrying both input and out-
put symbols. The term multigram is used when the units carry multiple input and
output symbols and can also be termed as a joint sequence (Deligne, Yvon, and Bim-
bot, 1995). The joint multigram approach is based on the proposition of graphones.
A graphone is a pair of a sequence of graphemes and a sequence of phonemes. The
joint probability of a sequence of graphemes G and a sequence of phonemes S are
obtained from sequences of graphones Q. It can be formally expressed as;

P(S, G) = ∑
Q∈S(S,G)

p(Q) (2.2)

An n-gram approximation can be used for modeling the probability distribution
over all matching alignments (graphone sequences). With the use of expectation
maximization (EM) algorithm, the parameters of the n-gram model are learned by
maximizing the log-likelihood of the data (Bisani and Ney, 2008). Another approach
of obtaining the best sequence of phonemes is by using a weighted finite-state trans-
ducer (WFST) framework (Novak, Minematsu, and Hirose, 2012).

Sequitur, based on joint multigram framework and phonetisaurus, based on WFST
framework are two of the open-source tools for conversion of G2P that have been
widely used until now. These tools have been often considered as baseline models
while researching the G2P conversion task.

6 Chapter 2. An Overview of Grapheme-to- Phoneme Approaches

Conditional random fields based approach

Conditional random fields (CRF) are a popular probabilistic approach for discrimi-
native modeling. It has shown that CRFs are well suited for segmenting and label-
ing sequential data (Lafferty, McCallum, and Pereira, 2001). In conditional random
fields approach, the conditional probability is modeled using a log-linear represen-
tation. Since CRF is a discriminative model, it can perform global inference, thus,
exploiting the advantages of both decision tree-based methods and joint multigram
methods. But, it can be more expensive computationally compared to the aforemen-
tioned approaches. The parameters of the log-linear CRF model are learned by max-
imizing the conditional log-likelihood. The Viterbi algorithm is used for decoding
the best phoneme sequence.

Acoustic data-driven approach

There are few attempts made in using the acoustic data for extracting the pronunci-
ation for incorporating the G2P conversion process. One of the reasons for interest
in this approach is grapheme-based recognition systems (Killer, Stüker, and Schultz,
2003). Rasipuram and Magimai-Doss (Rasipuram and Magimai-Doss, 2012) pre-
sented the G2P conversion approach by capturing the relationship between grapheme
and phoneme from acoustic data using Kullbeck-Leibler divergence based HMM
model system for speech recognition or TTS system. The acoustic data-driven ap-
proach based on the Kullback-Leibler divergence framework is used to capture the
sequence information in the orthographic transcription to infer the phoneme se-
quences and its variants for the grapheme-to-phoneme conversion (Rasipuram and
Magimai-Doss, 2012).

2.3 Neural Networks based Approach

The artificial neural networks have gained interest long back for the task of G2P
conversion. One such network that has attracted immense attention is the error
backpropagation network because of its ability to learn the mapping between two
sets of patterns. Sejnowski and Rosenberg (Sejnowski and Rosenberg, 1987) used
a backpropagation network for mapping the grapheme of American English text
with its phonetic transcription as part of the text-to-speech system and named their
network as NETtalk (Sejnowski and Rosenberg, 1987). They use a three-layer neural
network. The input of the network is a context window of plus/minus three letters.
The input layer uses an orthogonal representation which means one input for each
type of letter. Finally, the output layer represents the predicted phoneme through
articulatory features (McCulloch, Bedworth, and Bridle, 1987).

An interesting approach was proposed by F. Arciniegas and M.J. Embrechts us-
ing staged neural networks in 2000 (Arciniegas and Embrechts, 2000). They applied
three neural networks for the G2P task. The first network distinguishes the single
and dual phoneme cases. In the single phoneme case, one letter is mapped to one
phoneme and in dual phoneme case, one letter is mapped to two phonemes. For
both the single and dual case the networks from the second stage are trained sepa-
rately. By implementing this approach, they attained quite a good phoneme accu-
racy but as they increase the size of the dictionary the accuracy starts decreasing.

(Rao et al., 2015) implemented unidirectional LSTMs with different forms of out-
put delays for the task of G2P conversion. In this approach, the use of various forms
of output delays enables the model to see several graphemes before outputting any

2.3. Neural Networks based Approach 7

phoneme (Rao et al., 2015). Another approach they have carried out in their work
is the implementation of BLSTM with connectionist temporal classification (CTC)
(Graves, Mohamed, and Hinton, 2013) for G2P conversion task. The objective of im-
plementing CTC is to avoid the need for explicit alignment before training. BLSTM
with a CTC layer of 512 units gives the best result. Combining this model with a tra-
ditional 5-gram WFST model provided some improvement as well. A BLSTM model
with encoder-decoder architecture with a side-conditioned language model used to
perform G2P task without explicit alignment (Yao and Zweig, 2015).

FIGURE 2.1: The input of the encoder is “cat” grapheme sequence and
the decoder produces “k a t” as the phoneme sequences. The left side is the
encoder and the right side is the decoder. The model stops making predictions

after generating the “end-of-line (EOL)” tag.

Another G2P conversion task was being experimented by applying attention
function with the encoder-decoder framework (Shubham Toshniwal, 2016). An at-
tention function is the mapping of a query and a set of key values to output, where
the query, as well as key values along with the outputs, are all vectors (Vaswani et
al., 2017). In the attention enabled encoder-decoder model, the model jointly learn to
align and convert characters to phonemes in contrast to the G2P models that require
explicit alignments. With this type of attention model, the dependency on an ex-
ternal aligner can be removed. The applicability of attention with encoder-decoder
framework achieves the state-of-the-art on few datasets. The use of global atten-
tion for the G2P task is comparatively a reasonable choice given the short sequence
length for the G2P conversion.

The use of convolutional neural networks with residual connections as encoder
and BLSTM as decoder outperformed most of the previous solutions on the CMU-
Dict and NetTalk datasets in terms of phoneme error rate (PER) (Yolchuyeva, Németh,
and Gyires-Tóth, 2019).

With the day-to-day advancement in the neural networks, various other ap-
proaches have been applied for the task of G2P conversion. A recent approach has
achieved the new state-of-the-art in the G2P conversion task with transformer ar-
chitecture. The transformer is a novel neural network architecture based on self-
attention mechanism. The transformer network is used with knowledge distillation
for the G2P task. In knowledge distillation, a light student model can approximate
the accuracy of a heavy teacher model (Hinton, Vinyals, and Dean, 2015). The pro-
posed approach of transformer network with knowledge distillation for unlabeled
data has acquired the new state-of-the-art result in the G2P conversion task (Sun et
al., 2019).

9

Chapter 3

Deep Learning for Robust and
Reliable Grapheme-to-Phoneme
Converter

Deep learning has gained immense popularity in the last few years. Recently, with
the advancement of deep learning, the grapheme-to-phoneme conversion is viewed
as a sequence-to-sequence task and modeled with deep neural networks architec-
tures. In this chapter, we discussed the implementation of deep learning for grapheme-
to-phoneme conversion task. As the focus of our work is to build a robust system for
providing the best grapheme-to-phoneme conversion model, we examined several
neural networks architecture for our task. This chapter is organized as: Section 3.1
gives a brief overview of the evolution of deep learning into research and reviews
the implementation of deep learning for our task. Then, in Section 3.2, we discuss
the use of attention mechanism and its variants for sequence attention task, Section
3.3 describes the sequence-to-sequence encoder-decoder framework adapted for our
task and lastly Section 3.4 describes the transformer network.

3.1 Deep Learning

Deep learning is a field of machine learning based on the learning algorithms in-
spired by the function of the human brain called artificial neural networks. Artificial
neural networks are an approach to computational learning designed to solve vari-
ous problems in pattern recognition, prediction, optimization, and control. The first
paper relevant to artificial neural networks was published by (McCulloch and Pitts,
1943). An attempt for the first time was made at a mathematical-algorithmic de-
scription of the signal processing behavior of neurons in the human brain. Research
into the replication of these neural approaches to machine learning began in the late
1950s (Rosenblatt, 1958). The structure of an artificial neural network is a network
of nodes adjoined to each other by weighted connections. The nodes represent the
neurons and the weights represent the strength of the synapses between the neurons
(Graves, 2012). Over the years many varieties of artificial neural networks have ap-
peared with varied properties. One such distinction of artificial neural networks are
the ones whose connections form cycles and are referred to as feedback, recursive or
recurrent neural networks. The ones without the cycles are known as feedforward
neural networks.

Though the initial results of artificial neural networks were promising, it resulted
as a failure towards the end of the 1960s. The reasons for the failure are not covered
in this thesis. However, in the 1980s neural networks started to regain its interest
again due to the advent of approaches such as improved backpropagation algorithm

10
Chapter 3. Deep Learning for Robust and Reliable Grapheme-to-Phoneme

Converter

for training hidden layers in neural networks (Cortes and Vapnik, 1995). But, again
the flow of neural networks experienced stagnation during the mid-1990s because
of the limitation of computational resources. It was during the 2000s, the field of
research experienced an influential and fruitful surge of neural networks and is con-
tinuing.

3.1.1 Feedforward neural network

Feedforward neural network is an artificial neural network to approximate some
function f ∗. For instance, for a classifier, y = f ∗ (x) maps an input x to a category
y. A feedforward network defines a mapping y = f (x;) and learns the value of the
parameters θ that results in the best function approximation.

In a feedforward network, information flows through the function being evalu-
ated from x, through the intermediate computations used to define f , and finally to
the output y. The outputs of the model cannot be fed back into itself as there are no
feedback connections. Feedforward networks are multilayer perceptrons.

FIGURE 3.1: Feed forward neural network.

In Figure 3.1, there are three layers called input layer, hidden layer and output
layer. Normally, all nodes of a single layer have the same properties like activation
function and type like input, hidden and output.

Sigmoid function

The sigmoid activation function is a very common choice for feedforward neural
networks used for binary classification. The sigmoid function is often used in the
neural network to introduce non-linearity to the model. The sigmoid function takes

3.1. Deep Learning 11

a single real value as an input and returns a real-valued output. The output range is
from 0 to 1. It’s also called the logistic function.

FIGURE 3.2: Sigmoid activation function (source: Internet).

f (si) =
1

1 + e−si
(3.1)

Cross-entropy loss

The cross-entropy loss between two probability distributions over the same set of
events estimates an average number of bits required to detect if the encoding scheme
used is optimized for target distribution rather than true distribution. In neural
network architecture for a task of binary classification, the last (output) layer is the
sigmoid activation function. For neural network-based classifier training, we opted
for cross-entropy as the loss function.

3.1.2 Recurrent neural network

A recurrent neural network or RNN is a part of neural network family for processing
sequential data; introduced in the 80s for modeling time series (Rumelhart, 1986).
The recurrent neural network is a powerful and simple network that is specialized
in processing a sequence of values (x1, ..., xT), RNNs operating on a sequence that
contains x(t) vectors with the time step index t, ranging from 1 to T). The recurrent
neural network can not only take their input from the current input example but
also the previous inputs. RNN maps previous inputs from the entire history to each
output. The recurrent connections of an RNN allow memorizing previous inputs
in the networks internal state, that can further be used for influencing the network
output. RNN is specially designed for sequence learning tasks by forming recur-
rently connected networks, in which hidden networks and input-output networks
are connected cyclically to each other (Graves, 2012).

12
Chapter 3. Deep Learning for Robust and Reliable Grapheme-to-Phoneme

Converter

FIGURE 3.3: Schematic view of a recurrent neural network with self-
connected hidden layer. The recurrent connections in the hidden layer allow

information to persist from one time input to the next one.

The following equations 3.2, 3.3 are iterated over time, which is, from t=1 to
t = T to calculate intermediate hidden representation as h = (h1, h2. . . hT), for a
single hidden layer neural network.

ht = f (wxh · xt + Whh · ht − 1 + bh) (3.2)

yt = why · ht + by (3.3)

In Equations 3.2and 3.3, Wxh is the weight matrix between input vector x and
hidden representation in hidden layer h; Whh is the weight matrix between hidden
layer at time t− 1 and hidden layer at time t and Why is the weight matrix between
hidden layer and output layer; f (.) is non linear activation function; bh and by are
the bias vectors for hidden layer and output layer. The ability of processing current,
as well as previous context inputs, makes RNN well suited for sequence classifica-
tion tasks where context within the sequence is useful. Sequence classification is a
predictive modeling problem where there is a sequence of inputs over space or time
and the task is to predict a category for the sequence. RNNs can build a dynamic
temporal context window instead of a fixed context window as they store activations
from previous steps in their internal state.

Long short-term memory (LSTM)

There are mainly two issues while training recurrent neural networks. The van-
ishing gradient problem and the exploding gradient problem (Bengio, Simard, and
Frasconi, 1994; Hochreiter, 1991). The problem arises as the network tries to learn

3.1. Deep Learning 13

long-term dependencies during training which either decays or blows up exponen-
tially as it cycles around the network’s recurrent connections. Several attempts have
been made to solve the problem of gradient descent in RNN in the 1990s. (Bengio,
Simard, and Frasconi, 1994) tried to solve the gradient descent problem with simu-
lated annealing (SA) and discrete error propagation, with the introduction of time
delays by (Lang, Waibel, and Hinton, 1990; Lin, Sontag, and Wang, 1996), and with
hierarchical sequence compression by (Schmidhuber, 1992) were some of the other
notable attempts made in regard to solve the problem of gradient descent. However,
long short-term memory or LSTM proposed by Hochreiter and Schmidhuber in 1997
(Hochreiter and Schmidhuber, 1997), proved to be the most effectively successful so-
lution for the gradient descent so far.

FIGURE 3.4: Graphical representation of vanishing gradient descent prob-
lem in RNN. (Graves, 2012).

Figure 3.4 is a graphical representation of the vanishing gradient problem in
RNN. The shades of the nodes indicate the sensitivity over time of the network
nodes to the input at time-step 1. It is harder for the network to update the weights
if the gradient is low, thus, resulting in the delay to the final results. By the different
shades, it means, the lighter the shade, the lower the gradient. The network eventu-
ally ‘forgets’ the first input as the new inputs overwrite the activation of the hidden
unit.

LSTMs are designed to be able to avoid the problem of long-term dependencies.
One of the main properties of LSTMs is that they can hold onto any information
for a long time. They specifically consist of memory blocks, i.e. a set of recurrently
connected subnets. LSTMs are framed with the ability to remove or add informa-
tion to the cell state, termed as gates. The vanishing gradient problem is averted
with the multiplicative gates, the input, output and forget gates. The analogs read,
write and reset of these gates allow LSTM memory cells to store and access informa-
tion for a long time, thus, averting the issue of gradient descent. For instance, until
the input gate is closed, the new inputs will not overwrite the activation of the cell
and by opening the output gate the new inputs can be made available later in the
sequence to the network. Forget gate has been enhanced to the LSTM architecture
with the ability to forget the previous inputs when necessary. For the capability of
dealing with sequential data, LSTMs are a good approach for the task of grapheme-
to-phoneme conversion. LSTMs with encoder-decoder framework performed quite

14
Chapter 3. Deep Learning for Robust and Reliable Grapheme-to-Phoneme

Converter

well (Sutskever, Vinyals, and Le, 2014). The LSTM encoder encoded the sequence of
graphemes and the other LSTM decodes the phoneme sequences.

FIGURE 3.5: Schematic view of Long short-term memory cell (Graves, Mo-
hamed, and Hinton, 2013).

The above diagram 3.5, has an input gate, output gate and forget gate. The three
gates collect activations from both outside and inside the block. The small circles
denote the multiplicative units. The arrow indicates the flow of information.

it = σ(Wxi · xt + Whi · ht−1 + Wci · ct−1 + bi) (3.4)

ft = σ(Wx f · xt + Wh f · ht−1 + Wc f · ct−1 + b f) (3.5)

ot = σ(Wxo · xt + Who · ht−1 + Wco · ct−1 + bo) (3.6)

ct = ft · ct−1 + it · tanh(Wxc · xt + Whc · ht−1 + bc) (3.7)

ht = ot · tanh(ct) (3.8)

where it , ft, ot are activations of the input gate, forget gate and output gate, ct is cell
state or cell memory. σ is the sigmoid function acting as non linear function.

Bi-directional long short-term memory (BLSTM)

In Figure 3.6, the input sequence x maps to the output sequence y. The forward
arrow (towards the right) propagates the forward information on time and the back-
ward arrow (towards the left) propagates information backward.

3.1. Deep Learning 15

FIGURE 3.6: Bi-directional Long short-term memory(Graves, Mohamed,
and Hinton, 2013).

The RNN architectures that have been discussed so far take into account the in-
formation from the past input at time step x1, ..., xt−1 as well as current input xt.
Suppose, in the case of speech recognition systems, due to coarticulation in lan-
guages like English, the sound of the current phoneme depends on the following
phoneme sounds. Bi-directional LSTMs (BLSTM) have been introduced for process-
ing such issues (Schuster and Paliwal, 1997). BLSTM based architectures shown
improved results in applications like handwriting recognition (Graves et al., 2009),
speech recognition (Graves et al., 2009; Graves, Mohamed, and Hinton, 2013).

Bi-directional LSTM or BLSTM, in short, processes the input sequence in both
directions with two sub-layers in order to account for the full input context. The two
sub-layers compute forward and backward hidden sequences and the two hidden
sequences are then combined to compute the output sequences (Graves, Mohamed,
and Hinton, 2013). By taking into account the information from the past as well as
from future, it acquires the information on the whole sequence of inputs in the net-
work. BLSTMs have proved to be very efficient for sequential tasks. (Mousa and
Schuller, 2016) used complex many-to-many alignments with BLSTM for G2P con-
version and achieved improved results on the publicly available CMU dictionary.

17

Chapter 4

Encoder-decoder framework for
Grapheme-to- Phoneme
Conversion

Encoder-decoder is a neural networks architecture proposed by (Cho et al., 2014) for
sequence-to- sequence learning. In the encoder-decoder networks architecture, two
networks are used: an encoder that encodes the input sequence into a compressed
embedding vector and the other network decoder decodes the input sequence by
using the dense representation of input sequence’s data and at each time-step pro-
duce output. The output from the previous time-step is then used for producing
an output sequence. In this chapter, we will first analyze the sequence-to-sequence
model for the G2P conversion in section 4.1 and section 4.2 narrates the attention
mechanism and finally, section 4.3 describes briefly the transformer network.

FIGURE 4.1: RNN encoder-decoder framework (Cho et al., 2014).

4.1 Sequence-to-sequence Architecture

In OpenNMT the encoder-decoder framework is used for machine translation. The
input is a source word in one language and the output is the target word in another

18 Chapter 4. Encoder-decoder framework for Grapheme-to- Phoneme Conversion

language. “NMT takes a conditional language modeling view of translation by model-
ing the probability of a target sentence w1:T given a source sentence x1:S as p(w1:T|x) =
ΠT

1 p(wt|w1:t−1, x; θ) where the distribution is parameterized with θ.(Klein et al., 2017)".
In the sequence-to-sequence model architecture of OpenNMT, the source encoder
which is a recurrent neural network model maps each source word to a word vector
and process them to a sequence of hidden vectors. The target decoder combines the
hidden representation of previously generated words with source hidden vectors for
predicting the scores for each possible next word. “The default decoder applies attention
over the source sequence and implements input feeding by default” (OpenNMT.net) 1.

FIGURE 4.2: Encoder-decoder architecture of OpenNMT (Luong, Pham,
and Manning, 2015).

Figure 4.2, is an attention-based encoder-decoder network. In this figure, the
encoder states are in blue and decoder states are in red, through an attention layer,
jointly fed into an output layer represented by color grey.

Adaptation of sequence-to-sequence architecture for G2P

We describe briefly the general framework of RNN encoder-decoder in this section
that has been adapted from the OpenNMT proposed by (Klein et al., 2017). For
the grapheme-to-phoneme task, we modified the data preprocessing step used for
neural machine translation task. We provided the source input as a sequence of
graphemes and the target output as a sequence of phonemes. In the encoder-decoder
framework, the encoder reads the input character sequences and mapped them to
the character vectors x = (x1, ..., xTx). The most common approach is to use an RNN
such that ht = f (xt, ht−1) and c = q(h1,, hTx), where ht ∈ Rn is a hidden state
at time t, and c is a vector generated from the sequence of the hidden states, f and
q are some non-linear functions. The decoder is often trained to predict the next
character yt, given the character vector c and all the previously predicted characters

1http://opennmt.net/

http://opennmt.net/

4.2. Attention Mechanism 19

y1, ..., yt−1. The decoder defines a probability over the conversion y by decomposing
the joint probability into the ordered conditionals. Thus, with a RNN decoder each
conditional probability is modelled as, p(yt|y1, ..., yt−1, c) = g(yt−1, st, c), where g
is a non-linear, potentially multi-layered function that outputs the probability of yt,
and st is the hidden state of the RNN.

In our adaptation, the source character sequences are first mapped to charac-
ter vectors and then fed into an RNN. Upon seeing the <eos> (end of sentence as
used in the OpenNMT library) symbol, the final time step initializes a target. At
each target time step, attention is applied over the source RNN and combined with
the current hidden state to produce a prediction (wt|w1:t−1, x) of the next character.
This prediction is then fed back into the target RNN. A source encoder RNN maps
each source character to a character vector, and process these to a sequence of hid-
den vectors (h1, ..., hs). The target decoder combines an RNN hidden representation
of previously generated vectors (w1, ..., wt−1)with source hidden vectors to predict
scores for each possible next pronunciation symbol.

4.2 Attention Mechanism

Attention mechanism has been introduced in the context of neural machine trans-
lation (Bahdanau, Cho, and Bengio, 2014). As neural machine translation is being
designed within the framework of encoder-decoder, the encoder encodes a source
input into a fixed-length context vector from which the decoder generates the target
output. The translation models require alignment of the symbol positions between
the source and the target. In the case of long sentences the translation model often
has difficulty in memorizing the whole sentence. It forgets the first part while pro-
cessing the whole input sentence. Attention mechanism was developed mainly to
deal with the long source sentences in neural machine translation. Attention cre-
ates shortcuts between the context vector and the whole input which makes it easy
for the network to have access to the whole input sequence and stops it from for-
getting any part of it. The context vector, thus, learned the alignment between the
source and the target. With the successful implementation of attention mechanism
in neural translation, it has been used in other natural language processing appli-
cations for training the neural networks architecture in recent times (Luong, Pham,
and Manning, 2015; Vaswani et al., 2017).

In the words of (Vaswani et al., 2017), "An attention function can be described as
mapping a query and a set of key-value pairs to an output, where the query, keys, values, and
output are all vectors. The output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility function of the query with the
corresponding key".

To compute the output, let’s assume that there is a score function a which mea-
sures the similarity between the query and a key. Then we compute all n scores
a1,, an by

ai = α(q, ki) (4.1)

Then, softmax is used to obtain the attention weights

b1, . . . , bn = so f tmax(a1,, an) (4.2)

The output is then a weighted sum of the values

20 Chapter 4. Encoder-decoder framework for Grapheme-to- Phoneme Conversion

o = Σn
i=1bivi (4.3)

FIGURE 4.3: The attention layer returns an output based on the input
query and its memory (Zhang et al., 2019).

Global attention

(Luong, Pham, and Manning, 2015) extended the attention mechanism proposed by
(Bahdanau, Cho, and Bengio, 2014) for neural machine translation by simplifying
it and named it as global attention. The idea of a global attentional model is to
consider all the hidden states of the encoder when deriving the context vector ct. In
this model type, at each time step t, the model infers a variable-length alignment
vector at based on the current target hidden state ht with each source hidden state
hs. A global context vector ct is then computed as the weighted average, according
to at, overall the source states.

There are different models available from “Global attention model” by (Luong,
Pham, and Manning, 2015) in the OpenNMT library 2. We have applied the general
attention model, one of the alternatives of global attention, the score function is:

score(ht, hs) = hT
t Wahs (4.4)

Where ht is the current target hidden state; hs is the source hidden state and Wa is
the weighted average. Given the alignment vector as weights, the context vector is
computed as the weighted average over all the source hidden states (Luong, Pham,
and Manning, 2015).

As we have used only the global attention, the other variants of the attention
mechanism, i.e. local attention is not discussed in this thesis.

4.3 Transformer Network

Google introduced the transformer network in 2017 (Vaswani et al., 2017). The trans-
former network has also the encoder-decoder framework. However, the architecture

2http://opennmt.net/OpenNMT-py/Library.html

http://opennmt.net/OpenNMT-py/Library.html

4.3. Transformer Network 21

FIGURE 4.4: Simplified graphical representation of the transformer model.

of the transformer network is based on a self-attention mechanism. Transformer net-
work emerged to deal with the sequential task as well. The transformer transforms
one sequence into another within the framework of encoder and decoder; but unlike
the sequence-to-sequence model with the encoder-decoder framework, transformer
performs without using sequence-aligned recurrent architecture.

Transformer’s architecture completely relies on the attention mechanism. Fig-
ure 4.4 is a graphical representation of the architecture of transformer. The encoder
is on the left side and the decoder is on the right. The transformer can be seen
mainly composed of multi-head attention and feed forward layers. Input and output
(target) sequences are projected into an embedded vector space. Positional encod-
ing is added to the embedded input vector for capturing the token position within
the sequence. Multi-head self-attention computes multiple attention blocks over the
source, concatenates them and projects them linearly back onto space with the ini-
tial dimensionality. The decoder operates similarly, but generates one phoneme at a
time, from left to right and is composed of five stages. Multi-head attention not only
attends to the past items but also the final representations generated by the encoder.
Finally, a softmax layer to map target symbol scores into target symbol probabilities.

Multi-head attention

"Multi-head attention allows the model to jointly attend to information from different repre-
sentation subspaces at different positions" (Vaswani et al., 2017).

22 Chapter 4. Encoder-decoder framework for Grapheme-to- Phoneme Conversion

FIGURE 4.5: Multi-Head Attention consists of several attention layers
running in parallel (Vaswani et al., 2017).

The encoder-decoder framework of the Transformer model with the use of stacked
multi-head attention mechanism showed successful results in many machine learn-
ing tasks, such as machine translation, image caption, etc. (Vaswani et al., 2017)
stated that multi-head attention is more efficient in using the model’s capacity com-
paring to the same size model with single-head attention.

Multi-head attention computes attention more than once. A multi-head attention
layer consists of h parallel attention layers, each one is called a head. For each head,
any number of dense layers with hidden sizes use to project the queries, keys, and
values, respectively, before feeding into the attention layer. The outputs of these
h heads are concatenated and then projected by another dense layer as shown in
Figure 4.5.

The multi-head attention relies on scaled dot-product attention, which operates
on a query Q, a key K and value V:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (4.5)

where dk is the key dimensionality. In self- attention, queries, keys, and values
come from the output of the previous layer. After computing the dot-product of the
query with all the keys; the query and the keys are then divided by the

√
dk. A

softmax function is then applied to obtain the weights on the values.
The multi-head attention obtains h i.e. one per head, different representations of

Q, K, V. It then computes scaled dot-product attention for each representation, con-
catenates the outputs and projects the concatenation through a feed-forward layer.

4.3. Transformer Network 23

It can be expressed as:

headi = Attention(QWQ
i , KWK

i , VWV
i) (4.6)

Multihead(Q, K, V) = Concati(headi)WO (4.7)

where Wi and WO are parameter matrices.
The implementation and the results of these architectures will be discussed in

chapter 6.

25

Chapter 5

Ensemble Learning with Multiple
Generator Adversarial Network

In this chapter, we have discussed our approach of implementing ensemble learn-
ing with multiple generator adversarial network for selecting the best grapheme-
to-phoneme model. The chapter is designed as; Section 5.1 briefly describes the
ensemble learning and how it has been used in our work. Then, Section 5.2 gives
a brief description of the multiple generator adversarial network. Section 5.3 gives
a comprehensive description of our model and finally section 5.4 detailed about the
architecture of our classifier.

5.1 Ensemble Learning

Ensemble learning can be seen used successfully for machine learning applications.
It has been shown that multiple model combination resulted in improving the per-
formance (Rokach, 2010). In statistical machine translation (SMT), ensemble learn-
ing can be applied to combine several systems as well (Och and Ney, 2002; Ma-
tusov, Ueffing, and Ney, 2006). The ensemble of models has also been applied to
character-based sequential neural machine translation (Ling et al., 2015). To our
knowledge, ensemble learning has not been used widely in the context of grapheme-
to-phoneme conversion so far. The ensemble of various neural network models is
applied with knowledge distillation on unlabeled data for grapheme-to-phoneme
conversion only by (Sun et al., 2019) until now.

FIGURE 5.1: Schematic view of ensemble learning. The three models M1,
M2 and M3 are trained for solving the same problem. The idea is to com-
bine the individual predictions of the three models in order to obtain the best

predictive performance.

26 Chapter 5. Ensemble Learning with Multiple Generator Adversarial Network

Ensemble learning is a machine learning technique that combines several base
models to produce one optimal selected prediction. The method of combining mul-
tiple models predicts better performance than a single predictive model and resulted
in improving the performance of classification and prediction of a model. The dif-
ferent models are trained on the same dataset to make predictions by each of them
individually. The individual predictions made by each model is then combined to
make a final prediction.

5.2 Multiple Generator Adversarial Network

Training of multiple generators is not a new thing in image processing. In image
processing, a novel approach of using multiple generators has been proposed by
(Hoang et al., 2018) for addressing the issue of model collapsing. The use of multiple
generators is highly influenced by Ian Goodfellow’s generative adversarial network
or GAN in short. In 2014 (Goodfellow et al., 2014) proposed the framework of ad-
versarial nets for generative models. As we have not used generative adversarial
networks in our work, so in this case, the chapter is entitled to multiple generators
adversarial networks. Although, the idea of implementing the framework of adver-
sarial nets is being influenced by (Hoang et al., 2018).

5.3 Model Description

The proposed approach is to create an adversarial network with multiple generators
and a classifier to choose the best model output. Our approach relies on several
multiple grapheme-to-phoneme conversion models which are used as generators.
We have implemented an LSTM based classifier whose main task is to predict the
best model output. Figure 5.2 below presents the graphical representation of our
model.

FIGURE 5.2: Multiple generator network with ensemble learning for best
model output.

In diagram 5.2 above, the classifier will select the best model output from various
grapheme-to-phoneme models depicting as generators. The input is the grapheme
sequences (x1,, xn) and the output is the pronunciation sequences (z1, ..., zn). The
pronunciation sequences (outputs) will then be given to the classifier along with the

5.4. Architecture of the Classifier 27

grapheme sequence (input). The task of the classifier can be termed as the sequence
classification. Sequence classification is a predictive modeling problem where there
is some sequence of inputs over space or time and the task is to predict a category
for the sequence.

For our classifier, we will rely on a neural network approach. In this work,
we have developed an RNN LSTM based classifier for addressing the classification
problem.

5.4 Architecture of the Classifier

The input of our classifier is the phoneme sequences which are the outputs of the
various grapheme-to-phoneme conversion models along with the input grapheme
sequences. Sequence classification is a predictive modeling problem with the varied
length of input entries. The model faces difficulty in reading the long-term context
as well as dependencies between input sequences due to the varied length of the
input. We developed an RNN LSTM based classifier for dealing with the sequence
classification problems. The LSTM architecture of the RNN is designed to deal with
long-term dependencies and RNN is well suited for studying contextual informa-
tion. Figure 5.3 presents the graphical view of our classifier which is discussed in
detail in the following sections.

FIGURE 5.3: Graphical representation of the RNN LSTM classifier.

5.4.1 Embedding

We map the pronunciation sequence produced by the G2P models to a non-linear
representation of phoneme identity using the embedding matrix. An embedding
matrix is a list of all letters and their corresponding embeddings. The concept of
an embedding matrix is an attempt to solve the relationship of representation prob-
lem. So, we will pick a dimensionality for the length of the pronunciation symbols
(embeddings). Suppose, we have 50 pronunciation symbols, so we will use 50 di-
mensions of embedding. Therefore, all the pronunciations will be mapped to some
point in this 50 dimension space.

28 Chapter 5. Ensemble Learning with Multiple Generator Adversarial Network

5.4.2 RNN LSTM

We implement an RNN LSTM based architecture to processes sequential output
phoneme embeddings and transform it into a fixed dimensional output vector. Af-
ter representing each pronunciation symbol by its corresponding vector with the
embedding matrix, the sequence of pronunciation symbols is given as input to the
RNN LSTM one by one in a sequence.

The given character sequence can be considered as token sequences s = s1,, sn.
The LSTM unit takes the embedding xt of each token st as input and outputs a hid-
den state ht. After the LSTM unit finished recurrent computation along with all the
tokens from left to right we get the hidden state sequence h = h1, ...hn. The hidden
state sequence ht does not only capture the information of tokens st but also that of
its predecessors.

The final representation of all the tokens i.e. h = h1, ...hn is generated by concate-
nating all the hidden states across all the G2P models as well as the character input
s = s1,, sn.

5.4.3 Max pooling layer

Max pooling is a widely used RNN structure for classification. Max pooling selects
the max value of each position in all hidden state vectors. That implies the value of
the i′th position in vector h is calculated as:

hmaxpooling
i = max(hji)1 ≤ j ≤ m (5.1)

The phoneme sequences, as well as grapheme sequences across the G2P models,
might have varying lengths. So, to have a fixed length of sequences we use max
pooling. Also, max pooling layer helps to reduce the overfitting of the model.

5.4.4 Feed forward layer

The output of the max pooling layer is given to the feed forward layer as input. We
designed the feed forward layer in such a way that the output dimension of feed
forward is equal to the number of models we are combining with the classifier.

Furthermore, we used the Sigmoid layer as an activation function. To avoid the
problem of overfitting of the model we used dropout layer in the feed forward neural
network.

29

Chapter 6

Experimentation and Results

We have proposed a novel approach of a robust framework for G2P conversion.
We have experimented with two methods, i.e. multigram approach (sequitur 1 and
phonetisaurus 2) and neural networks approach (sequence-to-sequence) at first and
opted for a more automated approach by implementing ensemble learning with
multiple generator adversarial network. This chapter investigates the approaches
that we have discussed in Chapter 3, 4 and Chapter 5 to verify the effectiveness of
our models. There are mainly three major parts that are discussed in this chapter.
First, we give a detailed description of the experimental setup in Section 6.1, where
we introduce the datasets used for conducting our experiments, the training proce-
dures, and the implementation methods. Secondly, in Section 6.2, we present the
training and evaluation procedures and finally in Section 6.3, we report the results
of our methods and give a brief analysis of our observations.

6.1 Experimental Setup

We carried out all our experiments on English and French datasets. First, we exper-
imented the individual models for the G2P conversion followed by analysis on the
same predictions by different G2P models and then we applied our method of com-
bining models for the G2P task. We report the performance of our experimentation
and visualize the results obtained.

6.1.1 Datasets

We use two datasets for evaluating the G2P approaches, the CMUdict for English 3

and CMU pronunciation dictionary for French 4. For both datasets, we use the same
train (80%), validation (10%) and test (10%) split using our write-up code. The data
has been split in such a way that the variants of pronunciations for any given word
are always grouped into either the train, or the validation, or the test set. The num-
ber of pronunciation variants in English dataset is 7846 (6.43%) and the number of
pronunciation variants in French dataset is 42652 (40.61%). The size of the phoneme
vocabulary for English is 69 and grapheme vocabulary is 51 and similarly, for French
phoneme vocabulary is 35 and grapheme vocabulary is 72 including punctuations,
stress marks, umlauts.

1https://github.com/sequitur-g2p/sequitur-g2p
2https://github.com/AdolfVonKleist/Phonetisaurus
3(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
4(https://sourceforge.net/projects/cmusphinx/files/Acoustic$%20and%20Language%

20Models/French/$

https://github.com/sequitur-g2p/sequitur-g2p
https://github.com/AdolfVonKleist/Phonetisaurus
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://sourceforge.net/projects/cmusphinx/files/Acoustic$%20and%20Language%20Models/French/$
https://sourceforge.net/projects/cmusphinx/files/Acoustic$%20and%20Language%20Models/French/$

30 Chapter 6. Experimentation and Results

TABLE 6.1: Data split.

Language Train
(80%)

Validation
(10%)

Test
(10%)

Total
Words

Unique
Words

English 97555 12197 12196 121954 114108
French 83929 10521 10553 105003 62351

6.1.2 Model Configuration

We use the implmentation of sequitur mentioned in (Bisani and Ney, 2008). For
phonetisaurus WFST driven G2P version 1.8, OpenFST based many to many aligner
used prior to training G2P system, language model toolkit MITLM used. The rest of
the configurations used are same as mentioned in the toolkit 5.

Sequence-to-sequence (seq2seq)

We adapted the sequence- to-sequence architecture from Open NMT to implement
on our task. We train the sequence-to-sequence model with various model struc-
tures. LSTM, as well as BLSTM, has been trained with attention for our task. We use
general attention (Luong, Pham, and Manning, 2015) with LSTM and BLSTM. We
also vary the layers for both the LSTM and BLSTM encoder and decoder (2-2, 4-4) to
analyze the impact on accuracy. We set the size of the hidden states for encoder and
decoder to the same value (500 hidden RNN states). We use the same configurations
as LSTM in the BLSTM model.

Transformer Model

We train the transformer model for the G2P conversion task as well. For both the
encoder and the decoder, we use depth 2. The number of attention head is 10 and
the embedding network dimension is 500 for both the encoder and the decoder net-
work. The dropout is same as well for both the network, i.e. 0.3. The multihead
dimension with a hidden dimension is 500 and the positionwise embedding is 2048.
We use layer normalization of 500 hidden dimension. The last layer of the decoder
is softmax.

Although we implemented the transformer model, the could not achieve any
performance. Therefore, we have not included any results in the report.

Classifier

We use the embedding output dimension 50 in both the phoneme and the grapheme
embedding network. Afterward, we give these embeddings from model1, model2,
and grapheme to the respective BLSTM network of 4 layers with 50 hidden units.
The outputs of these 3 BLSTM networks are then concatenated and given to the max
pooling layer of output dimension 50 hidden units. Thereupon, the output of max
pooling layer is given to the feed forward neural network whose output is equal
to the number of models combining in the ensemble classifier. We use sigmoid as
activation unit in the last layer.

We use the same configurations when we combined all the four models (seq2seq,
BLSTM, sequitur, phonetisaurus) altogether. We have four phoneme embedding
network and four BLSTM network each corresponding to the individual G2P model.

5https://github.com/AdolfVonKleist/Phonetisaurus

https://github.com/AdolfVonKleist/Phonetisaurus

6.2. Training 31

6.2 Training

For experimenting, we have relied on multiple G2P conversion models. We have
considered sequitur and phonetisaurus as the baseline model for carrying out the
research task. They both rely on statistical modeling of spelling and pronunciation
subsequences. Sequitur has been trained until 8 iterations. It is to be noted that
phonetisaurus runs only in Python 2.7. For training the sequence-to-sequence and
BLSTM G2P model, data has been assembled into two different files; one having the
graphemes as the source and in the other phonemes as target file across the split
datasets for training. We use stochastic gradient descent (sgd) optimization method
and set the learning rate at 0.001. The maximum batch size used for validation is 32
and for training is 62. The dropout probability for LSTM and BLSTM is 0.3.

For the ensemble classifier, we train the different G2P models; first in pairs and
then all the models altogether. We trained 6 pairs of different G2P models in to-
tal. After the training, from all epochs, we choose the ensemble classifier based
on the performance (classifier accuracy) on the validation set. Suppose, model1
is sequence-to-sequence and model2 is BLSTM while combining. In this case, we
give a sequence of phonemes to the phoneme embedding network and sequence of
graphemes to the grapheme embedding network. For training the ensemble classi-
fier we use Adam optimizer, set the learning rate at 0.001. We use dropout layer of
0.5 dropout probability.

Moreover, when we combine two different G2P models to create the ensemble
classifier the main objective of the classifier is to select the best G2P model out of the
two models. Therefore, during the training phase if the output of both the models
are same we have not considered it for training. It is irrelevant to make the classi-
fier to choose between the classifiers as both of them have the same output. Thus
such examples have been ignored as it will not affect the ensemble classifier’s per-
formance.

So, when we combine all the G2P model outputs there are certain cases in which
more than one G2P model have the correct phoneme outputs. To handle such cases,
first we estimated the model output as a predicted class and then we checked if the
given predicted class have the lowest PER (phoneme error rate) or not. If given
predicted class have lowest PER then we calculated the loss by giving it as a target
class.

In other cases, if given predicted class don’t have lowest PER then we gave target
as a class having lowest PER to the loss function.

6.3 Evaluation

In G2P conversion task, two performance metrics are commonly used: WER i.e.
word error rate and PER i.e. phoneme error rate (Bisani and Ney, 2008).

The WER is defined simply as the ratio of words with at least one phonetization
error over the total number of words in the test set. The PER is the sum of the
edit distances of all word phonetization to their correct counterparts over the total
number of phonemes in the test set. So, in case of multiple pronunciations, the
variant with the smallest edit distance is used. The PER is calculated as:

PER =
S + D + I

N
(6.1)

Where,

32 Chapter 6. Experimentation and Results

• S = the number of substitutions,

• D = the number of deletions,

• I = the number of insertions,

• N = the number of phonemes in the groundtruth.

For calculating WER, word error occurs only if the predicted pronunciation doesn’t
match with any reference considering the multiple pronunciations. Thus, word error
is obtained by calculating the number of wrong predictions. The WER is calculated
as:

Words Incorrect
Total Words

(6.2)

We computed accuracy to evaluate our classifier. Accuracy is a metric for evalu-
ating classification models. Informally, accuracy can be described as the fraction of
predictions the model got right. It can be expressed formally as:

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

(6.3)

6.4 Result and Analysis

In this section, we present the results obtained by the various approaches that we
have implemented to examine and compare with our proposed approach of model
combination. It is to be mentioned that, even after implementing the transformer
network, our model failed to achieve any results.

6.4.1 Performance of individual G2P models

First, we carried out experiments using the individual models and compared our
approach of adapting varied structures of neural networks with previous works.

TABLE 6.2: Results obtained by individual models.

Model English (WER/PER) French (WER/PER)
Sequitur 37.2% / 9.54% 16.3% / 3.75%
Phonetisaurus 34.6% / 9.16% 15.4% / 4.44%
Seq2seq 30.3% / 8.02% 10.6% / 2.93%
BLSTM 29.3% / 7.61% 9.06% / 2.51%

Our adaptation of BLSTM achieved comparatively the best result among the in-
dividual G2P models on the test set of the CMUdict for English with a WER of 29.3%
and PER of 7.61% and on the test set of CMU pronunciation dictionary for French
with WER of 9.06% and PER of 2.51%. Table 6.2 shows the results obtained by in-
dividual G2P models on the respective test sets (CMUdict for English and CMU
pronunciation dictionary for French).

The number of items for which no pronunciation is predicted by sequitur is 33,
and 4 by phonetisaurus for English test set (refer appendix (A)) ; sequence-to-sequence

6.4. Result and Analysis 33

and BLSTM could successfully predict pronunciations for all the items (11409 in to-
tal).

6.4.2 Performance analysis of G2P models without the classifier

FIGURE 6.1: WER and PER on test data having the same predicted pro-
nunciations by two or more G2P systems.

Figure 6.1 shows graphical representation of the results obtained by considering
the identical outputs of different G2P models. Initially, we examined our method
by taking into account the outputs (predicted pronunciations) that are same as two
or more than two G2P models. First, we computed evaluation by merging the same
outputs of two different G2P models into one. The outputs of sequitur and sequence-
to- sequence has achieved the best results among them on identical predictions with
a WER of 13.07% and PER of 2.98% on the CMUdict for English and WER of 4.44%
and PER of 1.11% on the CMU pronunciation dictionary for French respectively.
Then, we computed the evaluation by taking the same predicted outputs of three dif-
ferent G2P models and merged them as one. We achieved WER of 11.91% and PER
of 2.70% on the English dataset and WER of 5.11% and PER of 1.33% on the French
dataset on merging the same predictions of sequitur, phonetisaurus and sequence-
to-sequence altogether.

We have also computed the number of the different pronunciations generated
by two models on combining. It has also taken into account the pronunciations that
either one of the models failed to generate. Table 6.3 below presents the number of
the different pronunciations generated by two G2P models on combining for French
dataset.

34 Chapter 6. Experimentation and Results

TABLE 6.3: Different pronunciations by 2 models for French data.

Models No. of different predictions
Sequitur-Seq2seq 2688
Sequitur-Phonetisaurus 1458
Seq2seq-Phonetisaurus 2547

6.4.3 Analysis of the grapheme-to-phoneme models

In the case of sequitur and phonetisaurus, certain limitations have been observed
while implementing the models. Sequitur and phonetisaurus generate words that
are different from the ground-truth such as “Bretonne” which is generated as “Bre-
tonnes” with an extra character /s/ in the final position of the word. It is observed
that sequitur and phonetisaurus struggles with irregular pronunciation cases, for
instance, abbreviations, hyphenated words or words with underscores, etc. Table
6.4 and 6.5 below presents the number of underscores and hyphenated words in the
training and test data. Sequitur produces new pronunciations on its own by using
the python command line. In the simplest case, during the network building phase,
the G2P initiated a wordlist with the command:

$ get-pronunciation−−−wordlist words. Wl-model input. demo−− reference input.
demo. lexicon output−−−

Reference words are looked up, OOV (out-of-vocabulary) are checked and op-
tional parameters are provided to generate additional pronunciations for reference
words and n-best for OOV’s. Thus, resulting in the different size of the lexicon for
each model even after using the same dataset. Sequence-to-sequence model doesn’t
encounter such difficulties in generating the pronunciations. It successfully gener-
ated pronunciations for all words.

TABLE 6.4: Underscore and hyphenated words in English dataset.

Dataset Underscore Hyphenated
Training 76 792
Test 4 100

TABLE 6.5: Underscore and hyphenated words in French dataset.

Dataset Underscore Hyphenated
Training 1654 1414
Test 196 194

6.4.4 Result and analysis of the G2P models with the classifier

We combined the outputs of different G2P models and give it to the classifier to
select the best model output combination. First, we examined our approach of model

6.4. Result and Analysis 35

TABLE 6.6: Results obtained by combination of two different G2P
models on the English dataset. Improvement is estimated with re-

spect to the best individual model’s WER and PER.

Model Classifier
(WER/PER)

Classifier
accuracy

Improvement
(WER/PER)

Seq2seq+BLSTM 28.36%/ 7.43% 54.81% 0.99% / 0.18%
Seq2seq+Sequitur 30.13%/ 7.97% 55.23% 0.17% / 0.05%
Seq2seq+Phonetisaurus 29.90%/ 7.91% 58.48% 0.40% / 0.11%
Sequitur+BLSTM 28.64%/ 7.42% 59.88% 0.71% / 0.19%
Sequitur+Phonetisaurus 34.27%/ 8.76% 51.97% −0.21% / 0.40%
BLSTM+Phonetisaurus 28.52%/ 7.45% 61.18% 0.83% / 0.16%

combination by combining two different G2P models and then by combining all the
four G2P models we have considered for carrying out our research experiments.

Table 6.6 and 6.7 shows results of model combination in pairs for the English and
the French dataset. The combination of sequence-to-sequence with BLSTM achieved
the best performance on the English dataset with an improvement of 0.99% in the
WER (28.36%) and an improvement of 0.18% in the PER (7.43%) with our method
of ensemble classifier. The estimated improvement is compared with respect to the
best WER and PER from the combination of G2P models. Sequitur combined with
BLSTM achieved almost similar performance like the combination of sequence-to-
sequence with BLSTM with a slight difference in the WER and PER. Sequitur com-
bined with BLSTM achieved an improvement of 0.71% in the WER (28.64%) and
an improvement of 0.19% in the PER (7.42%) on the English dataset. Sequitur on
combining with phonetisaurus achieves the lowest performance among all the G2P
model combinations. The WER decreased by −0.21% while there is a slight im-
provement in the PER by 0.4%. The combination of all the G2P model outputs
achieved WER of 28.80% and PER of 7.47% on the English dataset. Similarly, on the
French dataset sequitur combined with phonetisaurus gives the best performance
with an improved WER (14.35%) by 1.05% but the PER (3.99%) is decreased by
−0.24%. However, this model combination failed to outperform the best individ-
ual G2P model BLSTM which achieved WER of 9.06% and PER of 2.51%.

TABLE 6.7: Results obtained by combination of two different G2P
models on the French dataset. Improvement is estimated with respect

to the best individual model’s WER and PER.

Model Classifier
(WER/PER)

Classifier
accuracy

Improvement
(WER/PER)

Seq2seq+BLSTM 12.82%/ 3.68% 84.78% −3.76% /−1.17%
Seq2seq+Sequitur 13.29%/ 3.81% 77.28% −2.61%/ −0.88%
Seq2seq+Phonetisaurus 12.91%/ 3.77% 80.36% −2.23%/ −0.84%
Sequitur+BLSTM 12.29%/ 3.32% 64.28% −3.23%/ −0.81%
Sequitur+Phonetisaurus 14.35%/ 3.99% 79.97% 1.05%/ −0.24%
BLSTM+Phonetisaurus 12.90%/ 3.68% 60.96% −3.84%/ −1.17%

36 Chapter 6. Experimentation and Results

Our method of ensemble classifier showed competitive results on the English
dataset. The model combination has achieved better performance in contrast to the
individual models on the CMU dictionary for English. The models sequence-to-
sequence and BLSTM have shown very good performance across all the other G2P
models on the English dataset which is why the combination of both the models can
be termed as the best classifier. On the other hand, it is noticed that the sequitur
and phonetisaurus have the lowest WER and PER among other G2P systems which
suggest that classifier performs better when better model outputs are given to it.

It is to be noted that, we cannot evaluate the model performance based on the
classifier accuracy because each pair of combination of G2P systems might have dif-
ferent number of incorrect and correct phoneme outputs. Furthermore, the WER
and PER for French G2P systems are quite low. This makes difficult for the classifier
to further enhance the performance.

TABLE 6.8: Results obtained by combining all the G2P models on the
English dataset.

Model Seq2Seq BLSTM Sequitur Phonetisaurus All G2P model
combination

WER 30.3% 29.35 37.22% 34.06% 28.80%
PER 8.02% 7.61% 9.54% 9.16% 7.47%
Classifier
Accuracy

- - − − 54.64%

TABLE 6.9: Results obtained by combining all the G2P models on the
French dataset.

Model Seq2Seq BLSTM Sequitur Phonetisaurus All G2P model
combination

WER 10.68% 9.06 16.34% 15.40% 12.60%
PER 2.93% 2.51% 3.75% 4.44% 3.60%
Classifier
Accuracy

− - − − 73.79%

We experimented our approach by combining all the G2P models for English
as well as French for comparing the accuracy across the methods we applied for
choosing the optimal one. Table 6.8 and 6.9 shows the results obtained by combining
all the G2P models for both the dataset. When we combined all the G2P model
outputs, we achieve WER of 28.80% and PER of 7.47% on the English dataset and
WER of 12.60% and PER of 3.60% on the French dataset. Even after combining all the
G2P models, sequence-to-sequence combined with BLSTM still performs the best on
the English dataset. For French dataset the combination of all the models failed to
achieve any improvements with respect to individual G2P model. Thus, for French
dataset BLSTM individual G2P model provide the best performance in terms of WER
and PER.

37

Chapter 7

Conclusion

In this thesis, we have investigated various grapheme-to-phoneme conversion mod-
els and implemented a robust framework of ensemble learning with multiple gen-
erator adversarial network. First of all, we examined the multigram approach for
grapheme-to-phoneme conversion and considered sequitur and phonetisaurus as
the baseline model. Then, we decided to apply deep neural network architectures for
G2P conversion. With recent neural networks advancement, grapheme-to-phoneme
conversion is viewed as a sequential task and modeled with the encoder and de-
coder framework. We carried out several experiments before providing an opti-
mal solution to our problem. We adapted the architecture of sequence-to-sequence
and transformer from OpenNMT library and modified accordingly to implement in
our task. We train sequence-to-sequence model with various neural networks ar-
chitecture, viz., recurrent neural network - long short-term memory (RNN LSTM),
bi-directional LSTM; we applied the attention mechanism as well. Afterward, we
analyzed the outputs (the identical pronunciations) of different G2P models and
merged them as one to conduct our experiment on the test data and evaluated with
our write-up code. We observed that neural network-based models i.e. sequence-to-
sequence and BLSTM have performed quite well on both the datasets.

Our main objective is to provide a robust framework for choosing the best G2P
model. Thus, we proposed a novel approach to implementing an ensemble classi-
fier for choosing the best model output. We decided to combine the different G2P
model outputs. Our approach relies on multiple generative adversarial network and
ensemble learning, which is a completely new approach in the context of grapheme-
to-phoneme conversion. Our core model is a deep neural network-based model.

Our approach of model combination has successfully shown very good results
on the English dataset. Four out of six model combinations have achieved very good
performance in terms of WER and PER outperforming the baseline models (sequitur
and phonetisaurus). It also showed that by combining different G2P models, we
can achieve better results than an individual G2P model. For instance, our three
models i.e. sequence-to-sequence combined with BLSTM, sequitur combined with
BLSTM, and phonetisaurus combined with BLSTM achieved better results then the
best individual G2P model (BLSTM) on the English dataset. However, our model of
ensemble classifier failed to perform well on the French data. The reason for under-
performance by the classifier on the French data was mainly due to a large number
of words having two or more pronunciation variants. Nevertheless, the combina-
tion of sequitur and phonetisaurus could improved the performance of WER by
1.05% on the French dataset. Thus, our ensemble classifier with the combination
of sequence-to-sequence with BLSTM is the best G2P model on the English dataset.
As we mentioned our ensemble classifier failed to achieve a good permformance on
the French dataset, therefore, the individual BLSTM model is the best G2P model for
French.

38 Chapter 7. Conclusion

Among various experimentations, we implemented the transformer network as
well for our research. Due to time constraint, we were not able to discover the prime
reason for the failure of the transformer network in our work. Whether the net-
work needs more training time or is there any drawback in the implementation, we
couldn’t figure it out as of now. For future work, we will be focusing on solving the
problem of the transformer network.

Another work experiment that we would be interested in carrying out in the
future is training the generators (G2P models) and the classifier at the same time
in the same network. We would be interested in implementing a complete deep
learning-based network architecture for our robust framework of ensemble multiple
adversarial networks for the G2P conversion.

However, experimentation on the publicly available CMU dictionary for English
has demonstrated the effectiveness of our approach in increasing the improvement
of G2P models by combining different models comparing to an individual G2P
model. We will leverage our method by extending it to carry out experimentation in
other languages as well.

39

Bibliography

Andersen, Ove et al. (1996). “Comparison of two tree-structured approaches for
grapheme-to-phoneme conversion”. In: International Conference on Spoken Lan-
guage Processing, ICSLP, Proceedings 3. DOI: 10.1109/ICSLP.1996.607954.

Arciniegas, F. and M. J. Embrechts (2000). “Phoneme recognition with staged neural
networks”. In: 5, 259–264 vol.5. ISSN: 1098-7576. DOI: 10.1109/IJCNN.2000.
861467.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: ICLR 2015 as oral
presentation, arxiv:1409.0473. URL: http://arxiv.org/abs/1409.0473.

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2,
pp. 157–166. ISSN: 1045-9227. DOI: 10.1109/72.279181.

Bisani, Maximilian and Hermann Ney (2008). “Joint-sequence models for grapheme-
to-phoneme conversion.” In: Speech Communication 50.5, pp. 434–451. URL: http:
//dblp.uni-trier.de/db/journals/speech/speech50.html#BisaniN08.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078. arXiv: 1406.
1078. URL: http://arxiv.org/abs/1406.1078.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In: Ma-
chine Learning 20.3, pp. 273–297. ISSN: 1573-0565. DOI: 10.1007/BF00994018. URL:
https://doi.org/10.1007/BF00994018.

Deligne, Sabine, François Yvon, and Frédéric Bimbot (1995). “Variable-length se-
quence matching for phonetic transcription using joint multigrams.” In: URL:
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1995.html#
DeligneYB95.

Divay, Michel and Anthony J. Vitale (1997). “Algorithms for Grapheme-phoneme
Translation for English and French: Applications for Database Searches and Speech
Synthesis”. In: Comput. Linguist. 23.4, pp. 495–523. ISSN: 0891-2017. URL: http:
//dl.acm.org/citation.cfm?id=972791.972796.

Elovitz, H. et al. (1976). “Letter-to-sound rules for automatic translation of english
text to phonetics”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
24.6, pp. 446–459. ISSN: 0096-3518. DOI: 10.1109/TASSP.1976.1162873.

Fiscus, J. G. (1997). “A post-processing system to yield reduced word error rates:
Recognizer Output Voting Error Reduction (ROVER)”. In: pp. 347–354. DOI: 10.
1109/ASRU.1997.659110.

Goodfellow, Ian J. et al. (2014). “Generative Adversarial Nets”. In: NIPS’14, pp. 2672–
2680. URL: http://dl.acm.org/citation.cfm?id=2969033.2969125.

Graves, A. et al. (2009). “A Novel Connectionist System for Unconstrained Hand-
writing Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 31.5, pp. 855–868. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2008.137.

Graves, Alex (2012). “Supervised Sequence Labelling with Recurrent Neural Net-
works”. In: Stud Comput Intell 385. DOI: 10.1007/978-3-642-24797-2.

https://doi.org/10.1109/ICSLP.1996.607954
https://doi.org/10.1109/IJCNN.2000.861467
https://doi.org/10.1109/IJCNN.2000.861467
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/72.279181
http://dblp.uni-trier.de/db/journals/speech/speech50.html#BisaniN08
http://dblp.uni-trier.de/db/journals/speech/speech50.html#BisaniN08
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1995.html#DeligneYB95
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1995.html#DeligneYB95
http://dl.acm.org/citation.cfm?id=972791.972796
http://dl.acm.org/citation.cfm?id=972791.972796
https://doi.org/10.1109/TASSP.1976.1162873
https://doi.org/10.1109/ASRU.1997.659110
https://doi.org/10.1109/ASRU.1997.659110
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1007/978-3-642-24797-2

40 BIBLIOGRAPHY

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey E. Hinton (2013). “Speech
Recognition with Deep Recurrent Neural Networks”. In: CoRR abs/1303.5778.
arXiv: 1303.5778. URL: http://arxiv.org/abs/1303.5778.

Hinton, Geoffrey, Oriol Vinyals, and Jeffrey Dean (2015). “Distilling the Knowledge
in a Neural Network”. In: URL: http://arxiv.org/abs/1503.02531.

Hoang, Quan et al. (2018). “MGAN: Training Generative Adversarial Nets with Mul-
tiple Generators”. In: URL: https://openreview.net/forum?id=rkmu5b0a-.

Hochreiter, Sepp (1991). “Untersuchungen zu dynamischen neuronalen Netzen”. In:
Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In:

Neural computation 9, pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.
Illina, Irina, Dominique Fohr, and Denis Jouvet (2011). “Grapheme-to-Phoneme Con-

version using Conditional Random Fields”. In: URL: https://hal.inria.fr/
inria-00614981.

Jiampojamarn, Sittichai, Colin Cherry, and Grzegorz Kondrak (2008). “Joint Process-
ing and Discriminative Training for Letter-to-Phoneme Conversion”. In: pp. 905–
913. URL: https://www.aclweb.org/anthology/P08-1103.

Jouvet, Denis, Dominique Fohr, and Irina Illina (2012). “Evaluating grapheme-to-
phoneme converters in automatic speech recognition context”. In: pp. 4821 –
4824. DOI: 10.1109/ICASSP.2012.6288998. URL: https://hal.inria.fr/hal-
00753364.

Killer, Mirjam, Sebastian Stüker, and Tanja Schultz (2003). “Grapheme based Speech
Recognition”. In: URL: https : / / www . csl . uni - bremen . de / cms / images /
documents/publications/Euro03-KillerSchultz.pdf.

Klein, Guillaume et al. (2017). “OpenNMT: Open-Source Toolkit for Neural Machine
Translation”. In: CoRR abs/1701.02810. arXiv: 1701.02810. URL: http://arxiv.
org/abs/1701.02810.

Kominek, John and Alan W Black (2006). In: pp. 232–239. URL: https://www.aclweb.
org/anthology/N06-1030.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira (2001). “Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data”. In: ICML ’01, pp. 282–289. URL: http://dl.acm.org/citation.
cfm?id=645530.655813.

Lang, Kevin J., Alex H. Waibel, and Geoffrey E. Hinton (1990). “A Time-delay Neu-
ral Network Architecture for Isolated Word Recognition”. In: Neural Netw. 3.1,
pp. 23–43. ISSN: 0893-6080. DOI: 10.1016/0893-6080(90)90044-L. URL: http:
//dx.doi.org/10.1016/0893-6080(90)90044-L.

Lin, Y., E. Sontag, and Y. Wang (1996). “A Smooth Converse Lyapunov Theorem
for Robust Stability”. In: SIAM Journal on Control and Optimization 34.1, pp. 124–
160. DOI: 10.1137/S0363012993259981. eprint: https://doi.org/10.1137/
S036301299325998. URL: https://doi.org/10.1137/S0363012993259981.

Ling, Wang et al. (2015). “Character-based Neural Machine Translation”. In: CoRR
abs/1511.04586. arXiv: 1511.04586. URL: http://arxiv.org/abs/1511.04586.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective
Approaches to Attention-based Neural Machine Translation”. In: CoRR abs/1508.04025.
arXiv: 1508.04025. URL: http://arxiv.org/abs/1508.04025.

Matusov, Evgeny, Nicola Ueffing, and Hermann Ney (2006). “Computing Consen-
sus Translation for Multiple Machine Translation Systems Using Enhanced Hy-
pothesis Alignment”. In: URL: https://www.aclweb.org/anthology/E06-1005.

McCulloch, N., Mark Bedworth, and John S. Bridle (1987). “NETspeak — A re-implementation
of NETtalk”. In:

http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=rkmu5b0a-
https://doi.org/10.1162/neco.1997.9.8.1735
https://hal.inria.fr/inria-00614981
https://hal.inria.fr/inria-00614981
https://www.aclweb.org/anthology/P08-1103
https://doi.org/10.1109/ICASSP.2012.6288998
https://hal.inria.fr/hal-00753364
https://hal.inria.fr/hal-00753364
https://www.csl.uni-bremen.de/cms/images/documents/publications/Euro03-KillerSchultz.pdf
https://www.csl.uni-bremen.de/cms/images/documents/publications/Euro03-KillerSchultz.pdf
http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1701.02810
https://www.aclweb.org/anthology/N06-1030
https://www.aclweb.org/anthology/N06-1030
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.1016/0893-6080(90)90044-L
http://dx.doi.org/10.1016/0893-6080(90)90044-L
http://dx.doi.org/10.1016/0893-6080(90)90044-L
https://doi.org/10.1137/S0363012993259981
https://doi.org/10.1137/S036301299325998
https://doi.org/10.1137/S036301299325998
https://doi.org/10.1137/S0363012993259981
http://arxiv.org/abs/1511.04586
http://arxiv.org/abs/1511.04586
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://www.aclweb.org/anthology/E06-1005

BIBLIOGRAPHY 41

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–
133. ISSN: 1522-9602. DOI: 10.1007/BF02478259. URL: https://doi.org/10.
1007/BF02478259.

Mousa, Amr and Björn Schuller (2016). “Deep Bidirectional Long Short-Term Mem-
ory Recurrent Neural Networks for Grapheme-to-Phoneme Conversion Utiliz-
ing Complex Many-to-Many Alignments”. In: pp. 2836–2840. DOI: 10.21437/
Interspeech.2016-1229.

Novak, Josef R., Nobuaki Minematsu, and Keikichi Hirose (2012). “WFST-Based
Grapheme-to-Phoneme Conversion: Open Source tools for Alignment, Model-
Building and Decoding”. In: pp. 45–49. URL: https://www.aclweb.org/anthology/
W12-6208.

Och, Franz Josef and Hermann Ney (2002). “Discriminative Training and Maximum
Entropy Models for Statistical Machine Translation”. In: pp. 295–302. DOI: 10.
3115/1073083.1073133. URL: https://www.aclweb.org/anthology/P02-1038.

Pagel, Vincent, Kevin A. Lenzo, and Alan W. Black (1998). “Letter to Sound Rules
for Accented Lexicon Compression”. In: CoRR cmp-lg/9808010. URL: http://
arxiv.org/abs/cmp-lg/9808010.

Polyàkova, Tatyana V. (2014). “Grapheme-to-Phoneme Conversion in the Era of Glob-
alization”. In: TALP Research Center, Speech Processing Group Department of Sig-
nal Theory and CommunicationsUniversitat Politècnica de Catalunya 62.1, pp. 1–176.
URL: https://upcommons.upc.edu/bitstream/handle/2117/95670/TTVP1de1.
pdf.

Rao, Kanishka et al. (2015). “Grapheme-to-phoneme conversion using Long Short-
Term Memory recurrent neural networks”. In: pp. 4225–4229. DOI: 10 . 1109 /
ICASSP.2015.7178767.

Rasipuram, Ramya and Mathew Magimai-Doss (2012). “Acoustic data-driven grapheme-
to-phoneme conversion using KL-HMM”. In: Acoustics, Speech, and Signal Pro-
cessing, 1988. ICASSP-88., 1988 International Conference on, pp. 4841–4844. DOI:
10.1109/ICASSP.2012.6289003.

Rokach, Lior (2010). “Ensemble-based classifiers”. In: Artificial Intelligence Review
33.1, pp. 1–39. ISSN: 1573-7462. DOI: 10.1007/s10462-009-9124-7. URL: https:
//doi.org/10.1007/s10462-009-9124-7.

Rosenblatt, F. (1958). “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain”. In: Psychological Review, pp. 65–386.

Rumelhart David E., Hinton Geoffrey E. Williams Ronald J. (1986). “Learning rep-
resentations by back-propagating errors”. In: Nature. ISSN: 1476-4687. DOI: 10.
1038/323533a0. URL: https://doi.org/10.1038/323533a0.

Schmidhuber, J. (1992). “Learning Complex, Extended Sequences Using the Principle
of History Compression”. In: Neural Computation 4.2, pp. 234–242. ISSN: 0899-
7667. DOI: 10.1162/neco.1992.4.2.234.

Schuster, M. and K.K. Paliwal (1997). “Bidirectional Recurrent Neural Networks”. In:
Trans. Sig. Proc. 45.11, pp. 2673–2681. ISSN: 1053-587X. DOI: 10.1109/78.650093.
URL: http://dx.doi.org/10.1109/78.650093.

Sejnowski, Terrence J. and Charles R. Rosenberg (1987). “Parallel Networks That
Learn to Pronounce English Text”. In: Complex Systems 1, pp. 145–168.

Shubham Toshniwal, Karen Livescu (2016). “Read, Attend and Pronounce:An Attention-
Based Approach for Grapheme-To-Phoneme Conversion”. In: p. 2. DOI: MLSLPWorkshop,
InterSpeech2016.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.21437/Interspeech.2016-1229
https://doi.org/10.21437/Interspeech.2016-1229
https://www.aclweb.org/anthology/W12-6208
https://www.aclweb.org/anthology/W12-6208
https://doi.org/10.3115/1073083.1073133
https://doi.org/10.3115/1073083.1073133
https://www.aclweb.org/anthology/P02-1038
http://arxiv.org/abs/cmp-lg/9808010
http://arxiv.org/abs/cmp-lg/9808010
https://upcommons.upc.edu/bitstream/handle/2117/95670/TTVP1de1.pdf
https://upcommons.upc.edu/bitstream/handle/2117/95670/TTVP1de1.pdf
https://doi.org/10.1109/ICASSP.2015.7178767
https://doi.org/10.1109/ICASSP.2015.7178767
https://doi.org/10.1109/ICASSP.2012.6289003
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1992.4.2.234
https://doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
https://doi.org/MLSLP Workshop, InterSpeech 2016
https://doi.org/MLSLP Workshop, InterSpeech 2016

42 BIBLIOGRAPHY

Sun, Hao et al. (2019). “Token-Level Ensemble Distillation for Grapheme-to-Phoneme
Conversion”. In: CoRR abs/1904.03446. arXiv: 1904.03446. URL: http://arxiv.
org/abs/1904.03446.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: CoRR abs/1409.3215. arXiv: 1409 . 3215. URL:
http://arxiv.org/abs/1409.3215.

Taylor, Paul (2005). “Hidden Markov models for grapheme to phoneme conversion”.
In: pp. 1973–1976.

Vaswani, Ashish et al. (2017). “Attention Is All You Need”. In: CoRR abs/1706.03762.
arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

Yao, Kaisheng and Geoffrey Zweig (2015). “Sequence-to-Sequence Neural Net Mod-
els for Grapheme-to-Phoneme Conversion”. In: CoRR abs/1506.00196. arXiv: 1506.
00196. URL: http://arxiv.org/abs/1506.00196.

Yolchuyeva, Sevinj, Géza Németh, and Bálint Gyires-Tóth (2019). “Grapheme-to-
Phoneme Conversion with Convolutional Neural Networks”. In: Applied Sciences
9.6. ISSN: 2076-3417. DOI: 10.3390/app9061143. URL: https://www.mdpi.com/
2076-3417/9/6/1143.

Zhang, Aston et al. (2019). “Dive into Deep Learning”. In: URL: http://www.d2l.ai.

http://arxiv.org/abs/1904.03446
http://arxiv.org/abs/1904.03446
http://arxiv.org/abs/1904.03446
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1506.00196
http://arxiv.org/abs/1506.00196
http://arxiv.org/abs/1506.00196
https://doi.org/10.3390/app9061143
https://www.mdpi.com/2076-3417/9/6/1143
https://www.mdpi.com/2076-3417/9/6/1143
http://www.d2l.ai

43

Appendix A

List of items that failed to be to
generated by G2P systems for
English

TABLE A.1: List of items that failed to be to generated by Sequitur
for English.

Word Pronunciation
DJ D EY2 JH AA1
DOUGLAS’ D AH1 G L AH0 S
NAPPED N AE1 P T
GOTTSCHALL G AA1 CH AH0 L
%PERCENT P ER0 S EH1 N T
AIREDALES EH1 R D EY2 L Z
MCLEISH M AH0 K L IY1 SH
BRONCHITIS B R AA0 NG K AY1 T AH0 S
LIFERS L AY1 F ER0 Z
DEBELL D IY1 B EH0 L
GARANT G AA1 R AH0 N T
POLAR P OW1 L ER0
KAISERTECH K AY1 Z ER0 T EH2 K
ARDOR AA1 R D ER0
CHIDE CH AY1 D
PRECLUDES P R IY0 K L UW1 D Z
EAVES IY1 V Z
KOHNE K OW1 N
SUNSTATES S AH1 N S T EY2 T S
FALSIFYING F AO1 L S AH0 F AY2 IH0 NG
ACIDOSIS AE2 S AH0 D OW1 S AH0 S
THAILAND T AY1 L AE2 N D
MINDEN M AY1 N D AH0 N
?QUESTION-MARK K W EH1 S CH AH0 N M AA1 R K
DARKENED D AA1 R K AH0 N D
DOBER D OW1 B ER0
AMELIO AH0 M IY1 L IY0 OW0
BUYING B AY1 IH0 NG
BEHAVE B IH0 HH EY1 V
BRAZZAVILLE B R AE1 Z AH0 V IH0 L

Continued on next page

44Appendix A. List of items that failed to be to generated by G2P systems for English

Table A.1 – continued from previous page
Word Pronunciation

STREED S T R IY1 D
RELEND R IY0 L EH1 N D
LANDIS L AE1 N D IH0 S
HAGUE HH EY1 G

TABLE A.2: List of items that failed to be to generated by Phoneti-
saurus for English.

Word Pronunciation
ST_MARY S EY1 N T M EH1 R IY0
ST_LOUIS S EY1 N T L UW1 AH0 S
ST_LOUIS(1) S EY1 N T L UW1 IY0
H EY1 CH ST_MARTIN S EY1 N T M AA1 R T IH0 N

45

Appendix B

List of items that failed to be
generated by G2P systems for
French

TABLE B.1: List of items that failed to be to generated by Sequitur
for French.

Word Pronunciation
hula uu ll aa
hamadé aa mm aa dd ei
derghal dd ai rr gg aa ll
àproximité edu aa pp rr oo kk ss ii mm ii tt ei dd uu
gloucestershire gg ll ou ss ai ss tt ai rr ch ii rr
mouche mm ou ch ee
boycottée bb oo yy kk oo tt ei
zélés zz ai ll ei zz
contreforts kk on tt rr ee ff oo rr zz
insoumis in ss ou mm ii zz
albeniz aa ll bb ee nn ii zz
àlafaçon de aa ll aa ff aa ss on dd ee
brillait bb rr ii yy ai tt
àpropos de aa pp rr oo pp au dd ee
àmi-chemin aa mm ii ch ee mm in
àraison d’ aa rr ai zz on dd
pilotage pp ii ll oo tt aa jj ee
lahaye ll aa ai yy
arcachon aa rr kk aa ch on
centièmes ss an tt yy ai mm zz
détecté dd ai tt ai kk tt ei
min mm in
àlafaçondes aa ll aa ff aa ss on dd ei zz
hum oe mm
hypothécaire ii pp oo tt ai kk ai rr ee
tenet tt ee nn ai
àl’égarddes aa ll ei gg aa rr dd ei
plumes pp ll uu mm zz
àdemi-mot aa dd ee mm ii mm au
retombe rr ee tt on bb ee
epargne ei pp aa rr gn ee

Continued on next page

46 Appendix B. List of items that failed to be generated by G2P systems for French

Table B.1 – continued from previous page
Word Pronunciation

ysl ii ss ai ll
synchroniser ss in kk rr oo nn ii zz ei rr
àtoutprix aa tt ou pp rr ii
portables pp oo rr tt aa bb ll zz
venise vv nn ii zz ee
blessant bb ll ai ss an tt
àreculons aa rr ee kk uu ll on
àsupposerqu’ aa ss uu pp au zz ei kk
financé ff ii nn an ss ei
affamés aa ff aa mm ei zz
àgauchede aa gg au ch ee dd ee
àl’encontrede aa ll an kk on tt rr ee dd ee
effacera ai ff aa ss ee rr aa
delfont dd ai ll ff on
àlafind’ aa ll aa ff in dd
domiciliation dd oo mm ii ss ii ll yy aa ss yy on
baissera bb ai ss ee rr aa
yakuzas yy aa kk uu zz aa
ultimatums uu ll tt ii mm aa tt oo mm zz
finals ff ii nn aa ll zz
kipkirui kk ii pp kk ii rr uu ii
enfoncée an ff on ss ei
grâceà gg rr aa ss aa
moscou mm oo ss kk ou
disséminées dd ii ss ai mm ii nn ei zz
désespérées dd ai zz ai ss pp ai rr ei zz
mauresmo mm oo rr ai ss mm au
sédition ss ai dd ii ss yy on
altusfinance aa ll tt uu ss ff ii nn aa nn ss
pilotis pp ii ll oo tt ii zz
mouille mm ou yy ee
stoufflet ss tt ou ff ll ai
castela kk aa ss tt ei ll aa
convenait kk on vv ee nn ai tt
recomposition rr ee kk on pp oo zz ii ss yy on
bretonne bb rr tt oo nn ee
monge mm on jj
salvateur ss aa ll vv aa tt oe rr
endeçà an dd ee ss aa
guérit gg ai rr ii tt
àcompterde aa kk on tt ei dd ee
lugubre ll uu gg uu bb rr ee
grands-parents gg rr an pp aa rr an zz
domont dd oo mm on
meurtrières mm ee rr tt rr ii yy ai rr zz
euégardà uu ei gg aa rr tt aa
nettoyée nn ai tt ww aa yy ei

Appendix B. List of items that failed to be generated by G2P systems for French 47

TABLE B.2: List of items that failed to be to generated by Phoneti-
saurus for French.

Word Pronunciation
jusqu’_au jj uu ss kk au
vis-à-vis_des vv ii zz aa vv ii ss dd ei zz
aussitôt_qu’ au ss ii tt au kk
par_la_suite pp aa rr ll aa ss uy ii tt
à_proximité_du aa pp rr oo kk ss ii mm ii tt ei dd uu
en_quel que_sorte an kk ai ll kk ee ss oo rr tt
bien_entendu bb yy in nn an tt an dd uu
quelle_que_soit kk ai ll ee kk ee ss ww aa
d’_autant_plus_que dd au tt an pp ll uu ss kk ee
d’_autant_plus_qu’ dd au tt an pp ll uu ss kk
cap_canaveral kk aa pp kk aa nn aa vv ei rr aa ll
de_tous_côtés dd ee tt ou kk au tt ei
en_goguette an gg oo gg ai tt
au_beau_milieu_du au bb au mm ii ll yy eu dd uu
c’_est_ainsi_qu’ ss ai ss tt in ss ii kk
de_loin dd ee ll ww in
au_sein_d’ au ss in dd
à_demi aa dd ee mm ii
buenos_aires bb uu ei nn oo ss aa ii rr ai ss
au_demeurant oo dd ee mm ee rr an
près_des pp rr ai dd ei zz
un_peu_plus_que un pp eu pp ll uu ss kk ee
à_la_façon_de aa ll aa ff aa ss on dd ee
à_propos_de aa pp rr oo pp au dd ee
à_mi-chemin aa mm ii ch ee mm in
grosso_modo gg rr oo ss oo mm oo dd au
à_raison_d’ aa rr ai zz on dd
la_haye ll aa ai yy
pour_qu’ pp ou rr kk
tout_à_fait tt ou tt aa ff ai
jusqu’à_présent jj uu ss kk aa pp rr ei zz an
mises_en_oe uvre mm ii zz ee zz an nn oe vv rr
même_si mm ai mm ee ss ii
peu_à_peu pp eu aa pp eu
les_miens ll ai mm yy in zz
pro_domo pp rr oo dd oo mm au
dans_le_but_de dd an ll ee bb uu tt dd ee
dans_la_plupart_des_cas dd an ll aa pp ll uu pp aa rr dd ei kk aa
en_dehors_d’ an dd ee oo rr dd
le_caire ll ee kk ai rr
autre_part au tt rr ee pp aa rr
à_la_façon_des aa ll aa ff aa ss on dd ei zz
dès_lors_que dd ai ll oo rr kk ee
à_l’égard_des aa ll ei gg aa rr dd ei
au_travers_de au tt rr aa vv ai rr dd ee
en_cours_de an kk ou rr dd ee

Continued on next page

48 Appendix B. List of items that failed to be generated by G2P systems for French

Table B.2 – continued from previous page
Word Pronunciation

en_conséquence an kk on ss ei kk an ss
ad_hoc aa dd oo kk
non_plus nn on pp ll uu ss
liban_sud ll ii bb aa nn ss uu dd
alors_que aa ll oo rr kk ee
à_demi-mot aa dd ee mm ii mm au
en_vertu_d’ an vv ai rr tt uu dd
plus_tôt pp ll uu ss tt au
à_tout_prix aa tt ou pp rr ii
qu’_on_le_veuille_ou_non kk on ll ee vv oe yy ou nn on
en_outre_de an nn ou tt rr ee dd ee
made_in mm aa dd in
àculons aa rr ee kk uu ll on
hors_de oo rr dd ee
à_supposer_qu’ aa ss uu pp au zz ei kk
parce_que pp aa rr ss ee kk ee
sans_qu’ ss an kk
beaucoup_plus_que bb au kk ou pp ll uu ss kk ee
quel_que_soit kk ai ll kk ee ss ww aa
à_gauche_de aa gg au ch ee dd ee
à_l’encontre_de aa ll an kk on tt rr ee dd ee
la_vôtre ll aa vv au tt rr ee
à_la_fin_d’ aa ll aa ff in dd
pour_ce_qu’ pp ou rr ss ee kk
d’_une_manière_générale dd uu nn ee mm aa nn yy ai rr ee jj ei nn ei rr aa ll
de_la_part_ de dd ee ll aa pp aa rr dd ee
au_de au ss oo rr tt ii rr dd ee
in_utero in uu tt ee rr au
en_rapport_avec an rr aa pp oo rr aa vv ai kk
la_sienne ll aa ss yy ai nn ee
loin_qu’ ll ww in kk
indépendamment_de in dd ei pp an dd aa mm an dd ee
grâce_à gg rr aa ss aa
aux_dépens_du au dd ei pp ai nn dd uu
la_plupart_du_temps ll aa pp ll uu pp aa rr dd uu tt an
altus_finance aa ll tt uu ss ff ii nn aa nn ss
d’_autant_qu’ dd au tt an kk
mise_en_oeuvre mm ii zz an nn oe vv rr
en_cours an kk ou rr
porto_rico pp oo rr tt au rr ii kk au
agence_reuters aa jj an ss ee rr eu tt ei
herald_tribune ei rr aa ll dd tt rr ii bb yy ou nn
au_sujet_de au ss uu jj ai dd ee
phnom_penh pp nn oo mm pp ai nn
du_fait_qu’ dd uu ff ai kk
les_uns ll ai zz un

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Thesis Objectives
	Thesis Overview

	An Overview of Grapheme-to- Phoneme Approaches
	Rule-based Approach
	Data-driven Approach
	Techniques based on Local classification
	Techniques based on Probabilistic based sequence modelling
	Hidden Markov Model (HMM) based approach
	Joint Multigram approach
	Conditional random fields based approach
	Acoustic data-driven approach

	Neural Networks based Approach

	Deep Learning for Robust and Reliable Grapheme-to-Phoneme Converter
	Deep Learning
	Feedforward neural network
	Sigmoid function
	Cross-entropy loss

	Recurrent neural network
	Long short-term memory (LSTM)
	Bi-directional long short-term memory (BLSTM)

	Encoder-decoder framework for Grapheme-to- Phoneme Conversion
	Sequence-to-sequence Architecture
	Adaptation of sequence-to-sequence architecture for G2P

	Attention Mechanism
	Global attention

	Transformer Network
	Multi-head attention

	Ensemble Learning with Multiple Generator Adversarial Network
	Ensemble Learning
	Multiple Generator Adversarial Network
	Model Description
	Architecture of the Classifier
	Embedding
	RNN LSTM
	Max pooling layer
	Feed forward layer

	Experimentation and Results
	Experimental Setup
	Datasets
	Model Configuration
	Sequence-to-sequence (seq2seq)
	Transformer Model
	Classifier

	Training
	Evaluation
	Result and Analysis
	Performance of individual G2P models
	Performance analysis of G2P models without the classifier
	Analysis of the grapheme-to-phoneme models
	 Result and analysis of the G2P models with the classifier

	Conclusion
	Bibliography
	List of items that failed to be to generated by G2P systems for English
	List of items that failed to be generated by G2P systems for French

