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Abstract

When we talk about objects that exist in the real world, how differently are they repre-
sented in our speech compared to their real properties as we perceive them? Which entities
have similar representations in our speech but are completely different when it comes to
life? In this project we want to investigate how much the world depicted in the distribu-
tional space differs from the real world. It was previously shown that the representations for
colors of some entities in our speech are modified according to Gricean maxims (Rawee,
2018). Now we want to investigate these differences not only for the color subspace but
on a large scale. In addition, current research in the field suggests that one semantic space
can be mapped to another semantic space (Vecchi et al., 2011; Herbelot and Vecchi, 2015).
However, it may be the case that two spaces differ too much, so a high quality mapping
may not exist. Thus, in our research we also want to investigate how well the linguistic
distributional space is mapped to the world space.

In order to perform such a comparison, we build a model representing the real world
from the Visual Genome dataset (Krishna et al., 2017), a large database of images marked
with objects, attributes, and relations. The language use space is built from the English
Wikipedia corpus, and the British National Corpus (BNC). Exploration methods include
nearest neighbor comparison and mapping frequency lists between spaces. The compar-
ison of spaces shows that there are significant differences in concept representations be-
tween spaces, resulting in semantic shifts for the majority concepts in the language.
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1 Introduction

In recent years, distributional semantics models (DSMs) (Erk, 2012; Clark, 2012; Tur-
ney and Pantel, 2010) have received close attention from the linguistic community. One
reason is that they are known to produce excellent representations of lexical mean-
ing, which account for similarity and polysemy and correlate well with a range of
behavioural data (Lenci, 2008; Mandera et al., 2017). Though distributional models
have proved to be useful for many NLP tasks, recently there have begun a discussion
about the quality and the nature of semantic representations they provide (Westera and
Boleda, 2019). One of the problems the discussion raises is the correspondence between
the information encoded in the distributional model and the state of things in the real
world. Does language use reflect accurately the experience of the speaker with regard to
the world they live in? Do behavioral data used for evaluating semantic models reflect
this experience? How do these three aspects – experience of the world, language use,
and elicited behavioural data – correlate with each other? All these questions remain
unanswered in current research on distributional semantic models. Meanwhile, the in-
formation encoded in the models is taken as is, without investigating its correspondence
to the real world experience.

In their core, distributional models are built over corpus data which may or may not
reflect ‘what is in the world’ (Herbelot, 2013) – and consequently does not reflect hu-
man experience gained from the real world data (Andrews et al., 2009). Nevertheless,
previous studies have shown that similarities of concepts extracted from distributional
models coincide with behavioural data, such as MEN and SimLex-999 datasets (Bruni
et al., 2012; Hill et al., 2015). In these datasets, humans were asked to grade how
similar are concepts in a pair. When we induce cosine similarities of concepts from a
distributional model, we find out that these similarities correlate quite well with at least
the MEN dataset (with Spearman ρ equal or higher than 0.7 for different model archi-
tectures). This shows us that distributional semantic models do capture the semantic
notion of similarity in the way close to conceptual knowledge.

However, if people consider that cat and dog are very similar according to their
perceptual knowledge, and they turn to be very close in a distributional model as well,
does it mean that they are indeed very similar in the human perception of the world,
i.e. in the very stimuli a speaker is exposed to? When people use natural language,
concepts from the real world undergo a perceptual shift as people tend to talk about
some properties of concepts and omit other ones. In the case of cat and dog it may
be more important for the speaker that they are both domestic animals and are met
in similar situations, and the fact that they belong to two different species is omitted.
Thus, concept representation that we find in a corpus may be completely different from
stimuli a person perceives. This perceptual shift is averaged across language uses of
different people as the corpus data combines texts created by various authors.

For example, in the previous research it was shown that colors of objects extracted
from corpora are different from the ones we find in the real world, and also do not corre-
spond to human judgments (Rawee, 2018). Thus, the most salient colour for elephants
in the language data was found to be pink, whereas in the reality we cannot find pink
elephants.

Our present research is therefore aimed at investigating two questions: first, if we
try to build a distributional semantic model that approximates concept features as they
are in the real world, will it also correspond with behavioral data like corpus-based
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Figure 1: A scheme of the research design.

semantic models? Second, if we do find that similarities between concepts in our world-
based space correlate with similarities in the behavioral datasets, does it mean that the
world-based space is similar to the corpus-based space? Do the concepts in both kinds
of spaces possess similar representations? Does this similarity pertain to spaces as a
whole or to particular representations within a space?

These questions are important because previous literature has assumed the exis-
tence of a learnable function mapping between the space of language use and the space
of real world features. However, the complexity of such a function has been little dis-
cussed (one of few studies discussing it is (Rubinstein et al., 2015)). Overall, the present
research does assume that different semantic spaces can be mapped to each other – in
other words, you can apply some transformations to one space and arrive to another
space (Vecchi et al., 2011; Lazaridou et al., 2014; Herbelot and Vecchi, 2015). Thus,
the hypothesis is that if two spaces possess similar representations of the same concepts,
they are similar as a whole and can be mapped. On the other hand, if some concepts in
two spaces turn out to be similar, it does not mean that it applies to the whole space. In
this case the hypothesis about similarity of spaces does not hold. If we find out that this
applies to the created world-based and corpus-based spaces, we also aim at investigat-
ing what kind of semantic shifts concept representations undergo in the corpus-based
models compared to the real world. Overall, our hypotheses are described on Figure 1.

We consider this problem important from many points of view:

• finding out which categories of concepts undergo meaning shifts and which cate-
gories stay the same may help to understand how semantic information is stored
in the human conceptual space;

• finding out what properties of concepts change in the language use may help to
understand what people consider important for communication;

• finding out which components of meaning are more discriminative for the “model
of the real world” may help us look critically at the output of existing semantic
systems.

Several possible reasons why our language space differs from the real world space
can be:

• we don’t talk about the world as it is because we describe all things in it through
the prism of our perception. This, human tend to annotate in the VG data and talk
in the language about things that are salient and important for them. For example,
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in the VG data eyes of people or animals are frequently annotated, whereas ears
are hard to find in the annotation.

• we don’t talk about the world as it is because we’re Gricean and thus do not want
to talk about obvious and unimportant things (Grice et al., 1975);

• we don’t talk about the world as it is because of human creativity, as we create
other possible worlds with our language.

Thus, the objective of our work lies in the comparison of the representations of con-
cepts in the real world and in the language model. To perform such a comparison, we
need a model that reflects state of things in the real world. As it may seem impossible to
model object properties in the real world directly (describe colors, and texture, and size,
and actions of every concept), we can in fact use truth-theoretic models of semantics as
a proxy to the real world. In truth-theoretic models meaning is defined as a correspon-
dence relation between predicates and the world. They are also built from entities and
sets rather than from word co-occurrences, that is, from lexical types like corpus-based
DSMs. Therefore, formal models account for denotation and set-theoretic aspects of
language, but they are often said to lack the ability to account for lexical similarity and
gradedness. This has been the basis for wanting to combine formal and distributional
semantics in the past (Boleda and Herbelot, 2016): the role of DSMs, it is claimed, is to
bring the lexicon to denotational approaches to meaning. In the present paper we create
a truth-theoretic model that could also account for distributional properties of entities
and use this model as the proxy to the real world. The process of building such a space
and evaluating it is described in Section 4.

By comparing the distribution of concepts in our truth-theoretic data with the dis-
tribution of corresponding word occurrences in the language data we are hoping to find
out the underlying semantic differences between the two spaces. The comparison of a
world-based space to the corpus-based spaces is described in Section 5.

The research goals we are trying to achieve are therefore as follows:

• create a model of the real world based on the combination of the truth-theoretic
and distributional data;

• explore the properties of this model and the differences between this model and
corpus-based models;

• investigate the similarity of language space and the world space and show that
representations of concepts in both spaces differ significantly;

• find out what properties of concepts are represented similarly in the language
space and the world space;

• create a map of different categories of concepts and show on the map which
categories shift more than others;

• describe in details the nature and direction of semantic shifts found in the corpus
space;

• figure out what transformations representations of concepts undergo when mov-
ing from real world space to language-based space.
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The overall conclusions of the research can be described in the following way: we
can find certain differences between concept representations in the semantic space built
from the real world and in the semantic space based on corpora (i.e. natural language).
In other words, the meaning of concepts we use (reflected in their distribution in the
corpora) differs from the composition of their properties in the real world. This may be
true not only for the color subspace (Rawee, 2018), but for other dimensions as well.
Some particular categories of concepts may differ more significantly in both spaces
than other categories. Thus, some concept representations are more stable in the corpus
space as compared to the real world-space whereas other undergo a significant semantic
shift.

The structure of the thesis is as follows: first we describe the process of building a
truth-theoretic space which approximates the real world. After building such a space,
we study its properties and describe the contributions of different features into the over-
all quality of the model. Relating to Figure 1, these steps reflect the left arrow on
the diagram. After that we have a deeper look into the particular differences between
corpus-based and world-based models. This direction of research corresponds to the
arrow at the bottom of Figure 1. First we investigate differences in the vocabulary of
the models – looking for things that are absent in the real-world model and present in
the language. Then we have a look at the differences in the salience of objects. The
next step is to compare neighbor lists for concepts in both corpora, which may help in
describing the nature of semantic shifts they undergo.

2 Related Work

For the purpose of this work, I will give an overview of current research and methods
in three areas – distributional semantics, formal semantics and space mapping. Dis-
tributional semantics is the main tool I am using for my research, and when trying to
establish the correspondence between the behavioural data and the world, I also apply
some methods of formal semantics. The review of the research on space mapping helps
to understand how we can find a link between world and language, and in what sense
direct mapping between these two spaces can be problematic.

2.1 Distributional semantics

In natural language processing, distributional models, based on the foundational idea of
‘meaning as context’, are now one of the primary tools for semantic-related tasks. They
stem from the so called distributional hypothesis, which states that co-occurrence
statistics (word co-occurrence distributions) extracted from large enough natural lan-
guage corpus can in some way represent the ‘meaning’ of words as perceived by humans
Firth (1957). More formally, with a given training corpus, each word is represented as
a vector of frequencies for this word occurring together with other linguistic entities (its
contexts). These vectors are located in a semantic space with all possible contexts or
semantic features as dimensions. Vector models of distributional semantics or vector
space models (VSMs) are well established in the field of computational linguistics and
have been studied for decades; see the review in Turney et al. (2010), among others.

Recently, a particular type of these models has become very popular, namely, pre-
dictive models introduced in Bengio et al. (2003) and Mikolov et al. (2013). They
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are implemented in the wide-spread word2vec software tool. Predictive models directly
learn dense vectors (embeddings) that maximize the similarity between contextual word
pairs found in the data while minimizing the similarity for unseen contexts. However,
in my study I concentrate on the more traditional count-based models and use predictive
models only occasionally.

Distributional models compute meaning by analysing word co-occurrences. The
trained model can represent semantics of a given word as a sequence of its ‘nearest
neighbours’: words closest to the key word by the cosine similarity of their vectors
(embeddings).

Though distributional models are widespread and were previously studied in many
details, the distributional models created for our project from the Visual Genome dataset
are novel with respect to the data we use. However, some research already suggested
using multimodal and image datasets to model semantics. Most similar to our endeav-
our is the work by Young et al. (2014), who also take multimodal datasets as a basis
to learn denotations. Their model is however created for the task of semantic inference
and takes the extension of a word to be the set of situations it applies to. We introduce
notions of entities and properties in our own model. Another research about semantic
entailment from multimodal datasets is (Hürlimann and Bos, 2016), where the authors
use semantic representations built from images to predict spatial relations between ob-
jects.

We also overlap with work on DSMs using structured and/or encyclopedic resources
(Faruqui and Dyer, 2015; Recski et al., 2016), which adds a ‘real world’ dimension to
distributional models.

2.2 Formal Semantics
Our work fits into attempts to bridge the gap between distributional and formal seman-
tics. The subfield of Formal Distributional Semantics (FDS, Boleda and Herbelot, 2016)
includes efforts to a) investigate the mapping from distributional models to formal se-
mantic models (Herbelot and Vecchi, 2015; Erk, 2016a; Wang et al., 2017a); b) enrich
formal semantics with distributional data (Garrette et al., 2011; Beltagy et al., 2013);
and c) account for particular logical phenomena in vector spaces, including composi-
tion (Coecke et al., 2011; Boleda et al., 2013; Baroni et al., 2012; Bernardi et al., 2013;
Asher et al., 2016 amongst many others). We also note the relevance of the work on
constructing distributional spaces from syntactically or semantically parsed data (e.g.
Padó and Lapata, 2007; Grefenstette et al., 2014; Hermann and Blunsom, 2013), which
echoes the way we construct vector spaces from various types of predicative contexts.
In contrast to those efforts, however, our data is not a standard corpus reflecting word
usage but a collection of logical forms expressing true sentences with respect to a model
of the world. We also note the related work by Larsson, 2013, who proposes a formal
framework for defining meaning from world perception.

2.3 Space Mapping
As I have pointed out in the introduction, the current research in the field suggests
that two semantic spaces can be directly mapped to each other. Examples of such
straightforward mappings can be found in various papers. In (Fagarasan et al., 2015)
the authors try to ground distributional semantic models using visual data. In particular,
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they create a linear mapping between a distributional space and a space build from
feature norms. Using this mapping, they further predict feature norms for unknown
concepts. However, the authors do not analyze the performance for different classes of
concepts, therefore, it remains unclear how well the feature norms are generalized from
the learned mapping.

In the paper by (Gupta et al., 2015) the authors try to predict referential attributes
of a concept from its distributional representation. The authors learn a straightforward
linear regression for predicting the features, and it also remains unclear in which situ-
ations this methodology works well and in which it doesn’t work at all. The authors
themselves suggest that some groups of attributes are predicted better than other ones
(geolocation and population are the best attribute groups) and that many features are
hard to predict as they are culturally biased.

In (Herbelot and Vecchi, 2015) the authors also perform a straightforward mapping
between a distributional semantic space and a set-theoretic model. The authors try to
prove that there is a relationship between distributional information and concept co-
occurrences with natural language quantifiers and we can thus predict the quantifier
with which the object occurs from a distributional representation. This problem is quite
narrowed because quantifiers are taken into account from the wide range of concept
features. The authors notice some strange artefacts of space mapping such as the fact
that the vector for alligator being close to crocodile in the mapped space, but not to
alligator itself. Overall, this research stays in the frame of the possibility of a direct
mapping from one space to another.

Recently there appeared a body of research suggesting that the relationships be-
tween two spaces, in particular between a language space and a space of concept fea-
tures are more sophisticated. In (Erk, 2016b) the authors try to find out the kinds of se-
mantic information between that a model can distinguish. They also argue that though a
direct mapping is not plausible, we still can approximate concept features in one space
(e.g. world space) by learning its features in another space (e.g. language space). In
other experiments authors have applied Bayesian methods to learning features of con-
cepts from a space (Wang et al., 2017b).

A start of a criticism for direct mapping between spaces in general and between
information encoded in distributional models and world experience is described in (Ru-
binstein et al., 2015). Here the authors argue that distributional properties do not encode
equally different types of semantic information. Thus, it is not possible to successfully
predict attributes for various concepts from their distributional representations.

3 Data

We perform our analysis on the basis of the three spaces. One of the spaces is built
from the data in the Visual Genome and represents the world space, and the other two
are traditional corpus-based models created from the British National Corpus and the
English Wikipedia corpus representing the language use.

The Visual Genome dataset (Krishna et al., 2017) is used to build a large set-
theoretic model as an approximation of “the real world”, and show that quality vector
representations can be extracted from it and evaluated in a way similar to traditional
corpus-based spaces.

To obtain our model, we take the annotation of the Visual Genome (henceforth VG),
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Figure 2: An example picture from the Visual Genome dataset. Object frames are
colored in red, object types are specified.

a large database of images annotated with objects, attributes and relations, and regard
this data as an informative, although incomplete, description of the world. The VG
dataset consists of 108077 images annotated with 3.8 million objects present in the im-
ages and 2.8 millions of their attributes. Another important type of annotation present
in the VG is relationships between objects, and there are 2.3 million relationships an-
notated in the dataset. An example of an annotated image is shown on Figure 2.

We convert the annotated data into a representation akin to some underspecified
first-order logic. From this representation, we build several DSMs from various aspects
of the representation and inspect the properties of the created spaces. This process is
described in Section 4.2. In the created space every entity is characterized by the fol-
lowing dimensions: its attributes, relationships it is engaged in. The previous research
has shown that the spaces built from different subtypes of the VG data have various
quality (Kuzmenko and Herbelot, 2019).

However, the annotated objects and their properties are subject to the perception
of human annotators that created the dataset. The annotations themselves represent
linguistic utterances and are therefore represent the real world already through our lin-
guistic prism. However, we still consider the model built on these data close to the state
of things in the real world.

The corpus-based models are built from the BNC data and English Wikipedia. The
BNC corpus consists of 85 million words and includes different text genres and styles
and thus gives us a more “general” impression of a language space. English Wikipedia
corpus consists 40 million words and is supposed to be more encyclopedic-like and thus
are more likely to encode real distributional properties of concepts. Wikipedia corpus
was created from scraped Wikipedia pages in November 2018. Though it is possible to
find a newer version of English Wikipedia, we suppose that language phenomena did
not change significantly since then and the present corpus is still appealing to our needs.
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We suppose that Wikipedia space and the VG space will be more similar to each other
than the BNC space and the VG space.

We process corpora in the following way: the texts are split into sentences, the
sentences are tokenized, taking punctuation signs into account. After that we build
count-based distributional spaces with our own script, with no lemmatization or any
additional pre-processing. The script counts word co-occurrences in a sentence withing
a window of size 3. That is, for every word we take its immediate neighbors from left
and right. Also, we create representations for 10 0000 most frequent words as we are
not interested in words with low frequency. Thus, the dimensionality of the BNC and
Wikipedia spaces is 10 000. Obviously we meet the problem of different vocabularies
in the VG space and corpus-based spaces since corpora contain much more different
lexical types. To cope with this problem, we additionally created semantic spaces con-
taining only those types and dimensions that are present in the VG vocabulary. That
is, if there is an attribute ‘purple’ in the VG, but no attribute ‘turquoise’, we drop the
dimension ‘turquoise’ from our corpus-based spaces. Additionally, all the concepts that
are not met in the VG are also dropped. Most of them are abstract concepts such as
‘happiness’ or ‘life’, but also some concrete objects that are not met in the VG (e.g.
‘apricot’). The resulting data are stored as sparse matrices, from which we later extract
all the needed data.

4 Building the Real World Space

4.1 Introduction

4.2 Experimental Setup
This part of our work is concerned with two problems: first, is it possible to build a large
set-theoretic model as an approximation of “the real world”? Second, how does such a
model compare to behavioral data (i.e. traditional evaluation datasets) an corpus-based
spaces? Therefore, in this chapter we are concerned with the left edge of the semantic
triangle described on Figure 1.

In order to build a “real world” space, we require a representation akin to a set-
theoretic model. We take the annotation of the Visual Genome (VG) dataset (Krishna
et al., 2017) as a proxy for such model, under the assumption that it provides a set of
‘true’ sentences about the world. There are three types of annotation in the VG dataset:
a) entities, or objects (e.g. ‘window’, ‘elephant’) – the individuals present in a given
image; b) attributes (e.g. ‘red’, ’made of bricks’) which describe the properties of
objects; c) relationships (e.g. ‘on’, ‘has’, ‘wearing’) which correspond to relations be-
tween objects. The dataset also includes situations, or scene graphs, which correspond
to a single image and describe all the objects that co-occur in that image. Thus, on
Figure 2 a situation on the image contains a tree, a car, a man, a sidewalk and a shade
(from the tree), associated with bounding boxes. We do not use the image itself but
solely the annotation data from the dataset graph.

It should be noted that every object in VG is assigned a WordNet synset and a unique
id. This allows us to pre-process the data and convert it into shallow logical forms
corresponding to predicate / entity pairs, ordered by situation and implicitly coordinated
by a ∧ within that situation. For instance, the following toy example indicates that
situation 1 contains a tall brick building, identified by variable 1058505 in VG, on which
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we find a black sign, identified by variable 1058507. Note that the identifiers are ‘real-
world’ variables, which pick out particular objects in the world.

S1 building.n.01(1058508), tall(1058508), brick(1058508)
sign.n.02(1058507), black(1058507), on(1058507,1058508)

This representation allows us to capture all the distinct objects annotated with e.g.
the synset ‘building.n.01’, and then we can generate the set of buildings (building′) in
our universe.1 To avoid data sparsity, we convert all relations into one-place predicates,
by replacing each argument in turn with its corresponding synset. So in the example
above, on(1058507,1058508) becomes on(1058507,building.n.01), on(sign.n.02,1058508),
which formalises that 1058507 is in the set of things that are on buildings, while 1058508
is in the set of things that signs are on.

Formally, the VG data can then be considered a set-theoretic model M =< U,I >
where U is the universe (the set of all objects in the model, as identified by ‘real-world’
variables), and I is an interpretation function mapping from a set of n-place predicates
P to n-tuples of objects in U (with n = 1 given our pre-processing of relations). P is
the union of synsets (Syn), attributes (Att) and relations (Rel) in VG. We then build
a distributional space S =< U,P,D,F,A,C > where U and P are the universe and the
predicates as above; D are the dimensions of the space so that D ⊆ P (that is, any
combination of Syn, Att and Rel); and F some extraction function over our corpus of
shallow logical forms C. F is of the form U × D → {0,1}, i.e. it returns whether a
particular dimension is predicated of an entity, giving us boolean entity vectors for all
objects in VG. Finally, an aggregation functionA : (U×D → {0,1})→ (P×D → N0)
returns the final space by summing the entity vectors corresponding to each predicate
in P : N0 is a natural number expressing how many times dimension D is predicated of
entities of type P . The summing operation follows the model-theoretic intuition that a
predicate p denotes a set which is the union of all things that are p: for instance, all dog
entity vectors are summed to produce a vector for the predicate dog′.

In addition, we consider two ways to augment this original setup. The first way is
to add situational information to the representations: while relations tell us what type
of things a particular entity associates with via a particular predicate, this information
does not include the type of things the entity simply co-occurs with. For instance, we
may have a situation where a dog interacts with a ball (encoded by some relation dog
- chew - ball), but VG relations do not directly tell us that the dog entity co-occurs
with a park entity or a cloud entity. We can add this situational information simply by
counting the number of times each entity co-occurs with entities of other types, without
a relation being explicitly expressed. This approach also allows us to account for the
“big picture” and not only for the immediate features of a given object, which is more
similar to working with sentences from a natural corpus.

Another way to augment the data is to add encyclopedic information to the VG data,
which could be part of a more ‘complete’ model including some generalizations over
the encoded sets. To do this, we extract hypernyms from WordNet (Miller et al., 1990)
using the nltk package.2 Only one level – the immediate parents of the concept – is
taken into account. We note that hypernyms are different from the other VG features in

1Note that we are not making use of the sense information provided by the synset in this work. Most
words in VG are anyway used in a unique sense.

2http://www.nltk.org/
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that they don’t come from natural utterances (no one would say “domestic animal” in
place of “dog” in a natural context).

Having prepared the data, we build variations of the model M by counting co-
occurrences between our entity set (aggregated into predicates with function A) and the
following features D ⊆ P : attributes (Att), relations (Rel), situations (Sit), hypernyms
(Hyp), as well as all their combinations.3

4.3 Evaluation of the models
Having built the world-based models, we are now concerned with their evaluation, since
it both tells us how do the representations agree with human perception expressed in be-
havioral datasets, and how do these models compare to traditional corpus-based models.

We evaluate our models with both relatedness and similarity datasets (MEN, Bruni
et al., 2012, and SimLex-999, Hill et al., 2015), drawing conclusions about the actual
behaviour of world-based models with respect to behavioural data. The MEN dataset
is supposed to capture the relatedness notion, which is defined as the relation between
pairs of entities that are associated but not actually similar. SimLex-999 accounts for
similarity, which is defined as the relation between words which share physical or func-
tional features, as well as categorical information (Hill et al., 2015). Both datasets are
structured in the same way: they consist of word pairs human-coded for their level of
association, which is the average value produced by human annotators when construct-
ing the dataset. They respectively include 3000 (MEN) and 999 (SimLex) word pairs.
To evaluate our DSMs, we follow standard practice and compute the Spearman ρ corre-
lation between the cosine similarity scores given by the model and the gold annotation.
Results are shown in Table 1. To maximise comparability between different spaces and
with text corpora, scores are given for raw co-occurrence matrices, and no dimension-
ality reduction or other optimization of the space is conducted. Note that due to the
size of VG, we cannot evaluate on all pairs in the datasets. We show actual coverage in
brackets next to the correlation scores.

Trends are similar both for MEN and SimLex-999. We get overall best results (high-
lighted in bold) for the models built using relations, situational information, and rela-
tions together with situations. Other models have significantly lower quality, both for
single features and for their combinations. It should be noted that taking all the features
together does not improve the quality of the space, as it seems that there are counter-
balancing forces from relations and situations improving the score and other features
taking the score down.

In the last column of Table 1 we report the total number of co-occurrences in each
variation of the world-based model. They are included in order to make sure that we do
not observe solely the effect of increasing the amount of data. Indeed, models with the
greatest number of co-occurrences show medium quality, and for some combinations
of features the score even decreases with more data (e.g., compare the Hyp and Hyp +
Sit models, where the MEN score stays more or less the same and the SimLex score
becomes lower). Moreover, the Rel model shows the highest score on a moderately
small amount of data for the MEN dataset, and for the SimLex-999 dataset the score is
a bit lower, whereas the Rel + Hyp model becomes the best (though hypernyms come
from outside the model).

3The code to pre-process the Visual Genome and the data to reproduce the experiments can be found
at https://github.com/lizaku/dsm-from-vg.
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Setting MEN SimLex-999 Num. co-
occurrences

Attributes (Att) 0.1801 (871) 0.1119 (217) 1 854 033
Relations (Rel) 0.5499 (847) 0.2861 (216) 6 481 872
Situations (Sit) 0.5294 (847) 0.2480 (216) 22 894 730
Hypernyms (Hyp) 0.3399 (956) 0.2128 (244) 1 989 576
Att + Rel 0.346 (871) 0.1840 (217) 10 720 260
Att + Sit 0.4492 (871) 0.2042 (217) 25 988 265
Rel + Sit 0.5326 (847) 0.2463 (216) 32 170 563
Att + Hyp 0.2385 (975) 0.2055 (244) 5 114 997
Rel + Hyp 0.5193 (956) 0.2979 (244) 10 878 274
Hyp + Sit 0.3860 (956) 0.1731 (244) 26 882 218
Att + Rel + Hyp 0.3430 (975) 0.2367 (244) 16 391 743
Att + Rel + Sit 0.4503 (871) 0.2018 (217) 37 652 176
Att + Sit + Hyp 0.3260 (975) 0.1319 (244) 31 252 206
Rel + Hyp + Sit 0.3900 (956) 0.1760 (244) 38 571 325
Att + Rel + Hyp +
Sit

0.3283 (975) 0.1337 (244) 45 329 361

Table 1: Spearman ρ correlation for various models on MEN and SimLex-999.

To compare performance of our truth-theoretic models with traditional DSMs built
from text corpora, we create count-based models from the English Wikipedia using a
window of ± 2 words around a target. We modulate corpus size to roughly match the
number of co-occurrences extracted from VG.4 Additionally, we train predictive models
with Word2Vec (Mikolov et al., 2013) with the same number of co-occurrences as in
the count-based variants. We use the same window size of 2, and the dimensionality
of vectors is set to 300. The evaluation scores for different corpora sizes are shown in
Table 2. We can see that, in contrast with the VG models, the score for count-based
models is dependent on the amount of data provided to the DSM, and generally lower
for similar numbers of co-occurrences (scores are consistent with results reported by
Sahlgren and Lenci, 2016). Predictive models are simply not able to construct high-
quality word representations from such amount of data. The scores of the VG models
do not improve with more data, which confirms that the evaluation score of the VG
models is not dependent on the number of co-occurrences.

When we try to improve the quality of our best world-based model (Rel) by applying
normalisation, dimensionality reduction (to 300 dimensions) and PPMI weighting, we
reach scores of 0.6539 on MEN (847 pairs are evaluated because not all of the pairs
in the evaluation dataset are present in the VG space) and 0.3353 on SimLex-999 (216
pairs evaluated). Whilst results are not directly comparable, we nevertheless note that
the MEN score is close to the figure of 0.68 reported for the inter-annotator correlation
on the full 3000 pairs.5 It is also only a few points lower than the best score of 0.72
obtained by Baroni et al. (2014) over 2.6B words (around 1600 times more data than
in Rel on the basis of a ±2 word window size). The SimLex figure is also well above

4Models are built using https://github.com/akb89/entropix.
5See https://staff.fnwi.uva.nl/e.bruni/MEN.
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Count-based Predictive (word2vec) Co-occurrencesMEN SimLex-999 MEN SimLex-999

0.081 (749) 0.050 (462) 0.024 (749) 0.003 (462) 2 000 000
0.158 (995) 0.010 (546) 0.043 (995) 0.019 (546) 5 000 000
0.225 (1226) 0.038 (610) 0.049 (1226) 0.020 (610) 15 000 000
0.226 (1455) 0.037 (688) 0.031 (1455) 0.046 (688) 30 000 000
0.253 (1554) 0.056 (696) 0.031 (1554) 0.044 (696) 40 000 000

Table 2: Spearman correlation on MEN and SimLex-999 datasets (Wikipedia spaces)

the figure of 0.233 reported by Hill et al. (2015) on an SVD model trained over 150M
words (≈ 100 times more data).

4.4 Discussion

In this section I have described the attempts to build a world-based semantic space and
evaluate it in a way similar to evaluating standard corpus-based spaces. As we can
see from the evaluation scores, our created model performs quite will on MEN and
SimLex-999 datasets, thus showing that the conceptual representations elicited from
behavioral data are correlated with raw exposure to the world. The highest correlation
score (ρ = 0.5499) is lower than reported scores for corpus-based spaces (ρ = 0.72,
(Baroni and Lenci, 2010)), but still shows that our space is comparable to corpus-based
spaces. Moreover, we retrieve better semantic representations from a smaller amount of
data, as we are not able to achieve high correlation scores on small amounts of corpus
data.

Some interesting observations can be made with regard to the type of properties that
seem to be relevant to modeling conceptual association. First, the relative results we
are observing across the VG models are not artefactual of model size. Thus, a model
based on situations, with 22M co-occurrences, performs worse than the model with
relations, which comprises only 6M co-occurrences. This tells us that some aspects of
the model-theoretic data are much more important than others and that some can even
be detrimental. This finding echoes results in Emerson and Copestake (2016), which
indicated that selecting particular relations from parsed data can improve performance
on SimLex.

Second, the VG models outperform the standard spaces by a large margin on Sim-
Lex, even with small amounts of data. This confirms that SimLex encodes a notion of
similarity that is better captured by looking at how things ‘are’ truth-theoretically rather
than what we say about them. The fact that attributes perform badly on that dataset,
however, contradicts the idea that SimLex encodes similarity of intrinsic features. In-
deed, relations outperform any other combination of features, showing that how things
associate with other things may be more important than how they intrinsically are.

Third, an additional point can be made about relations and situations. While both
Rel and Sit models perform well on their own, the combined Rel + Sit model has lower
quality (around two points are lost on MEN and four points on SimLex, compared to
Rel alone), which means that situations take the score down. This can be explained
by the fact that situations are a “noisy superset” of relations: some of the entities that
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Figure 3: A scheme of the research conclusions.

co-occur in a situation will have an explicit relation associated with them (e.g., cat and
mouse related by chase’(x,y)), while others may indeed solely co-occur (e.g., cat and
fork in a scene with a pet sitting next to a dining table). So it seems that aspects of
the world that entities are actively involved in are more important to define them than
simple ‘bystander’ individuals.

Finally, using hypernyms improves the quality of models when evaluated on Sim-
Lex. This confirms previous results showing that using dictionaries and lexical databases
helps getting better performance on SimLex (Faruqui and Dyer, 2015; Recski et al.,
2016). It also indicates than when computing similarity, humans may indeed acti-
vate some ‘meta-knowledge’ which is not directly encoded in the basic level categories
(Rosch et al., 1976) people use to describe a situation.

Overall, we have shown that the created space features high-quality semantic rep-
resentations, and the differences between various tested model architectures point us to
the fact that different components of meaning can be captured in distributional prop-
erties of concepts. However, in general there is high correlation between the world
model built on the VG data and the behavioural data depicted in MEN and SimLex-999
datasets. Thus, the first part of our initial research hypothesis is verified, and the current
state of our results is reflected on Figure3. However, it is yet unclear what it means for
the correspondence between world exposure and language us. Therefore, in the next
section I am going to investigate the second part of our hypothesis. In particular, we
will see how the captured semantic properties differ between the world-based space and
corpus-based spaces.

5 Language Spaces and Representation Shifts

5.1 Experimental setup
In this chapter I am going to have a deeper look into similarities and discrepancies be-
tween the real-world distributional space and corpus-based distributional spaces. Thus,
we are going to have a deeper look at the lower edge of the semantic triangle depicted
on Figure 1.

As we have said in the introduction, corpus-based and world-based models can dif-
fer fundamentally in the way they express semantics. Whereas the real-world space is
built on the basis of denotation (i.e. we have specific entities and their types as anno-
tated by people), the corpus-based space operates on lexical occurrences, which are not
bound to specific objects. In other words, when naming concepts in the VG annotation,
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people decide on the name based on their perception of a particular concept. Thus, an
object X can be called ‘a dog’ if people believe it is a dog, and it can have attribute
‘black’ if it is perceived as black. At the same time, the corpus-based space reflects
the same objects but through an additional prism of language. ‘A black dog’ can turn
to a more specific instance of a shepherd dog, because people decided to make it more
concrete. A corpus-based space also features metaphorical uses, and the phrase be in
the doghouse may mean different things in the world-based space (physically be in the
doghouse) and in the language-based space (be in disgrace).

To make the comparison of the spaces more fine-grained, we build language models
from two corpora – BNC and English Wikipedia. The process of building the models is
described in Section 3. However, for some experiments we do not employ the distribu-
tional spaces at all. Interesting conclusion can be made on the basis of the vocabulary
of both worlds and concept salience (i.e. what concepts are met in VG, what concepts
are met in corpora, which concepts are more salient in VG, but not that important in the
corpora). For these experiments I use frequency lists of VG, BNC, and Wikipedia

When analyzing the spaces, we perform the analysis in three directions – thus, I
conduct three experiments. The first experiment aims to investigate the differences
in the vocabulary between the spaces. As it is natural that different spaces contain
representations for different words, it could be useful to know which words are not
present in the VG space. It can give us a clue about things that are existing in the
language but are not used to describe the real world (in accordance with, for example,
the prototype theory (Rosch et al., 1976; Rosch, 1999)). To find out the differences in
the vocabulary, we need to compare the dimensions that do not overlap between spaces.
Some obvious things that are not in the VG space are abstract things, but we aim to
concentrate on concrete nouns that could be present in the VG data, but are in fact
absent. The main hypothesis that we want to check when comparing the vocabularies
is that in the language space objects that we see every day should be less frequent than
in the VG since people are trying not to talk about obvious things (Grice et al., 1975).

It should be noted that we are not looking for the limits of the Visual Genome
vocabulary. It is expected that the number of objects and their features annotated in
the dataset is limited. Thus, any word absent in the VG is bound to be found in a
bigger corpus, such as BNC or Wikipedia. However, we aim to investigate which things
hypothetically should fall within those limits but are still missing. This will point us to
the conceptual differences between the spaces.

The second experiment includes analyzing overlapping dimensions for words, which
should reflect differences in distribution. Whereas the previous analysis concentrates on
the things that are described in the language model but not in the world model, this ap-
proach looks into concepts that are represented in both spaces but in different ways.

In this second experiment we are comparing frequencies of concepts in the VG
space and corpus-based spaces. The hypothesis we are checking in this case is that
if an object is frequent in the real world, it should appear with high frequency in the
natural language as well. Vice versa, the objects that are not frequent in the real world
(therefore, are not frequently met in the VG annotation) should be less frequent in the
corpora as well. Thus, frequencies of objects in different spaces should correlate. Of
course, this correlation is not expected to be ideal. We also expect that words from
some semantic areas would produce better correlation than other semantic areas. Thus,
the correlation scores will be heterogeneous for different semantic clusters.

The third experiment includes computing neighbors for overlapping dimensions to
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check for specific subspace transformations across models. If some concepts are present
both in the world model and the language models, but their distributional properties are
still entirely different (even despite similar frequencies), we expect that this will be re-
flected in their nearest neighbors lists. To extract the nearest neighbors of a word in a
distributional model, we calculate cosine similarity between the word in question and
other words in the vocabulary and rank the words by this score. In our experiments we
extracted 20 most similar words for each dimension. This number was chosen empiri-
cally, as 10 most similar words seem to be not enough for a thorough analysis, whereas
bigger amounts of neighbors tend to produce a lot of redundant information.

5.2 Experiment 1: Comparing Vocabularies

To find out the differences in the vocabulary, we perform the comparison of non-
overlapping dimensions between the spaces. The workflow is as follows: first we com-
pute the list of non-overlapping dimensions in both VG space and the corpus-based
spaces (BNC and Wikipedia). After that, we filter out the concrete nouns as concrete
objects are supposedly likely to be present in the truth-theoretic model. We also use a
frequency threshold to filter out the least frequent nouns. In the end we end up with a list
of 500 nouns that are frequent in the BNC and 500 nouns that are frequent in Wikipedia.
These should be the entities that are present in our speech but are not mentioned by the
annotators of the VG data.

We filter out the concrete nouns on the basis of the list of abstract and concrete
nouns created by P. Turney for metaphorical sense identification (Turney et al., 2011).
This list was produced by training a classifier on a subset of nouns annotated with
their concreteness score, and later this classifier was applied to a vocabulary of 114501
words. Each word is rated from 0 (highly concrete) to 1 (highly abstract). From this
list we extracted nouns with the score equal or lower than 0.45. This threshold was
determined empirically through experiments. Lower scores were reducing the list of
possible nouns, and higher scores resulted in a heterogeneous list of concrete and ab-
stract nouns. The full list of non-overlapping dimensions selected for further analysis
can be found in Appendix A.

First of all, we can perform a manual analysis of this list. Among the things that
could be present in the VG we can find mainly human roles (father, mother, aunt) or pro-
fessions (clerk, nurse, doctor, poet). We can hypothesize that in the language space the
speakers are using more specific referring expressions when describing people, whereas
in the real world they use more generic terms. Apart from this category of nouns, the
corpus-based space also features institutions and area formations that could also be nat-
urally met in the VG dataset (university, library, village), however, they are lacking.
This could mean that people are also more specific when describing the institutions in
the natural language. It may seem justified, as in the real world it is hard to predict the
role of a building from its visual appearance (attributes in the VG), and the same idea
can be applied to people.

Overall, we can tell that these discrepancies in naming concepts may happen be-
cause you cannot tell the difference just by the visual appearance of an object and decide
to use a more general referring expression in the real world situation. Another explana-
tion is that people are less committal when describing a picture in a real world situation.
Thus, when we spot various flowers or birds, we name them with general terms such as
simply “flower” or “bird”. However, when it comes to more specific situations in the
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language use, we can name particular species of flowers or birds. This explains why
in the VG we don’t find many occurrences of “sparrow” or “pigeon” though they are
apparently frequent in the situations captured on the images. These findings also echo
the prototype theory, which suggests that some concepts are less likely to be used when
naming an object. This will be investigated in more detail in the upcoming Section 5.3.

When speaking about non-overlapping dimensions between the VG and Wikipedia,
we find many animal (sparrow, tiger, zebra) and plant (dandelion, oak) species in
Wikipedia space that are absent in the VG. This trend is similar to what we have seen
when looking at the lists for the BNC. Therefore, the main conclusion of this exper-
iment is that in the natural language people differentiate between different kinds of
similar concepts (human roles, plant species, types of buildings) that do not differ with
regard to their attributes in the real world and thus are annotated with more generic
types in the VG (person, flower, bird). It may signify, however, that annotators of the
VG are just cautious to annotate specific types for the entities, but this still reflects the
idea that in the world space the concepts differ less. Another conclusion of this analysis
is that in general the natural language tends to have richer vocabulary, even if we take a
portion of texts comparable in size with the annotation of the Visual Genome.

Overall, the results of this experiment tell us that one of the reasons for semantic
shifts between corpus-based and world-based models is that the concepts are influences
by human perception in different ways. In a real world situation we consider some
things less important, for example, naming a particular species of a flower is not im-
portant at all. In a language situation this information may suddenly become impor-
tant, thus, the language space features more concrete naming of different phenomena,
whereas the world space gives us only general types. With regard to the hypotheses
stated in the beginning of this work, I think that this experiment is more likely to prove
that the language space differs from the world space because of perceptual differences
in various communicative situations and modalities.

5.3 Experiment 2: Comparing Frequencies

Another method that we use for the comparison of the vocabularies is trying to predict
which words should be salient in the VG data among the words that we filtered out
during for the first experiment: concepts present in the corpus, but absent in the VG
data annotation. Salience in our experiments is defined as “importance of a concept in
the overall picture of the world”. For example, we can hypothesize that people are more
salient (i.e more important) in language as well as the real world, thus, they are met in
the word occurrences or annotated in images quite frequently. We measure salience as
frequency of a word in the corpus or an entity in the VG. Therefore, we are trying to
find out not only which words should be present in the VG, but are not there, but also
we want to point out the words which should be important (and frequent) in the VG, but
are not met at all.

To do this, we compute frequency for overlapping words in the dimensions of the
VG space and the corpus-based space (here we experiment with the BNC). Both fre-
quencies are normalized by size of the data as we compute occurrence per million for
every word. Having done that, we build a regression that predicts frequency of a word
type in VG given its frequency in a corpus. As our data is just two numbers reflect-
ing frequency of a word in two sources, we use a simple linear regression model, in
particular, Ridge regression, with α = 1.0.
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Figure 4: Regression on the basis of word frequencies in the BNC data and the VG data.
The test set of 20 word types is shown.

However, the data does not fit into regression as the computed error is very high and
the explained variance score is on the contrary low. An example of a built regression
can be seen in picture 4.

The results for the regression models show that indeed word frequencies in the VG
and the BNC differ significantly, and the initial hypothesis that words that are frequent
in the real world should be frequent in the natural language does not hold. To investigate
this issue in more details as well as look into the more granular parts of the vocabulary,
we check the correlation scores for frequencies of objects, attributes and predicates in
the VG and both corpora. To do this, we collect types, relations and attributes that are
found in the VG annotation. We compute their frequencies in the model and in the
BNC and English Wikipedia corpora. After this, we can simply calculate Spearman ρ
correlation between two lists of frequencies. The results are presented in Table 3.

Setting types relationss attributes

BNC 0.0199 0.3218 0.3147
Wikipedia 0.0912 0.3427 0.1676

Table 3: Correlation between frequency lists in VG with Wikipedia and BNC.

As we can see from the table, correlation between frequencies for relations and
attributes is much higher than for types. This trend holds true both for Wikipedia and
the BNC spaces, though attributes in Wikipedia correlate less well with the attributes
in the Visual Genome. This implies that while types have different salience in both
corpora, their attributes and relations they are involved in are more correlated.

Another trend that can be noticed is that the correlation between types and relations
in Wikipedia and the VG is higher than in the BNC and the VG. This means that indeed
the real world space (approximated by the VG) is closer to the encyclopedic language of
Wikipedia than to the BNC. However, this is not true for the attributes that have higher
correlation in BNC and VG. This may also mean that the language space presented
by the BNC is more concerned with the attributes in general than the language space
modeled by Wikipedia, where words are expressed through their co-occurrences with

20



each other and their relations.
It is also interesting that whereas the VG models built on the basis of relations

have shown the best quality as compared to the human judgments (see Section 4.3),
the corresponding type frequency comparison has shown the worst result. Thus, we can
conclude that although the best semantic modeling is achieved when describing concept
meaning through its co-occurrence with other concepts, frequencies of concepts in the
world space and the language space differ drastically and do not correlate well. At
the same time, relations, that were the the best model built from the VG, show decent
correlation here, both for the BNC model and Wikipedia model. Finally, attributes,
that did not produce high-quality semantic representations from the VG, show lower
correlation score here as well.

Another approach that we took is clustering the overlapping dimensions and com-
puting correlation between frequencies for words from different clusters. The aim is
to find out which clusters map well from one space to another in terms of frequencies
and which ones do not. We have tried K-Means with manually specified number of
clusters and DBSCAN (Schubert et al., 2017) to find out the number of clusters in an
unsupervised way. We also performed manual clustering into four groups: human rela-
tions, areas, touchable objects, abstract objects and substances. The manual clustering
seems to be biased, and the clusters are very generic. The DBSCAN clustering did not
produce any meaningful results, thus, we decided on using the K-Means algorithm. The
problem when using K-Means is that we need to specify the number of clusters man-
ually, and this poses a problem when this number is unknown. We have experimented
with different cluster numbers (10, 20, 50, 100) and finally used 20 clusters. Higher
number of clusters makes the clusters too granular and hard to interpret. Some clusters,
however, stay more heterogeneous than the other.

We have also tried to label the clusters in an unsupervised way. To do this, we
extracted the immediate hypernyms for every word in the cluster. The most frequent
hypernym in the cluster is then used as the label for the whole cluster. If all the im-
mediate hypernyms have equal frequency of 1 or 2, we go one level up and extract
hypernyms of the hypernyms. On this step most probably we find a probable label for
the cluster. Though these labels are not ideal, in most cases they accurately reflect the
semantic area of the words in the cluster. For example, the cluster clothing includes
such words as shirt, hair, garment, sunglasses, person, outfit. It would be more correct
to name this cluster as “visual appearance”, but the given label serves well for the means
of our semantic analysis.

Additionally, when looking at the clusters, we have found that they can be roughly
divided into 2 types: situation-based clusters and object-based clusters. The object-
based clusters seem to employ the notion of semantic similarity, as words in them are
most frequently from the same semantic field and are very similar. An example of this
can be the cluster vascular plant, which includes such words as banana, apple, mango,
coconut, etc. Situation-based clusters seem to be closer to the notion of relatedness, as
the words included in such clusters seem to be from different semantic fields and not
at all similar to each other. However, they still can be imagined together in the same
situation. And example of such cluster can be motor vehicle, which includes such words
as rear, road, truck, policeman, bumper, stoplight. The full list of clusters with words
they include and their annotated types can be found in Appendix B.

For computing correlation for types, we simply take words from every cluster, sum
up their frequencies in the corpora and compute the correlation with the corresponding
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Figure 5: Dispersion of correlation scores for different settings when comparing fre-
quencies in BNC and VG.

types in the VG annotation. Summing up the frequencies for words in the same cluster
is done in order to measure the frequency of a cluster as a whole, since we are interested
in how often we mention, for example, various food concepts, not particular exemplars
(e.g. cheese). For computing correlation for relations and attributes, we compute co-
occurrences with all possible relations and attributes for every individual word, and then
concatenate these vectors for every word in a cluster. The correlation is then computed
for these very long “flattened” vectors.

Another setting that we added in the analysis here is counting co-occurrences for
nouns that are arguments of the same predicate. For example, from the predicate
chew(dog, ball), which signifies that a dog is chewing a ball, we take the co-occurrence
of dog and ball. This should roughly model the situation setting of the VG models.
The correlation numbers for different clusters and different settings can be found in the
Table 4. The figures for the argument setting are given in the column args. The name
of the clusters are given in the first column, along with the number of words included in
this cluster (in brackets). The type of the cluster (situational of object-based) is given
in the next column. The ordinal number of clusters are preserved for the convenience
of the analysis.

The results from Table 4 are also summarized in Figures 5 and 6. On Figure 5 we
can see the distribution of correlation scores based on the BNC data. The distribution
of correlation scores and mean scores for frequencies in English Wikipedia is displayed
on Figure 6.

The main conclusion that we induce from the scores is that the correlation between
frequencies in English Wikipedia and VG or BNC and VG is quite low. Though we
have correlation of 0.9 for some clusters, for the majority of data the scores stay on
the level of 0.2. This tells us that the salience of concepts in the “real world model”
and language models does not really correlate. However, we can try and interpret the
current results concerning the differences between different clusters and different types
of features.
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Figure 6: Dispersion of correlation scores for different settings when comparing fre-
quencies in English Wikipedia and VG.
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cluster type types BNC types Wiki attrib. BNC attrib. Wiki relations BNC relations Wiki args BNC args Wiki

0 - natural object (66) situational -0.1636 0.0197 0.0030 0.0065 0.0075 0.0106 0.1126 0.1431
1 - clothing (177) object-based 0.0763 0.1683 0.0096 0.0112 0.0278 0.0292 0.1343 0.1465
2 - fixture (33) object-based -0.0344 -0.2296 0.0027 0.0036 -0.0009 0.0052 0.1642 0.1677
3 - geological formation (39) situational 0.1785 0.1815 0.0136 0.0133 0.0188 0.0239 0.1493 0.1618
4 - vascular plant (18) object-based -0.2435 0.0481 -0.0055 0.0022 -0.0056 0.0072 0.1006 0.0670
5 - artifact (71) situational 0.0979 0.1333 0.0029 0.0103 0.0019 0.0159 0.1760 0.1890
6 - instrumentality (270) situational 0.1141 0.0233 0.0060 0.0102 0.0077 0.0169 0.1213 0.1246
7 - nutriment (154) situational 0.2692 0.2553 0.0030 0.0054 0.0014 0.0126 0.1362 0.1390
8 - band (sports) (46) situational -0.9999 -0.2643 -0.0004 0.0066 -0.0024 0.0066 0.0836 0.1284
9 - vessel (19) object-based -1.0 -0.5166 0.0023 0.0005 -0.0010 0.0095 0.1443 0.1952
10 - home appliance (37) object-based -0.5 -0.1811 0.0025 0.0065 -0.0015 0.0112 0.1164 0.1483
11 - geological formation (61) situational 0.1704 0.0666 0.0054 0.0091 0.0023 0.0121 0.0975 0.1088
12 - furniture (94) situational 0.0861 0.0187 0.0052 0.0082 0.0040 0.0148 0.1400 0.1503
13 - facility (21) object-based 0.0 0.0392 0.0025 0.0008 -0.012 0.0040 0.0981 0.2188
14 - device (13) object-based 0.0 0.5270 0.0031 0.0074 0.0056 0.0141 0.1009 0.1696
15 - body part (63) object-based -0.0045 0.1245 0.0038 0.0086 0.0082 0.0137 0.1446 0.1720
16 - substance (26) situational -0.9999 0.0420 0.0030 0.0092 -0.0001 0.0126 0.1655 0.1778
17 - artifact (160) situational 0.2060 -0.1208 0.0063 0.0124 0.0103 0.0199 0.1438 0.1584
18 - motor vehicle (53) situational -0.5 -0.0424 0.0037 0.0104 0.0108 0.0273 0.1482 0.1702
19 - plant part (39) situational 0.9999 -0.0416 0.0022 0.0069 -0.0026 0.0049 0.0980 0.1066

Table 4: Correlation between frequency lists in VG and BNC and Wikipedia for different clusters.
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First of all, we can see that overall frequencies of types in both corpora demonstrate
greater variance than other settings (attributes, relations or arguments). This corre-
sponds to the idea that different objects can be more or less similar in language spaces
and the world space, and these differences can be figured out and described separately
for different semantic fields.

However, contrary to the generic correlation presented in Table 3, relations and
attributes perform worse than mere types. We can hypothesize that for specific clusters
the representations of nouns are different (objects are described in VG and language
with different attributes and are involved in different relations). Nevertheless, their
frequencies stay more or less the same both in the world and in the language. The
frequencies of attributes and relations do not correlate at all. The big conclusion that can
be made on this basis is that though people mention the same concepts in the language
that they see in the real world, the attributes of these concepts and the relations they are
involved in differ significantly. This difference is more seen when looking at different
semantic clusters and cannot be noticed in the generic correlation of frequencies.

Attributes in both corpora show the lowest variance: as we can see on the fig-
ures with dispersion, most of the values oscillate around 0. Thus, co-occurrence of
word types with different attributes differs entirely in the world space and the language
spaces. Arguments in both corpora demonstrate highest correlation scores. This corre-
sponds to the features of VG spaces we described earlier. Still the best way to create
semantic representations can be situations – objects that occur together, or in this case
arguments of the same predicate (thus, also in the same situation).

Another trend that we can find is that situation-based clusters show higher correla-
tion scores than object-based clusters. This finding also goes in line with the idea that
the best semantic representations are achieved using the situational information. This
idea was also proven before in the narrative cloze evaluation studies and in the computer
vision, as we pointed out in Section 2. Overall, it seems that the semantic information is
better preserved in the situational information and in object co-occurrences within the
same situation. This also explains why the VG models achieved higher scores on the
MEN dataset than on the SimLex-999 dataset.

For better visual analysis, the results per cluster for the BNC model are shown on
Figure 7. Different shades of blue correspond to correlation scores close to 0, red shows
high correlation, green and yellow stands for low correlations scores. Same map, but
showing types of clusters (situational or object-based), can be found on Figure 8.

Once again, for our maps we find that situational cluster exhibit high correlation
scores – red color (though it is not true for all situational clusters). For object-based
clusters it is much harder to achieve high correlation, and the majority of them are thus
colored with blue or green.

To conclude, in this experiment we have shown that:

• Concept behaviour differs greatly in the world model and the language models,
which can be seen in the low correlation scores for frequencies. People tend to
talk about different concepts than those that are found in the real world.

• Words from some semantic clusters show more similarity between the world
space and the language spaces. For example, correlation for frequencies for some
clusters is higher than for others.

• Situational information indeed seems to be the best way to model semantic rep-
resentations. Situational-based clusters have higher correlation for frequencies
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Figure 7: The map of correlation values for dif-
ferent clusters, with unsupervised annotated la-
bels.

Figure 8: The map of correlation values for dif-
ferent clusters, with the annotation of cluster
types.

with the VG data, than object-based clusters.

Overall, with this experiment we have shown that whereas the majority of con-
cepts is represented quite differently in the world space and language spaces (which
is reflected in different frequencies), some concepts do present similar behaviour as
compared to the behavior of word types in the corpora. Therefore, we prove that it is
impossible to directly map from a language space to the world space. However, for
some categories of concepts this mapping can be more effective due to their similar
behaviour across sources of data (VG vs. corpora).

5.4 Experiment 3: Comparing Neighbors
In this section we concentrate on the overlapping dimensions in both models. Previ-
ously we have studied the differences in the vocabularies of our models and the differ-
ences in word frequencies, which we interpret as salience. The purpose of the experi-
ments in this section is to study how different are the representations of the same word
in two models. Even if a word is present in both models and has approximately the same
frequency, it does not mean that semantic representations are the same in all models. To
perform such an analysis, we extract neighbors of a word in our spaces (VG, Wikipedia
and BNC) and calculate the overlap between the neighbor lists. We test several possible
sizes of neighbor lists: 5, 10, 20 and 50. We decide to use in our experiments the size
20 since it provides the most informative data yet not containing much noise. In Table 5
you can find an example of neighbor lists for a word person in VG, BNC and Wikipedia
models.

The neighbors of the words in the models can be completely different due to huge
differences in the vocabulary. First of all, corpora include much more words than the
VG data, whose capacity is limited by the objects occurring in the images. Second, the
VG includes in the annotation a high number of multi-word expressions, which are in
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their turn are not found in the corpora. To overcome these issues, as I pointed out earlier,
and for the purpose of fair comparison, I construct two types of count-based models.
In the first type I use all the data in the corpora without dropping any dimensions. In
the second type of models I drop all the dimensions in the model that are not present
in the VG data. This is done to maximize the comparability between the models. To
cope with the presence of multi-word expressions in the VG, I extract 60 neighbors for
each word that I analyze, remove all multi-word entities and take top 10 most similar
remaining neighbors.

VG space BNC space Wiki space

man man man
woman woman woman
people child patient
girl citizen defendant
lady girl player
boy lady child
skier chap girl
guy patient someone
child guy thing
he gentleman person’s

Table 5: Top 10 semantic neighbors of the word “person” in the spaces built on the VG
data, BNC and Wikipedia.

As neighbor lists, we have partially intersecting sets of word associations. The
degree of difference between them can be calculated using the Jaccard similarity coef-
ficient (Jaccard, 1901; Niwattanakul et al., 2013; Choi et al., 2010), which is calculated
as follows: J(A,B) = |A∩B|

|A∪B| =
|A∩B|

|A|+|B|−|A∩B| (the size of the intersection divided by the
size of the union of two sets). It takes values in the interval [0,1] and serves here as a
measure of how much the meaning of a given word in one model is different from the
meaning in another model. If the Jaccard coefficient equals to 0, that means that the
two sets of neighbors do not intersect and thus the meaning is supposed to be totally
different. If, on the contrary, the coefficient takes the value 1, the two sets are identical:
both models provided precisely the same set of 10 nearest semantic neighbors.

First, we will talk about comparing neighbor lists in the full corpora models, where
the dimensions absent in the VG data were preserved. We calculated the overlap for 100
most frequent concepts in the Visual Genome data to exclude concepts for which good
representations were not learned due to the sparsity of data. The Jaccard coefficient
ranges from 0.333 for the most overlapping neighbor lists to 0.0 for most words in
the list of comparison. In fact, there are only 20 words for which the coefficient is
higher than 0.1, and for 50 words the coefficient equals to 0. It means that indeed as
we pointed out earlier, the representations of concepts in the language and in the truth-
theoretic model are entirely different, since the concepts have different distributional
properties.

The concepts that overlap most in the BNC corpus and in the VG model are the ones
that pertain to humans, their appearance and body parts. You can see some examples of
such concepts in Table 6. Among such words we can see face, human, woman, child,

27



head, person, female. Their semantic neighbors in both corpora models are roughly the
same: another body parts for body part concepts and another human roles for concepts
like human, woman, child. This means that the contexts in which we see such words
are uniform in our models. It is interesting to notice that high overlap is achieved also
in the cases of homonymy, like for the word head. Another category of words with high
overlap is location names: street, office, building, town, street. It is interesting to notice
that for the VG data these are very generic concepts and most often describe the whole
set of objects situated on the image. Therefore, it seems that in the natural language this
generic name places are also described using the components of the situations they are
met in.

Concept Jaccard co-
efficient

VG neighbors BNC neighbors

face 0.333 eye ear head nose mouth
legs eyes chin ears

brow forehead nose eye
chest belly mouth chin
head

person 0.290 man woman people girl
lady boy skier guy child

man woman patient de-
fendant player child thing
someone person’s

child 0.290 girl boy baby kid woman
person skier adult lady

woman baby man person
girl patient mother daugh-
ter victim

woman 0.250 lady girl man person boy
child female guy she

man girl boy child person
baby soldier doctor priest

man 0.212 person woman boy guy
girl lady he male child

woman chap boy girl per-
son gentleman guy lad
soldier

head 0.212 eye ear captain nose
mouth face legs tail chief

chairman secretary chair
seat governor commander
face captain chief

Table 6: Top 9 semantic neighbors of the words with most overlap in the neighbor lists
in the spaces built on the VG data and BNC.

Concepts that overlap least in the BNC and the VG include more abstract ones as
well as more detailed human roles and more detailed locations. We can find with the
lowest Jaccard coefficient such words as bank, bill, business, court, employee, customer,
speaker. The representations for these objects are not good in the VG despite that they
were frequent enough to be included in the analysis. There are also cases of severe
homonymy, where one word sense prevails in the VG and another in the BNC, e.g., the
words bank, court. The neighbors of human roles in the VG are other human roles,
whereas in BNC they are terms pertaining to the same lexical field (e.g. economic
terms). You can see several examples of the least overlapping words and their neighbors
in the Table 7.

When we look at the clusters for the words with the highest and the lowest Jaccard
coefficients, we can notice that words from object-based clusters tend to score higher
than the words from the situation-based clusters. This can be explained by the fact
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Concept Jaccard co-
efficient

VG neighbors BNC neighbors

bank 0.0 shoreline seawall coast
mountian shore mounds
foilage tents cliff

banks deposit canal com-
pany river cheque fund
lake taxpayer

court 0.0 pitch field airstrip run-
ning pavement road turf
asphalt net

trial courts defendant
parliament judgment plea
council request judicial

customer 0.0 register melons patron
dad wineglass gazebo
barber biker stools

client buyer purchaser
seller user patient supplier
person debtor

employee 0.0 thing materials grassland
workers fair timber tar-
mac dolly halfpipe

agent assistant attorney
expert officer owner edi-
torial opponent indication

object 0.0 objects radio linen base-
board things shells stuff
items magazines

utterance organism entity
instrument attribute image
objection objective illu-
sion

speaker 0.0 speakers mouse printer
cords monitor video con-
sole keyboard sports

researcher writer poet op-
erator reader critic com-
poser priest policeman

Table 7: Top 9 semantic neighbors of the words with least overlap in the neighbor lists
in the spaces built on the VG data and BNC.

that situations that require more complex descriptions in the language therefore provide
more possibilities for differences between the models. In their turn, the object-based
concepts are easier to describe with annotations in the images, and the annotations are
more likely to coincide with natural language descriptions for the objects. However,
it contradicts the findings from the previous sections, where we figured out that words
from the situation-based clusters have higher correlation scores for the frequencies,
which means that they are equally salient in the natural language and the real world.

When we try to reduce the BNC space and drop all the dimensions that are not
present in the VG, we do not observe much change in the results. In fact, the words
with the highest Jaccard coefficient and with the lowest Jaccard coefficient stay the
same, while only for a couple of words their position in the lists drastically changes.
The majority of semantic neighbors for all the concepts stays the same in the reduced
space. Thus, we can conclude that the important semantic information stays in the
reduced space as well.

Overall, from the analysis of neighbor lists for concepts in our models we can make
the following conclusions:

• the overlap between neighbor lists for the majority of concepts in the BNC and
the VG is very low (the highest Jaccard coefficient is only 0.333, one third of
the semantic neighbors is the same in both models). This tells us that indeed the
distributional properties of words in both models are very different, even for the
words with high frequency correlation.
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• Words with the highest overlap include terms describing people (man, woman,
child, person, female), body parts (face, head, hand, leg) and locations and build-
ings (sea, park, street, town). These are the words that own approximately the
same distributional properties both in the VG and the BNC.

• Words from the object-based clusters tend to have higher overlap of semantic
neighbors than the words from the situaion-based clusters. Thus, people use ap-
proximately the same lexical units to describe objects in the real world and the
natural language, but the descriptions of situations may be different.

• We are also interested in the differences in neighbor lists between nouns with high
overlap and low overlap. We have already mentioned which entities have high
overlap in neighbor lists between spaces – they mostly depict concrete objects
from everyday life and are highly frequent both in the corpus and in the VG data.
Among the entities that have low overlap in the neighbor lists are areas such as
forest or village.

Overall, this experiment has shown us that there is indeed a major distinction be-
tween situational information about the concepts (i.e. relatedness notion) and informa-
tion about attributes of concepts (i.e. similarity notion). As it was noted in the evalua-
tion of the VG space, the relatedness notion seems to be better captured when creating
a semantic space. Therefore, relations and situations proved to be the best model ar-
chitectures for the VG models. In this experiment we see that situational information
is also much more stable when comparing across the models, whereas the relatedness
notion, expressed in object-based clusters, proves to be much less stable in different
semantic models.

Also, in this experiment we have identified which lexical clusters have more poten-
tial to be mapped across world-based and corpus-based semantic models. Whereas this
direction of work needs deeper investigation and particularization, we already can hy-
pothesize which lexical categories are more likely to be corresponding when mapping
our models.

5.5 Discussion

As we have described our initial hypothesis in Introduction, in this research we were
trying to figure out whether the semantic space created on the basis of the real world
data corresponds to the semantic space created on the basis of the corpus data. This
correspondence can be measured, first of all, through evaluating both spaces with regard
to the behavioural data. Our research has shown that both types of spaces correlate well
with behavioural data and, thus, semantic representations from both spaces agree with
human perception. Nevertheless, when it comes to comparing the spaces directly, we
find out that the representations in the spaces differ fundamentally, as they are shaped
differently in the human conceptual space. The situational information and relation
between concepts seem to be more stable across the spaces, and attributes of concepts
differ drastically between spaces. Overall, our results are described on Figure 9, which
shows how our experiments have resolved the questions posed on Figure 1.

We have also named possible reasons why our language space differs from the real
world space can be:
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Figure 9: A scheme of the research conclusions.

• we don’t talk about the world as it is because we describe all things in it through
the prism of our perception (prototype theory or attention mechanisms (Rosch
et al., 1976));

• we don’t talk about the world as it is because we’re Gricean and thus do not want
to talk about obvious and unimportant things (Grice et al., 1975);

• we don’t talk about the world as it is because of human creativity, as we create
other possible worlds with our language. This hypothesis remains for further
research, since we didn’t dive into creative language in our project.

It seems that each one of these reasons contributes to the semantic shifts between
spaces. Perception is influencing every property of concepts in our models. We have
seen how differently the concepts are named in the world-based space because giv-
ing more concrete names to objects does not seem to be vital in a particular situation.
The second reason was investigated in more details in the work on the color subspace
(Rawee, 2018), but in our research we have also seen its signs, for example, when we
find out that people are less likely to name a person’s profession, possibly out of fear to
provide false or redundant information. The third reason is harder to investigate since
the Visual Genome data is much more scarce than the data from the corpora. How-
ever, we can hypothesize that the human creativity is the reason why similarity notion
is much less stable across models than the relatedness notion. Thus, the relations and
situations in which objects are involved do not change that much when shifting from the
real world to the language. However, the object characteristics expressed with attributes
differ significantly. In fact, in the language the object possess much more various and
detailed attributes.

The overall conclusions of the research can be described in the following way: we
do find significant differences between concept representations in the world-based space
and in the corpus-based spaces. In general, the majority of concepts seems to show
different properties across spaces. The concepts do not correspond in terms of their fre-
quency, or semantic neighbors. However, some particular categories of concepts differ
less significantly between spaces than other categories. Describing such categories in
every detail can be possible extension of the present work.
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6 Conclusion

In the present research we tried to explore how different are semantic representations
of the world create from truth-theoretic data (annotated images) and extracted from
language data. The implications of our work lie in several directions.

The first direction is an attempt to unify tools of formal and distributional semantic.
Both these branches of semantics have their own advantages and disadvantages, but
their unification provides a really powerful tool for studying the interaction between
similarity and relatedness, as well as finding out which properties human tap into when
making association judgments. This direction of work was fully explored in the first of
our experiments 4. We have shown that we can study the distributional behaviour of
concepts from a large truth-theoretic model. Thus, standard distributional semantics is
not unique in accounting for conceptual distance.

Further, the vector spaces we created have the advantages of formal models, by
linking to a clear notion of entity and associated properties. We have also demonstrated
that by choosing the right properties, the truth-theoretic vector space achieves supe-
riour performance compared to a usage-based DSM on considerably less data. This
is probably the most important finding of our first experiment, because we found out
that the quality of created models differs significantly when we take different features
into account. This finding suggests that not all properties that we can use to construct
meaning representations contribute equally to the final quality of a model. We tried to
further investigate these differences in our next experiments. While this point does not
have practical application, we believe this result may have implications for understand-
ing how humans themselves build concepts from the limited set of situations they are
exposed to.

We have also found out that though in general the similarity between semantic rep-
resentations of concepts between the language model and the world model is very low,
indeed for some concepts the difference is less striking than for the others. We have
found out that the categories of concepts with higher similarity can be used to describe
situations rather than concrete objects. One very salient example is the cluster of “ma-
rina” words: boat, dock, sail, pier, float, anchor, bay. The frequencies of these concepts
were correlated both in the VG and BNC, and their neighbor lists were also overlapping.
From such cases we conclude that the relatedness notion between concepts modeled
both in visual and language data is similar. At the same time, categories of concepts that
describe concrete things (food, appearance) differ more significantly between models.
This finding shows that the widely-accepted approach of building a general semantic
model for studying language phenomena without any differentiation is not appropriate.

Another direction of our work was contrasting models build on English Wikipedia
and BNC when comparing them to the VG model. We have shown that semantic prop-
erties of concepts as they are built on the basis of English Wikipedia are closer to the
properties of the corresponding concepts in the VG. This is shown in the lower dis-
persion of correlation score for frequency lists in Wikipedia and VG. Thus, we can
conclude that encyclopedic knowledge contained in Wikipedia better correlates with
object properties in the real world.

In future, we plan to correct some limitations of our current evaluation. In particular,
our VG models are not fully comparable with standard count-based spaces, as different
pairs from the datasets Simlex-999 and MEN are evaluated (the overlap between pairs
evaluated for text spaces and VG spaces is on average 50%).
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We also plan to apply more comparison methods to reveal more fine-grained differ-
ences between spaces. The next direction of our research is to create a mapping function
between spaces to understand what transformation a concept representation undergoes
when being mapped from VG to BNC.

Another direction for improving our results is to experiment with other image-
annotated datasets or knowledge graphs to further understand which formal relations
might be at the basis of human similarity judgments. Indeed, one problem with our
current setup is that by using vision data, we limit our evaluation to concrete concepts.
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Recski, G., E. Iklódi, K. Pajkossy, and A. Kornai (2016). Measuring semantic similarity
of words using concept networks. In Proceedings of the 1st Workshop on Represen-
tation Learning for NLP, pp. 193–200.

Rosch, E. (1999). Principles of categorization. Concepts: core readings 189.

Rosch, E., C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem (1976). Basic
objects in natural categories. Cognitive psychology 8(3), 382–439.

Rubinstein, D., E. Levi, R. Schwartz, and A. Rappoport (2015). How well do distribu-
tional models capture different types of semantic knowledge? In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pp. 726–730.

Sahlgren, M. and A. Lenci (2016). The effects of data size and frequency range on
distributional semantic models. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 975–980.

Schubert, E., J. Sander, M. Ester, H. P. Kriegel, and X. Xu (2017). Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database
Systems (TODS) 42(3), 19.

Turney, P., P. Pantel, et al. (2010). From frequency to meaning: Vector space models of
semantics. Journal of artificial intelligence research 37(1), 141–188.

Turney, P. D., Y. Neuman, D. Assaf, and Y. Cohen (2011). Literal and metaphorical
sense identification through concrete and abstract context. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 680–690.
Association for Computational Linguistics.

Turney, P. D. and P. Pantel (2010). From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research 37, 141–188.

36



Vecchi, E. M., M. Baroni, and R. Zamparelli (2011). (linear) maps of the impossible:
capturing semantic anomalies in distributional space. In Proceedings of the Workshop
on Distributional Semantics and Compositionality, pp. 1–9. Association for Compu-
tational Linguistics.

Wang, S., S. Roller, and K. Erk (2017a). Distributional modeling on a diet: One-
shot word learning from text only. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing, Volume 1, pp. 204–213.

Wang, S., S. Roller, and K. Erk (2017b). Distributional modeling on a diet: One-shot
word learning from text only. arXiv preprint arXiv:1704.04550.

Westera, M. and G. Boleda (2019). Don’t blame distributional semantics if it can’t do
entailment. In Proceedings of the 13th International Conference on Computational
Semantics-Long Papers, pp. 120–133.

Young, P., A. Lai, M. Hodosh, and J. Hockenmaier (2014). From image descriptions to
visual denotations: New similarity metrics for semantic inference over event descrip-
tions. Transactions of the Association for Computational Linguistics 2, 67–78.

A List of Non-Overlapping Dimensions in VG and BNC
Below you can find a list of non-overlapping concepts in the VG dataset and the BNC
corpus that were analyzed in Section 5.2. All the words are given in the lower case.

transcription

geography

clerk

father

poet

historian

deputy

theatre

member

emperor

instrument

community

nurse

department

copy

product

publishing

kingdom

doctor

assistant

message

list

sociologist

metropolitan

afternoon

facility

residence

centre

countryside

chamber

region

aunt

peasant

stomach

item

earl

republic

district

equipment

valley

author

node

bishop

politician

song

wife

mile

press

visit

page

victim
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governor

moon

conservation

dad

discus

card

distal

morning

worker

coast

flesh

daughter

rat

resident

client

episode

clinic

lip

temple

institute

miner

uncle

club

prisoner

brain

muscle

cash

closing

lawyer

county

brother

gene

visitor

paragraph

diet

chief

council

sister

device

cancer

university

project

tear

weapon

chapter

junction

site

interview

citizen

mine

channel

eat

drive

north

map

teacher

conference

bowel

receiver

protein

throat

saw

league

husband

east

partner

zone

tongue

stock

root

hall

sound

contact

south

voice

colleague

network

agent

resource

west

miller

queen

village

oxygen

jew

town

secretary

draft

duke

sodium

library

calcium
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B List of Clusters
In this Appendix you can find a list of clustered concepts together with annotated types and unsupervised labels for each cluster.

Cluster Label Num. Type Concepts

0 natural object 66 situational leg grass tail field trunk branch soil neck giraffe zebra animal horn hoof spot mane body
weed ivory log vegetation branchlet hay abdomen boulder enclosure stomach moss bark
snout goat menagerie mud wool pasture lamb stump bulge barn dirt cattle herd calf butt
plain stream tuft feeder farm mother udder deer hayfield rear underbelly antler wild ante-
lope wildflower trough foreleg droppings gazelle exhibit habitat buttocks brook

1 clothing 177 object-based man shirt person hand hair woman people trouser arm jacket hat foot helmet logo jean girl
cap spectacles glove coat sunglasses skateboard boot necktie sleeve lady strap suit back-
pack wrist knee dress watch guy sweater air camera frisbee belt vest jersey set shoulder
bag pocket skirt ramp watchband apparel scarf necklace beard group hood sandal elbow
tent outfit accountant crowd clothing couple lace monocle ponytail pitcher tarpaulin mus-
tache tattoo sweatshirt apron restaurant skateboarder flop blouse pair earphone cooler
clasp shoelace lap male helium waist microphone short female battalion bandanna saun-
terer heel adult graphic beanie sole wristwatch lens ankle family guard costume cigarette
badge down hip lanyard guitar brace skater trick gauze singlet robe tungsten photogra-
pher blazer braid chalk goatee legging mesh bib briefcase brim slipper stocking overall
lapel gun phase cane friend brace blackboard padding spectacle toddler cape skate slump
forearm tripod standing drum dais seating sideburn tartan handkerchief decoration cardi-
gan sphere customer tights gown fist turtleneck capri dandy limelight parade parka cafe
dad gentleman swing ma insignia sitting event eagle blond raincoat haircut wheelchair
brassiere skateboarding
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2 fixture 33 object-based tile towel sink eyelid toilet faucet pipe bathroom holder bathtub tank drain shower soap
tissue dispenser urinal grout basin stall valve toiletry pat toothpaste lever speculator dryer
plumbing toilet chrome lotion pipe shampoo

3 geological formation 39 situational cloud water wave sand surfboard beach ocean ripple shore foam surfer footprint land
horizon splash sea island shoreline cliff paddle spray swimsuit bikini aftermath seaweed
crest parasail sunset surf silhouette raft parachute boardwalk surfing seashore dune tide
mist wind

4 vascular plant 18 object-based banana fruit apple bunch crate chaff pineapple pear market cardboard peel scale produce
mango bruise melon plantain coconut

5 artifact 71 situational building sidewalk street roof tower curb bridge van balcony awning shop chimney street-
light city signal fireplug steeple station crossing entrance billboard pedestrian crane traffic
railway intersection dome garage church walk skyscraper cab lane manhole degree road-
way shopfront lamppost manner median business town overpass shelter gutter mailbox
sedan hotel minivan night parking overhang moon streetcar apartment rooftop dumpster
weathervane palace metro pavilion facade scaffolding narrative transformer court alley
finish bend vane crossing

12 furniture 94 situational wall chair floor picture pillow shelf lamp frame curtain ceiling rug bed base sofa room
cord desk laptop blanket screen keyboard television shade computer blind monitor mouse
sheet speaker painting fixture headboard control stool quilt lampshade magazine fireplace
art bedroom bookshelf bedspread booklet chandelier mattress artwork furniture wallpaper
cadmium bookcase notebook candlestick sill radiator ottoman mantle hallway molding
office printer periphery paneling mouse calendar fire heater mousepad radio charger arm-
chair desktop envelope tablet pajama bedclothes piano ashtray portrayal cornice footboard
electronics case mantel stereo garment molding thermostat linen notepad affray document
stapler urn drive
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6 instrumentality 270 situational leaf rock band bag bottle umbrella plant brick button part bird box board dog edge book
child contemplation kite paper seat elephant cow sheep design bear photograph wood hole
barroom telephone basket pot fabric key object base circle cone stick rope candle bottom
label tip string chain item feather bag surface thunderbolt can beak point mark screen
panel crack square decoration star baggage pen form poster bucket fan block nail print
ribbon pane case plaything slat teddy section blade end brush pad pile center mat stain
bin spoke image duck five rod pond scissors toothbrush magnet tape balloon hook plastic
bulb heart material machine package pebble hosiery marker barrel opening lock toe de-
bris ice bell stack drawing card triangle newspaper note bubble diamond fish inside device
tube berry cage pigeon bull light tool decal outdoors glare gull bead figurine speck hanger
space shape armrest slab latch ridge bristle fire leave pin pencil vessel jug fold videodisk
homo date compartment sack wrap flap abrasion streak wallet cringle stud groove but-
terfly slot skull thing accent binder merchandise bill leather dash vein thread goose drop
cast ingot gap dust circular tassel spike snowflake lining droplet shell tin flamingo palette
detail movie lion ipod coin desert monkey sewing marble cactus small spout liner flower
outline broom footfall parasol supply cut drop frond port stud link swan kayak bone noz-
zle narration rubber blood binding bobbin gauge battery remainder barge storage cube
pearl rib check spot rainbow hoop smuggler back slit rung smudge alcohol soldier car-
toon there turkey dinosaur dent headrest penguin signature pew owl edging check nothing
almond pottery rafter easel round radiance skeleton pouch

18 motor vehicle 53 situational car wheel road tire bicycle mirror headlight bus truck motorcycle windshield vehicle
pavement wiper bumper grillroom handlebar meter driver batch asphalt reflector fender
dawdler cab minibike stoplight kickstand driveway policeman hubcap rear taillight high-
way exhaust moped cyclist jeep wagon silencer wayside brake pickup tractor license bull
motorcyclist blinker police cycle splashboard camper buggy
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19 plant part 39 situational flower vase root doughnut cake petal frosting ring rotter scattering frost cupcake pastry
cookie nut candy sugar bud bouquet muffin bagel root layer glaze powder blooming good
bride sunflower whirl tulip daisy elf groom grade case agreement doily dainty

7 nutriment 154 situational table plate glass food bowl cup container pizza cheese fork vegetable knife carrot napkin
tomato bread broccoli tray dish sauce spoon meat onion pepper piece crust sandwich slice
wine pan topping jar boodle bun utensil potato pepperoni tablecloth mushroom straw liq-
uid egg chump drink chicken bean strawberry beer disk salad lemon rice seed sausage bit
coffee catsup cucumber cream menu bacon juice pickle spinach dessert hotdog silverware
meal ham noodle spice negligee shaker beverage corn blueberry pea soup spatula carton
herb condiment butter one-half cabbage milk foil coaster oil toothpick pie basil ball salt-
shaker tine flavorer runt toast salt cauliflower grain pancake prong dough chopstick pasta
tongs chef beef squash garnish parsley tea tabletop grain radish dinner syrup floret bite
burger breakfast cracker flour garlic lunch gravy grease zucchini dressing jam asparagus
cayenne gelatin bite mayonnaise biscuit gusto wedge leek steak cork ingredient reception
beet hamburger chili filling macaroni coriander blackberry raisin eccentric mozzarella

8 band (sports) 46 situational shoe sock ball player racket uniform bat court spectator catcher internet ballplayer bat-
ter baseball wristband umpire cleat mask game headband mound visor tennis wristlet
bleacher dugout stadium audience sweatband turf clay scoreboard team coach goal out-
field match armband baseline referee avocation athlete pitch nike armlet soccer

9 vessel 19 object-based boat dock sail mast buoy ship sailboat pier cabin oar motor seaport canoe beacon duct
float bay anchor marina

10 home appliance 37 object-based handle cabinet counter knob drawer rack kitchen stove oven switch microwave hinge
refrigerator burner countertop cupboard plug dial dishwasher appliance kettle socket
blender baseboard toaster doorknob deep-freeze scope rag teapot steel sponge pump so-
ciable pull hardware timer
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11 geological formation 61 situational tree sky land shadow fence shrub snow background mountain hill ski area distance gog-
gles skier park sun way snowboard slope river lake hillside lawn trail limb yard day limb
snowboarder foreground bank landscape pool garden greenery shrubbery lift extremum
shed valley range terrain fog snowsuit pine skiing lodger mulch copyright hut slide moun-
tainside mitten weather google gazebo winter shovel riverbank leap

13 facility 21 object-based airplane wing engine propeller cockpit track smoke jet airport gear tarmacadam aircraft
pilot stabilizer terminal fuselage turbine contrail airdock formation missile

14 device 13 object-based horse saddle harness rider bridle rein stirrup jockey reign pony halter winker cowboy

15 body part 63 object-based head ear eye nose face mouth finger cat paw collar tag fur ring tooth hair’s-breadth ear-
ring eyebrow thumb lip baby thorax skin nostril smile wrinkle tongue claw chin bow
leash fingernail brow knot doll buckle cheek thigh cuff knock eyelash seam student torso
breakwater kitten breast toenail lipstick knuckle coil freckle jaw expression bamboo talon
eyeball comb bandage puppy strand navel index lash

16 substance 26 situational sign letter word inscription arrow text bracket stop second phosphorus thyroxine oxy-
gen page information radius bacillus nitrogen liter direction signpost direction gram title
iodine signboard hydrogen
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17 artifact 160 situational window pole light line door numeral post path bench light clock train railing flag house
writing wire back side corner paint banner platform measure ad pillar rubbish gravel trim
name column step gate concrete graffito statue doorway palm row cable vent rim walk
cart structure symbol marker scene sunlight display barrier ladder arch cement shutter
strip ledge canopy planter passenger color cross emblem garbage antenna outside stair-
way support pool deck hedge grate two arch figure home partition earth porch equipment
vine position patio sculpture plaque gray bannister three point shingle palm acid ten tun-
nel covering ashcan rain set siding steam booth open one day roadblock rectangle map
four worker lantern wreath fountain crown six mannequin curve ivy large twelve shield
locomotive litter iron windowsill carving skylight conductor pylon index cargo nine can-
vas eight cobble seven booth mural memorial tourist cylinder smokestack connection year
wording hovel carrier angel wicket foundation flowerbed dragon galley address employee
flat spring museum exit sword plaza
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