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A B S T R A C T

Studies have shown that readers still prefer human translation (HT), even over trans-

lations produced by state-of-the-art Machine Translation systems. Often overlooked

when measuring translation quality in machine translation (MT) as compared to HT

are lexical and syntactic differences. This paper studies the aspects of translationese

that are valuable for distinguishing different translation types and whether such

unique phenomena can be detected by machine-learning classifiers. In this study,

translationese features are defined under the framework of translation universals in

four aspects - simplification, normalization, explicitation, and interference. We ex-

pect that machine-based translation reveals more pronounced translationese than

HT. A Support Vector Machine (SVM) classifier is built to conduct three binary clas-

sifications of the three commonly available translation types - MT, HT, and post-edit

(PE). The results suggest that machine-based translation (i.e., MT and PE) exhibits

translationese characteristics which are less present in HT. It is advised that fu-

ture research should incorporate deeper linguistic representations into the features.

Finally, when making cross-comparisons of translation types in future, it is also

advised that a single dataset consisting of the same source texts is used, alongside

machine-based translations generated from one fixed MT system.
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1 I N T R O D U C T I O N

When reading translated texts, it is a common feeling for native language readers

to spot the ’unnaturalness’ compared with texts written in the original languages.

The linguistic phenomenon of this ’unnaturalness’ in the translated texts is termed

as Translationese (Gellerstam, 1986) or third code (Frawley, 1984). This difference be-

tween original and translated texts does not indicate inferior quality. It is even pre-

ferred in some situations than pure target language form (Toury, 1979). This is no

surprise since human translators might take the reader’s sociocultural background

into account. Translated texts are made syntactically simpler or more explicit than

source texts by human translators to fit the target cultural and linguistic systems.

Meanwhile, as the development of machine translation (MT) systems rapidly

evolves, translations are no longer merely hand-crafted by human translators. MT

systems are actively involved as part of the translation process to help human trans-

lators in productivity (Plitt and Masselot, 2010). On the other hand, some profes-

sional translators still disfavour the use of MT in many respects (Bundgaard, 2017),

one reason being the ’inadequate translation’ produced by MT systems. This gap

between human-quality translation and actual MT has been to be distinguishable by

machines in terms of lexical usage (Carter and Inkpen, 2012), grammaticality and

fluency (Arase and Zhou, 2013; Chae and Nenkova, 2009), and coherence (Nguyen-

Son et al., 2019).

Despite the difference, some neural MT systems have claimed to reach human

parity (Hassan et al., 2018), that is, there is no significant difference between the

quality scores of MT and HT. Toral et al. (2018a) further reassessed this claim, which

shows MT is still significantly different from HT when translating the texts written

in the original language according to human’s direct assessment (DA). Besides, hu-

man assessors still show a strong preference towards HT compared with MT when

evaluating the whole document instead of an isolated sentence (Läubli et al., 2018).

Nonetheless, in the news translation shared task at WMT19 (Barrault et al., 2019),

one MT system used for translation direction of English to German reached human

parity, but the super-human performance was not yet achieved (Toral, 2020).

1



introduction 2

While most of the MTs still struggle to reach human quality, research has shown

that the quality of post-edits (PEs) is equivalent to that of HTs (Garcia, 2010) or

even better (Green et al., 2013). Post-editing is a common translation workflow con-

ducted after MT systems translate the source texts. During post-editing, human

translators annotate and edit the errors made by MT systems to produce the final

translation. Due to this procedure’s nature, however, the final translations (i.e., PEs)

are primed by the raw MT outputs (Green et al., 2013). As a result, PEs are found

to exhibit ’exacerbated translationese’, termed as post-editese (Toral, 2019). PEs have

lower lexical variety and density, suggesting that they are lexically simpler than HT.

Moreover, PEs also have more interference from the source language than HT. In

sum, we could illustrate that these three currently popular translation types all ex-

hibit translationese in different forms that stand apart given the different challenges

they are facing.

Such distinctive features of the respective translation types can be effectively

identified by the machine-learning algorithms. The linguistic difference between

originals and HT has already been demonstrated to be machine-learnable by sev-

eral studies. A more systematic approach by Volansky et al. (2013) incorporates the

notion of translationese hypotheses as the inspiration for the features used in the

classification task of originals and HT. These translationese features are grouped

into four categories under the framework of translation universals, namely simpli-

fication, explicitation (Baker et al., 1993), normalization, and interference (Toury,

1995). Simplification refers to using simpler syntax and lexicon; explicitation means

the implicity in the original texts is made explicit in the translation; normaliza-

tion indicates the standardized texts with conventional grammar, and interference

implies that the source language’s footprint remains in the translation. It shows

among all hypotheses, features that model the phenomenon of interference from the

source texts are the best performing features for distinguishing between originals

and HT. Likewise, the linguistic traits between MT and HT is machine learnable

and detectable. Carter and Inkpen (2012) use unigram features with Support Vec-

tor Machines (SVMs) classifiers to distinguish between MT and HT, resulting an

accuracy of 99.8%. Arase and Zhou (2013) also employs and SVM classifier with

features modeling the sentence’s fluency and grammaticality, achieving an accuracy

of 95.8% in the detection of MT and HT.

Following this line, we hope to extend the research scope to different translation

types that also exhibit unique translationese phenomena. We expect the research
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on the translationese characteristics of commonly available translation types could

shed light on the deficiencies of the MT systems (Lembersky et al., 2011) and post-

editing strategy. Inspired by Volansky et al. (2013), we adopt features under the

framework of translation universals and employ machine-learning classifiers to in-

vestigate which translationese traits are indicative of different types of translation.

We aim to answer the following questions:

rq1. Can human translation be distinguished from machine-based translation

according to translationese features? Under the framework of translation

universals, whether human translationese exhibits distinguishable phenom-

ena from machine translationese (i.e., MT and PE). We hypothesize that

machine-based translations will exhibit more-translationese like phenom-

ena than human translation. Regarding the classification accuracy, we also

hypothesize that if the MT system’s translation quality increases, the clas-

sification accuracy will decrease, meaning it is harder for the classifier to

learn the difference.

rq2. If the answer to RQ 1 is yes, then which characteristics of translationese

are valuable to distinguish human and machine-based translation? That

is, what is the machine-learnable difference between human translationese

and machine translationese?

rq3. If the answer to RQ1 is yes, then MT and PE are both distinguishable from

human translation. However, between these two machine-based transla-

tions, what are the most useful characteristics to distinguish the two?

We hypothesize that PE manifests less severe translationese than MT. Since

PE is primed by MT but with an additional human touch, what machine-

detectable characteristics does the human editor erase from or add into the

MT texts?

The rest of the thesis is organized as follows. In chapter 2, we provide a brief

introduction about the previous studies on the thesis’s fundamental concepts. In

chapter 3, we describe the datasets used for our experiments. The definition and

calculation of translationese features and the experiment scheme is presented in

chapter 4. In chapter 5, we present the experiments’ results and provide the analysis

and interpretation of the feature importance. Finally, in chapter 6, we state the

answers to our research questions and conclude our findings.



2 R E L AT E D W O R K

This chapter will present the previous research regarding the fundamental concepts

of this thesis. In section 2.1, we introduce the development and characteristics

of three types of translation used in our experiment - MT, HT, and PE. Section

2.2 reviews the studies of unique phenomena exhibited in the translated texts -

translationese and post-editese. Finally, section 2.3 gives an overview of the studies

using computational approaches for classification tasks between different types of

translations.

2.1 different types of translation

Translation, serving as an intermediate between original and target languages, is

commonly depicted as the work produced by bilingual and professional transla-

tors with specific domain knowledge. HTs are often not just merely translated

texts. Instead, they are adapted to the target languages’ linguistic norms and take

the reader’s knowledge into account (Ahrenberg, 2017). The native language and

translation expertise of the human translator also impact the characteristics of the

resulting translated texts. A recent study (Popovic, 2020) has shown that the trans-

lator’s expertise influences sentence length, lexical and morpho-syntactic variety.

Professional HT has a longer sentence length and the greatest lexical variety in the

translation direction from German to French. Word length and lexical variety are

also higher when translating German into the translator’s native (French) language.

Such HTs were the center of translation studies until the wide availability of

online machine MT applications (Koponen, 2016). The MT applications benefit the

public and are commonly employed to translate short life-cycle digital texts such as

reviews, online documentation, and social media content without human effort to

intervene (Moorkens et al., 2018). Moreover, involving MT in the translation proce-

dure has shown to be more productive than translating from scratch in the technical

(Plitt and Masselot, 2010) and news (Martín and Serra, 2014) domain. Nevertheless,

4



2.1 different types of translation 5

MT still exhibits different linguistic attributes than HT. Ahrenberg (2017) compares

human-translated Swedish and machine-translated Swedish generated by Google

Translate, and it has shown that MT is more similar to the source texts than HT in

terms of length, information flow, and structure. It also reveals that HT takes differ-

ent procedures such as sentence splitting and paraphrasing that seem to be out of

MT’s reach. These procedures notably share the purpose of making the translated

texts more compatible with a fluent reader’s experience.

Among all the domains where MT is actively used, news text has received par-

ticular interest due to its daily demand for high productivity and commercial value.

In this specific domain, state-of-the-art MT systems have claimed to achieve human

parity (Barrault et al., 2019, section 3.8) for three language directions (DE ↔ EN

and EN → RU), that is, human assessors perceive the quality of MT as equivalent

with HT. There is no significant difference between the quality scores attained by

MT and HT. Hassan et al. (2018) also claim the MT translated from Chinese into

English has achieved human parity. Toral et al. (2018a) reassess the human parity

in Hassan et al. (2018) and find out that HT still significantly outperforms MT when

translating source texts written in the original language.

Despite the characteristic difference between HT and MT, with the development

of machine translation paradigms shifting from the phrase- and rule-based MT

(PBMT and RBMT) to neural MT (NMT), the MT’s quality has increased. Toral

and Sánchez-Cartagena (2017) compare the nine translation direction outputs from

best PBMT and NMT submitted to the WMT16 translation task and conclude that

NMT systems produce more fluent texts than PBMT and the NMT’s reorderings are

closer to the reorderings of the human reference than PBMT.

Regardless of the wide application and human parity claim, MT for various lan-

guage pairs and domains are still far from published quality. Post-editing (PE) (i.e.,

annotating the errors) the raw MT has thus integrated into the workflow of pro-

fessional translators as a common practice to improve the translation quality and

productivity (O’Brien et al., 2014; Koponen, 2016). Toral et al. (2018b) study the

effect of post-editing along three dimensions: temporal, technical, and cognitive ef-

fort. It is found that post-editing the NMT output increases translation productivity

by 36 % compared to translating from scratch. Although MT primes PE, research

has shown that PE texts have equivalent or even better quality than HT from scratch

judged by human accessors (Green et al., 2013; Koponen, 2016; Daems et al., 2017).
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2.2 translationese and post-editese

Translated texts have proved to be syntactically and lexically different from original

non-translated texts. This phenomenon, termed as translationese, is first discussed by

Gellerstam (1986) in which compares original Swedish and translated Swedish from

English. He suggests that translationese does not necessarily mean inferior transla-

tion quality; instead, it is an empirical linguistic phenomenon exhibited only in the

translated texts. Translation thus stands along as a third code (Frawley, 1984), mean-

ing it is a sub-language of each language involved. Moreover, such distinct features

are claimed to be universal (Baker et al., 1993; Baker, 1995): the translated texts have

shown this specific feature distribution regardless of the source languages. These

translation universals are grouped into four categories: simplification, explicitation,

(Baker et al., 1993) normalization, and interference (Toury, 1995).

The simplification hypothesis indicates that translated texts are simpler lexically

and syntactically than originals. Blum and Levenston (1978) define lexical simplifi-

cation as ’the process and/or results of making do with less word.’ They suggest

six strategies that originate from one’s semantic competence in their mother tongue.

Some strategies use familiar synonyms and paraphrasing when there are cultural

gaps between the source and target languages. al Shabab (1996) shows translations

have lower lexical variety (i.e., type-token ratio) than originals. Laviosa (1998) stud-

ies the narrative translated texts from various source languages into English. It

shows translated texts have a relatively lower lexical density (i.e., a lower percent-

age of content words). Moreover, translated texts use more high-frequency words

than originals.

The normalization hypothesis refers to grammatically standardized translation.

Toury (1995) suggests a law of growing standardization as a main translational be-

haviour. He suggests that special textual relations in the source texts are replaced

by conventional relations in the target texts. One characteristic is avoiding repeti-

tion in the originals. Ben-Ari (1998) notes this translation behavior in several ways -

cancelling altogether, partially replacing, announcing, or using the variation of the

repetitive word in the originals.

The explicitation hypothesis refers to how the implicity in the source texts is

made explicit in the translation. Blum-kulka and House (1996) point out that in

translations from Hebrew to English, the shifts of cohesive markers by inserting ad-

ditional words in the target texts raise the level of explicitness. Øverås (1998) studies
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both translation directions of English and Norwegian and confirms that explicating

shifts exist in translations. Koppel and Ordan (2011) show that cohesive markers

(e.g., therefore, thus, hence) are more frequent in translations than in originals.

Lastly, interference points out the fingerprints of source language usage in the

translation. Toury (1979) suggests that translation exhibits the phenomena of inter-

language Selinker (1972), which is a linguistic system between the source language

and target language, reflecting the interference of these two codes. Such interlan-

guage is a translation universal presented in the translated texts, and it is even pre-

ferred to pure target form with socio-cultural adaption in some situations. Further,

Toury (1995) suggests that there is a law of interference - ’in translation, phenomena

pertaining to the makeup of the source text tend to be transferred to the target text.’

However, the translationese studies above focus mainly on the comparative

study between translated and original texts. While translation has different vari-

ants, as mentioned in section 2.1, each of them also manifests different transla-

tionese phenomena. Post-editese, a variant of translationese, represents the distinct

characteristics that PE texts exhibit when compared with HT. Due to MT’s nature, it

tends to select the most frequent words chosen by humans. Farrell (2018) spots MT

markers that could be used to distinguish PE from HT in Wikipedia texts translated

and post-edited from English into Italian. Although previous studies have shown

that human assessors do not seem to distinguish between PE and HT (Daems et al.,

2017) and the quality of PE is comparable to HT (Garcia, 2010; Guerberof Arenas,

2009); PE texts show empirical evidence of ’exacerbated translationese.’ In terms of

simplification, normalization, and interference, PEs are lexically simpler and have

more interference from the source language (Toral, 2019).

2.3 classification between different types of trans-

lation

2.3.1 Originals vs. human translation

Although the binary classification between original and human-translated texts are

not the focus of our experiments, the previous findings inspire our experiments on

the classification of different translation types.
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The first machine learning classification concerning translationese has been im-

plemented by Baroni and Bernardini (2005). Support vector machines (SVMs) are

used to detect original and translated Italian based on translationese features with

a varying number of n-grams (unigrams, bigrams, and trigrams) and types (word-

form, lemma, part-of-speech and mixed). The mixed representation contains the

inflected function words and the part-of-speech tags of the content words. Unigram

wordform and lemma representation capture the lexical usage while the mixed rep-

resentation and wordforms of multiword represent the grammatical information.

The best model achieves a high accuracy of 86.7%, and it performs better than pro-

fessional translators at the same task. Furthermore, it heavily relies on the distribu-

tion of n-grams of function words and morpho-syntactic features such as non-clitic

personal pronouns and adverbs. This binary classification task verifies the presence

of translationese.

Following this line, several studies also implement automatic text classification

methods with different translationese features. Ilisei et al. (2010) employ several su-

pervised machine learning classifiers to distinguish between HT and original texts.

The classifier is trained with 21 simplification universal features such as average

sentence length, type-token ratio, and information load as lexical density. Data in

medical and technical domains consists of comparable pairs of translated texts by

students, professionals, and original texts. The SVM classifier achieves a high ac-

curacy of 97.62% in distinguishing translated medical texts by professionals and

original medical texts, which provides evidence of the existence of simplification

features.

Moreover, it also reveals that lexical richness, sentence length, and proportion

of grammatical words1 (i.e., lexical density) are among the most useful features re-

gardless of any classifiers. Some morphological attributes like nouns and pronouns

also contribute useful information for classification. Specifically, in translated texts,

type-token ratio, mean sentence length, and lexical density are all smaller.

Ilisei and Inkpen (2011) implement several supervised machine learning clas-

sifiers including SVM, Naive Bayes, Decision Trees for the binary classification of

human-translated and original Romanian texts in the news domain. Besides the

features used in 2010, they also add another set of features modelling at the mor-

phological levels in which the translationese effect is claimed to take place (Laviosa,

2002). For example, the proportion of content words (nouns, verbs, adjectives, and

1 They are defined as determiners, prepositions, auxiliary verbs, pronouns, and interjections.
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adverbs), pronouns and prepositions are included in this task. Overall, the classi-

fiers have reached considerably good results, ranging from 91.71% to 98.90%. The

result shows that information load (i.e., lexical density) is the most useful feature,

following the proportion of nouns, proportion of prepositions, and lexical richness.

Koppel and Ordan (2011) use the frequencies of function words taken from

LIWC (Pennebaker et al., 2001) as features and demonstrate the phenomenon of ex-

plicitation with the prevalence of cohesive markers/adverbs in translated English.

Bayesian logistic regression is used for this binary classification task with ten-fold

cross-validation, achieving an accuracy of 96.7%. Two categories show a significant

difference between original and translations - animate pronouns (e.g., I, we, you,

she) and cohesive markers (e.g., therefore, thus, consequently). It suggests that the

under-representation of pronouns and the over-representation of the in translations

might be the result of explicitation and simplification.

A systematic investigation of translationese features with text classification is

employed by Volansky et al. (2013). The data set is EUROPARL (Koehn, 2005)

containing 4 million English (original language) tokens and the same number of

tokens translated from ten source languages. SVMs with sequential minimal op-

timization (SMO) is employed as the classification algorithm trained with ten-fold

cross-validation. Four translationese hypothesis - simplification, interference, ex-

plicitation, and normalization - are modelled through different features. The classi-

fication is conducted with each feature separately. They conclude that under four

categories of translationese features, interference is the best indicator for transla-

tion, with the classification accuracy achieving over 90% based on part-of-speech

ngrams. According to the simplification hypothesis, mean word rank achieves the

best accuracy of 77%. Features belonging to the explicitation hypothesis do not

exceed the classification accuracy of 58%. However, following Koppel and Ordan

(2011); Blum-kulka and House (1996), they use 40 cohesive markers (e.g., moreover,

thus, and besides) as explicitation features, and the classifier achieves an accuracy of

81%. The finding suggests that such cohesive markers are more frequent in trans-

lation than in the original texts. Features of normalization such as repetition and

contractions perform a bit higher than chance levels because of the scarcity of such

features in EUROPARL. However, threshold pointwise mutual information (PMI)

capturing the number of associated bigrams whose PMI is above 0 gets better ac-

curacy of 66%. The results show that original English uses more fixed expressions

than in translated English.



2.3 classification between different types of translation 10

2.3.2 Machine translation vs. Human translation

As for the classification task of MT and HT, a considerable amount of research

has been conducted. However, the vast majority of this research does not take

translationese fully into account.

Carter and Inkpen (2012) extract lexical simplification features of type-token ra-

tio, average unigram length, and unigram frequencies. SVMs is used to classify

text as human-written English, human-written French, machine-translated English,

or machine-translated French. The results show that MT’s traits are indeed de-

tectable by machine learning classifiers with 99.8% and 98% accuracy for Canadian

Hansard2 and several Canadian government web sites. They suggest different ma-

chine translation systems may produce different sub-optimal translations, and thus

building separate models for different MT systems might be needed.

Arase and Zhou (2013) focus on the phrase salad phenomenon (Lopez, 2008) of

MT. Phrase salad means a phrase is fluent and grammatically correct, but when

looking into inter-phrases, the correctness of grammar and fluency is poor. This

characteristic is captured through fluency, grammaticality, and completeness of the

sentences. Fluency features are computed via language models trained on human-

written sentences and machine-translated sentences. Grammaticality is calculated

using language models trained with the part-of-speech sequences of human-written

and machine-translated sentences. Besides, the completeness of non-contiguous

phrases, referring as gappy-phrase (Bansal et al., 2011), is also modelled as part of

the phrase salad phenomenon. The dataset is created by crawling eight websites

with human-generated Japanese and English parallel texts translated by Bing Trans-

lator, Google Translate, and an in-house SMT system. An SVM classifier is used

with a radical basis function kernel because of a smaller number of features. Com-

bining all features, the model achieves an accuracy of 95.8%. It also investigates the

generality of those features by applying the same method to the English dataset.

They suggest that since English is a morphologically poor language, the effect of

features computed by part-of-speech language models may be constrained.

In terms of fluency, Chae and Nenkova (2009) conduct fluency prediction be-

tween (fluent) HT and (less fluent) MT based on sentence-level syntactic phras-

ing features such as parse tree depth, sentence length, and (unnormalized) phrase

lengths. There is only one translation direction, Chinese to English, involved in this

2 https://www.isi.edu/natural-language/download/hansard/

https://www.isi.edu/natural-language/download/hansard/
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experiment. The data contains human and machine translations with five levels of

human-evaluated fluency scores. Four different classifiers - decision tree, logistic

regression, support vector machines, and multi-layer perceptron - are used with

10-fold cross-validation. The result shows that surface structural features provide

useful information. In particular, support vector machines perform better when

distinguishing worse MT from HT than better MT, achieving an accuracy of 0.86.

Moreover, the classification performance gets better as the divergence of fluency

quality increases. Aharoni et al. (2014) further validate the inverse relationship be-

tween the quality of the MT systems and the detection accuracy, using features

such as part-of-speech n-grams and frequencies of function words taken from (Pen-

nebaker et al., 2001). An SVM classifier is built with SMO as the learning algorithm.

To detect the machine-translated texts from different MT systems, they construct

the dataset with a portion of Canadian Hansard corpus3 and translate the French

part using Google Translate, Systran, and five other commercial MT systems.4. The

result shows a strong correlation between the accuracy and the BLEU score or the

human evaluation score of the machine translation.

Nguyen-Son et al. (2019) propose a method to distinguish human translation

from machine translation based on the coherence score. They assume that human-

translated texts are more coherent than machine-translated texts and thus are easier

to comprehend. To estimate the coherence, they match similar words in paragraphs

with maximum similarity measured by Euclidean distance. The similarity is used

as the coherence features to determine whether a human or machine generates a

text. The data contains 2000 aligned pairs from TED talks of original English and

translated English (from German). An SVM optimized by SMO is used, and it

achieves the best accuracy of 87%. They also apply the same approach to Dutch

and Japanese, and it shows this method is robust throughout different resource

levels.

2.3.3 Human translation vs. Post-edit

Daems et al. (2017) find fully post-edited texts are indistinguishable from HT con-

cerning quality, reader perception, syntactic and semantic translationese features.

To construct the dataset, professional and student translators translated eight dif-

3 https://www.isi.edu/natural-language/download/hansard/
4 http://itranslate4.eu

https://www.isi.edu/natural-language/download/hansard/
http://itranslate4.eu
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ferent newspaper articles of roughly 150-160 words long from English into Dutch.

The corpus consisted of 87 human translations and 87 post-edited texts. A reader

perception study was conducted by asking translation students to ’mark the texts

you think are PE’. The results show that humans cannot distinguish between HT

and PE. They also implement a computational approach with 55 distinct syntactic

and semantic features, including average word length, perplexity, and the average

number of content words. The classification results from a logistic regression show

that the computer cannot accurately distinguish between HT and PE. However, we

consider that this classification result is due to the little amount of training data,

preventing the machine from acquiring enough information.

However, Toral (2019) corroborates the presence of post-editese. Three datasets

are used in the experiment, Taraxü (Avramidis et al., 2014), IWSLT (Bentivogli et al.,

2016; Cettolo et al., 2016) and Microsoft "Human Parity" (Hassan et al., 2018), cov-

ering five different translation directions. Four features - lexical variety, lexical

density, length ratio, and part-of-speech sequences - addressing different transla-

tion universals are computed. Computational analyses prove that PE texts show

lower lexical variety/density than HT. This links to the simplification hypothesis

that post-editese is lexically simpler than translationese. Sentence length in PEs is

more similar to that of the source texts, which may be because of interference and

normalization. Moreover, part-of-speech sequences in PEs are more close to the

source languages’ PoS sequences than HT. This suggests that the interference from

source language is more prevalent in PE.



3 DATA C O L L E C T I O N

This chapter gives an overview of the data sets used for the classification exper-

iments and language model building. Three types of translations (i.e., HT, MT,

and PE) are used to make a cross-comparison and analysis. They are used for the

following three classification experiments:

• Distinguishing HT and MT

• Discriminating between HT and PE

• Distinguishing PE and MT

Currently, there are no available data sets that include all the forms we need.

So we make use of the following four data sets for different classification tasks:

WMT19-submitted-data (Barrault et al., 2019), Microsoft "Human Parity" (Hassan

et al., 2018), Automatic Post-Editing (APE) shared task (Chatterjee et al., 2019), and

APE-QUEST (Ive et al., 2020).

We would also like to investigate whether having more linguistic information

from the neighboring sentences helps distinguish between different translation types.

Thus, instead of classifying at sentence-level, sentences are grouped sequentially

into text chunks of 2, 5, and 10 sentences as the classification blocks. An overview

of the dataset is shown in Table 1.

Section 3.1 introduces the data set from the Conference on Machine Translation

(WMT) 2019 news translation task, used for the classification of MT and HT. To

inspect the effect of quality mismatch, additional training and testing data gener-

ated by DeepL is also used in our experiment. Section 3.2 gives an overview of

the data used to classify HT and PE, which is Microsoft ’Human Parity.’ Section

3.3 presents the data used in MT and PE classification from two different data sets

- APE and APE-quest. Besides the classification task data, we also employ News

Crawl 2018/2019 to build the language models for perplexity calculation. Details

are presented in section 3.4.

13
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Task Dataset Translation Direction Domain

HT vs. MT newstest2016-2019
de, fi, gu, kk, lt, ru, zh→en

en→de, fi, ru, gu News

HT vs. PE MS Human Parity zh→en News

PE vs. MT APE
APE-QUEST

en→de, ru
en→fr, nl, pt

IT
Legal

Table 1: Overview of the data sets used for classification tasks.

3.1 machine translation and human translation

data

We use publicly available1 data from the news translation task in Conference on

Machine Translation (WMT) 2019. In total, there are eleven translation directions

including seven languages (German (de), Finnish (fi), Gujarati (gu), Kazakh (kk),

Lithuanian (lt), Russian (ru), Chinese (zh)) translated into English and four lan-

guages (de, fi, ru, and gu) translated from English.

The MT’s quality is measured through direct assessments (DA) by human asses-

sors. They are asked to rate a given MT by ’how adequately it expresses the meaning

of the corresponding reference translation or source language input’ (Barrault et al.,

2019) on a scale of 0 to 100. According to this measurement, an MT system, Face-

book FAIR for translation direction of en→de has achieved the highest DA score,

90.3, and it is claimed to achieve super-human performance, while the MT system

for en→gu has the lowest DA score of 66.8.

For the training set, the outputs of the best MT systems from previous years

(newstest2016, newstest2017 and newstest2018) are collected. Since Neural Machine

Translation (NMT) outputs are more fluent and closer to the reordering in the refer-

ence (Toral and Sánchez-Cartagena, 2017), only the outputs from NMT systems are

used in this experiment. For the testing set, we also selected the output of the best

MT systems in WMT19 (newstest2019). Here we define best systems according to

DA score with standardization (Barrault et al., 2019, section 3.7). If more than one

system belongs to one corresponding cluster (that is, they do not have a significant

difference in DA scores), we select the one with the highest BLEU score (Toral and

Sánchez-Cartagena, 2017). Previous studies (Zhang and Toral, 2019; Läubli et al.,

2018) point out that the inclusion of translationese in the test sets have inflated DA

and BLEU scores compared with the test sets written in the original language. This

effect of translationese in the source language might further influence our classi-

1 http://www.statmt.org/wmt19/metrics-task.html

http://www.statmt.org/wmt19/metrics-task.html
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fication results. We thus exclude the translationese part by only collecting docu-

ments labeled with origlang="source language" in the SGM files. SGM stands for

Standard Generalized Markup language, a programming language for generating

digital documents with custom tags. Moreover, those custom labels provide infor-

mation about the file’s structure and an overview of the content.

Newstest2019 has already excluded the translationese part (Barrault et al., 2019),

so the whole data set is used. For language pairs which have data from previous

years, we concatenate all the non-translationese parts from previous years together

as the training data and use newstest2019 as the test set. However, for language

pairs such as lt→en, kk→en, gu→en and en→gu, the only available data from the

year 2019 is split into training (70%), and testing sets (30%) sequentially.

The overview of the best MT systems and corresponding sentence pairs are

shown in Table 2. Each sent pair represents a tuple of (MT, HT, source).

Direction newstest2016
# Sent pairs

newstest2017
# Sent pairs

newstest2018
# Sent pairs

newstest2019
# Sent pairs

Train
pairs

Test
pairs

de→ en UEDIN-NMT
1,499

online-B
1,502

RWTH
1,498

Facebook_FAIR†
2,000

4,449 2,000

fi→ en - online-B
1,500

NICT
1,500

MSRA.NAO
1,996

3,000 1,996

ru→ en AMU-UEDIN
1,498

online-B
1,499

Alibaba
1,500

Facebook_FAIR
2,000

4,497 2,000

zh→ en - SogouKnowingnmt
1,000

NiuTrans
2,481

Baidusystem
2,000

3,481 2,000

lt→ en - - - GTCOMPrimary
1,000

700 300

kk→ en - - - NEU
1,000

700 300

gu→ en - - - NEU
1,016

710 306

en→ de UEDIN-NMT
1,500

LMU-nmt-reranked
1,502

FACEBOOK_FAIR
1,500

Facebook_FAIR‡
1,997

4,502 1,997

en→ fi - onlineB
1,502

NICT
1,500

GTCOMPrimary
1,997

3,002 1,997

en→ lt - - - tilde-nc-nmt
998

698 300

en→ ru - onlineB
1,502

Alibaba-ensemble-model
1,500

Facebook_FAIR†
1,997

3,002 1,997

Table 2: The best NMT systems and collected sentence numbers for each language pair. The
outputs from the best NMT systems listed above are used in the experiments. The
cells with "-" mean this translation direction is not provided in that year. MT systems
with "†" have achieved human parity, and the system with "‡" has attained super-
human performance.
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3.1.1 Machine translation data by DeepL

The previous experiments use data from previous years (newstest2016, newstest2017

and newstest2018) as the training set, and thus the translation quality of training data

is not as good as newstest2019. Such quality mismatch might affect classification

accuracy. To eliminate this discrepancy, a fixed MT system, DeepL2, is used to

generate the training and testing data for three language pairs: de→en, en→de and

en→ru. DeepL is an NMT-based online translation service trained with the Linguee

database to produce more natural word sequences. According to the professional

translators, the outputs from DeepL are rated better than other online translation

services such as Google Translate, Microsoft Bing, and Amazon Translate.3

DeepL translates the source texts from newstest2016, newstest2017 and newstest2018

as training sets and newstest2019 as testing sets. Table 3 shows an overview of the

data distribution and total training and testing pairs.

Direction newstest2016
# Sent pairs

newstest2017
# Sent pairs

newstest2018
# Sent pairs

newstest2019
# Sent pairs Train pairs Test pairs

de→ en 1,499 1,502 1,498 2,000 4,499 2,000

en→ de 1,500 1,502 1,500 1,997 4,502 1,997

en→ ru - 1,502 1,500 1,997 3,002 1,997

Table 3: Data sets statistics for classification between MT generated by DeepL and HT.

3.2 human translation and post-edits data

The Microsoft Human Parity dataset is used for the classification of HT and PE. It

contains only one language pair, zh→en. The source texts are from newstest2017.

Professional translators construct human translation from scratch without using

any online translation engines. The post-edits are also annotated by professional

translators based on Google Translate machine translation results (Hassan et al.,

2018). There are 2,001 pairs of (HT, PE, source)4. However, only 1,000 pairs translated

from the texts originally written in Chinese are used in order to avoid translationese

(Toral et al., 2018a).
2 https://www.deepl.com/translator
3 https://www.deepl.com/press.html, section "How do we compare to the competition?". (accessed 10-

11-2020)
4 This dataset provides outputs of various NMT systems. However, the MT output used for PE is not

provided. Thus, we cannot conduct MT v.s. PE with this dataset.

https://www.deepl.com/translator
https://www.deepl.com/press.html
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We would also like to investigate how features contribute differently across dif-

ferent tasks while the translations are from the same source. To examine this, we

compare this task with the classification of MT vs. HT. We use the same HT in both

settings while the MT outputs are generated by the Microsoft NMT system, combo-6.

An overview of the dataset is shown in Table 4.

Task Train pairs Test pairs MT system
HT vs. PE 700 300 Google Translate
MT vs. HT 700 300 Combo-6

Table 4: An overview of the datasets used in the both tasks. All translations are derived
from the same source newstest2017 in Chinese but machine-based translations are
generated in different ways.

3.3 machine translation and post-edits data

We use two publicly available data sets, Automatic Post-Editing (APE) shared task

(Chatterjee et al., 2019) and APE-QUEST (Ive et al., 2020). Both datasets provide

triplets of (MT, PE, source).

The APE dataset is provided by the EU project QT21
5 contains two translation

directions (en→de and en→ru) and is from the Information Technology domain.

For en→de, MT outputs are produced using the attentional encoder-decoder ar-

chitecture (Bahdanau et al., 2016), and there are 13,442 training pairs and 1,000 test

pairs. For en→ru, MT outputs are generated by the Microsoft Translator production

system, and there are 15,089 and 1000 training and testing pairs, respectively. The

human post-edits are manually-revised and annotated by professional translators

in both translation directions.

There are two common post-editing levels which are differentiated in terms of

expected quality - light post-editing and full post-editing (TAUS, 2016). Light post-

editing refers to only major grammatical errors made by MT. They are corrected to

make the text comprehensible for the users. It usually has a "good enough" quality

that leaves readers aware that it is produced by MT systems. On the other hand,

full post-editing aims for human-quality outputs that are stylistically fine and have

a "publishable quality" (Hu and Cadwell, 2016; TAUS, 2016). However, in Chatterjee

et al. (2019), it is not indicated whether the type of post-editing is light or full.

5 http://www.qt21.eu/

http://www.qt21.eu/
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Another dataset, APE-QUEST (Ive et al., 2020), provides three translation di-

rections translating English into French (fr), Dutch (nl) and Portuguese (pt) and

contains 9,989, 11,249, and 10,165 sentence pairs respectively. The data domain fo-

cuses on the areas of online dispute resolution (ODR), procurement, and justice. An

NMT system produces MT outputs. Based on these MTs, PEs are annotated by pro-

fessional translators. Annotators are required to conduct light post-editing. That

is, they are only allowed to correct actual grammatical errors rather than improv-

ing the writing style. The Translation Edit Rate (TER) (Snover et al., 2006) for this

dataset is rather low (i.e., less post-editing is needed) due to the high MT quality of

the used NMT system. TER measures the amount of editing that a human would

have to perform to change a system output, so it exactly matches a reference trans-

lation. It is defined as the minimum number of edits needed to change a hypothesis

to exactly match one of the references, normalized by the average length of the ref-

erences as shown in equation 1. Table 5 presents an overview of the data used for

this classification task.

Translation edit rate =
# of edits

average # of reference words
(1)

Direction en→ de en→ ru en→ fr en→ nl en→ pt
Train pairs 13,442 15,089 6,990 7,870 7,115

Test pairs 1,000 1,000 2,999 3,379 3,050

Domain IT IT Legal Legal Legal

Table 5: Dataset statistics for the classification between MT and PE.

3.4 data for training language models

Two language models are built to calculate perplexity - one for surface form and

another for the part-of-speech sequences. Since an English trigram language model

could be used to compute the perplexity for almost half of the translation directions

in the experiments6, we only built the language model for perplexity in English. We

decided to use News Crawl (Barrault et al., 2019) since the language pairs translated

into English in our experiments are in the news domain. News Crawl 2018 and

6 We have eleven total translation directions in the task of MT/HT, one total translation direction in the
task of HT/PE, and five total translation directions in MT/PE. There is eight translation directions’ target
language is English.
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2019 in English are first concatenated together, resulting in a total of 51,714,108

sentences, in which 40,000,000 sentences are randomly selected to build a trigram

language model using KenLM (Heafield, 2011). For more details about language

model building, please refer to section 4.1.1.

For the language model of part-of-speech sequences, 2,000,000 sentences are

randomly selected from News Crawl 2019 in five languages - en, de, lt, ru, and

zh. We then conduct part-of-speech tagging using UDpipe (Straka, 2018) to get the

part-of-speech tags for each word in the sentences. Subsequently, the sequences of

part-of-speech are used to build tri-gram language models for each language. Table

6 shows an overview of the training data used for building language models.

Language model Data source # of sent
Perplexity News Crawl 2018 & 2019 40,000,000

PoS perplexity News Crawl 2019 2,000,000

Table 6: Data statistics of the training data for the language models. Final training sentences
are randomly selected from News Crawl.



4 E X P E R I M E N T S

This chapter introduces the definition of each translationese feature and the struc-

ture of the classification pipeline. In section 4.1, features are categorized and pre-

sented according to their associated translation universals. Additionally, how they

are calculated and the hypothesis we hold are presented. Section 4.2 explains the

whole classification pipeline, including the implementation of Feature Union, Grid

Search, Recursive Feature Elimination (RFE), and the classification algorithm - Sup-

port vector machines (SVMs).

4.1 translationese features

Since our goal is to find which aspect of the translationese has the most distinc-

tive and machine-learnable characteristics between different translations, we follow

the framework of Volansky et al. (2013) in which features are categorized accord-

ing to four translationese universals - simplification, explicitation, interference, and

normalization. Although in Volansky et al. (2013), those features are used for the

classification of originals and HT, we would also like to explore whether features

representing different translation universals are still effective for distinguishing dif-

ferent types of translation than just originals and HT.

In addition to the features mentioned above, we also implement other transla-

tionese features. Some of them are found distinctive when comparing HT with PE

(Toral, 2019), or used to model the fluency of MT (Toral and Sánchez-Cartagena,

2017), represented as a more robust measure of lexical variety (Vanmassenhove

et al., 2019), and used to illustrate the syntactic relations (Kunilovskaya and Ku-

tuzov, 2017). Table 7 shows an overview of all 28 features and their associated

hypothesis and the hypothetical values of features in each translation type. For a

complete feature list per language pair, please see Appendix A.

20
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4.1.1 Simplification

The simplification hypothesis refers to the phenomenon that translated texts are

lexically and syntactically simpler. In total, 13 features are modeling the lexical or

syntactic characteristics under the simplification hypothesis.

lexical variety As previous studies (Vanmassenhove et al., 2019; Toral, 2019)

point out, MT/PE have a lower degree of lexical richness than HT. We use three

metrics to evaluate lexical richness: type-token ratio (TTR), Yule’s I (the reverse

of Yule’s K) (Yule, 1944), and the measure of textual lexical diversity (MTLD) (Mc-

Carthy, 2005). TTR is the ratio between unique words and total words as shown in

equation 2.

TTR =
number of unique words
number of total words

(2)

While TTR is only comparable between similar size texts due to its assumption

of the linear relation between types and tokens, Yule’s K and its reverse Yule’s I

are less sensitive to the varying text length (Oakes and Ji, 2012). It is calculated as

shown in equation 3 where V denotes the number of unique tokens and fv(i, N)

refers to the numbers of types occurring i times in a sample of length N (Benoit

et al., 2018).

Yule’s I =
V2

M2 −V

M2 =
V

∑
i=1

i2 × fv(i, N)

(3)

Another metric, MLTD, is defined as ’the mean length of sequential word strings

in a text that maintains a given TTR value.’ It is proved to be a powerful and

robust indicator regarding text length (Mccarthy and Jarvis, 2010). A higher value

of TTR/Yule’s I/MTLD indicates a richer vocabulary, and HT exhibits this tendency

when compared with MT/PE. Based on these findings, we expect to see higher

values of those three metrics for HT when compared with MT and PE. Moreover,

PE will have a more diverse vocabulary than MT.
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average word length We calculate the ratio between the counts of characters

and sentence tokens, representing the average word length in a sentence, as shown

in equation 4. We hypothesize that MT uses simpler (shorter) words than HT and

PE.

Average word length =
number of total characters

number of total words
(4)

syllable ratio This measure is a variant of the average word length. The hy-

pothesis is that translated texts use simpler words that contain fewer syllables per

word. We expect this phenomenon is more obvious in MT and PE than in HT. A

Python module called Big Phoney1 is used to calculate the counts of syllables per

word. The syllable-counting accuracy could reach 100% for 134,000 words in The

CMU Pronouncing Dictionary2 and 98.1% for words not in the dictionary. As Big

Phoney only supports English, this feature is only available for translation direc-

tions into English. Since syllables per sentence are the sum of each word’s syllables

in the sentence, we sum up the counts of syllables per sentence in each chunk and

normalize the value by the total number of sentences in the chuck.

Syllable ratio =
sum of syllables per sentence in the chunk

number of total sentences
(5)

average sentence length In Ilisei et al. (2010), the average sentence length

is among the most informative of the simplification features. We hypothesize that

MT/PE will have a shorter sentence length than HT. That is, they contain fewer

tokens per sentence as they are supposed to be syntactically simpler. Additionally,

MT will have a shorter sentence length than PE. We calculate this feature in token

levels, as shown in equation 6.

Average sentence length =
number of total tokens

number of total sentences
(6)

lexical density Lexical density reveals how much information is presented in

each text chunk. It is shown to be lower in HT than in originals (Laviosa, 1998)

and lower in MT/PE than in HT (Toral, 2019). It is also an informative feature

(Ilisei et al., 2010) when classifying between originals and HT. The hypothesis is

1 https://pypi.org/project/big-phoney/
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

https://pypi.org/project/big-phoney/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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that MT/PE will have a lower lexical density than HT; moreover, MT will have an

even lower lexical density than PE.

It is calculated as the number of content words (adverbs, adjectives, nouns, and

verbs), normalized by the total number of tokens in the chunk, as shown in equation

7. To label content words, each word is tagged with its Universal part-of-speech tags

via SpaCy+UDPipe3.

Lexical density =
number of content words

number of total words
(7)

average word rank Unlike HT, MT and PE tend to choose the most frequently

occurring words in the training data repeatedly (Farrell, 2018). We hypothesize that

MT/PE will use more frequent words than HT. That is, MT/PE will have a lower

mean rank than HT. Furthermore, MT will have an even lower rank than PE.

Following Volansky et al. (2013), we extract the top 5,000 frequently used words

in seven languages4 via a Python library called wordfreq (Speer et al., 2018). Each

word’s rank is summed up for each sentence, normalized by the number of total

words. Punctuation is removed, and if a word does not appear in the ranking list, a

rank of 6,000 is assigned.

Average Word Rank =
sum of word ranks

number of total words
(8)

most frequent words This feature is a variant of the average word rank. We

hypothesize that among the three types of translation (MT, PE, and HT), frequent

words (e.g., the and of in English) are used more often in MT than PE, while in HT,

those words are less common. This leads to a higher value of this feature in MT,

followed by PE and HT.

We render this property by using the same Python library wordfreq to extract lists

of the top 5, 10, and 50 most frequently used words in seven languages. The total

number of words appearing in the list are normalized by the total number of words

3 https://github.com/TakeLab/spacy-udpipe
4 It includes English, German, Russian, French, Dutch, Portuguese, and Finnish.

https://github.com/TakeLab/spacy-udpipe
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in the text chuck. Punctuation is removed, and the value is calculated separately for

three different thresholds of frequent words.

Most frequent words =
counts of words appearing in the word frequency list

number of total words in the chunk
(9)

mean dependency distance (mdd) Dependency distance is defined as ’the

distance between words and their parents, measured in terms of intervening words’

(Hudson, 1995). MDD is further proposed as a metric of linguistic complexity, cal-

culated as shown in equation 10 (Liu, 2008).

MDD(the sentence) =
1

n− 1

n

∑
i=1
|DDi| (10)

Here n denotes the numbers of tokens in a sentence. DDi denotes the depen-

dency distance of i-th token. For root, DDi is zero. We hypothesize that machine

translations will use simpler syntactic structures, resulting in a lower degree of

MDD.

perplexity Inspired by Toral and Sánchez-Cartagena (2017), we use perplexity

as a proxy for fluency. It is also used in Čulo and Nitzke (2016) as a measure to

identify the level of variation of the terminology used in MT, PE, and HT.

As shown in equation 11, it is calculated as the probability of the given texts,

normalized by the number of words. For a given sequence W = W1W2...WN , its

perplexity is calculated as follows:(Jurafsky and Martin, 2009, section 4.4)

PP(W) = P(W1W2...WN)
− 1

N = N

√
1

P(W1W2...WN)
(11)

We use KenLM (Heafield, 2011) to build the tri-gram language models trained on

40 million randomly selected sentences from News Crawl 2018 and News Crawl 2019

in English. KenLM is a fast and memory-efficient implementation for building n-

gram language models with Kneaser-Ney smoothing. Since perplexity is the inverse

of the likelihood of the given sequence, lower perplexity represents more fluent and

native language usage. We hypothesize that MT will have higher perplexity (i.e.,

less fluent), followed by PE and HT.
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4.1.2 Explicitation

HT has shown to be more explicit than the original texts, for example, by means of

cohesive markers like therefore and thus (Koppel and Ordan, 2011) to establish an

explicit relationship across sentences. In this section, we list four features that can

be used to instantiate the phenomenon of explicitation.

explicit naming One explicitation phenomenon is that pronouns are substi-

tuted with more explicit proper nouns (Olohan and Baker, 2000; Volansky et al.,

2013). Following Volansky et al. (2013), the explicit naming is calculated as the ratio

between proper nouns and pronouns. Because human translators generally conduct

this substitution, we hypothesize that MT will have fewer proper nouns (i.e., less

explicit) than PE and HT, resulting in a higher value.

Explicit Naming Ratio =
number of personal pronouns

number of proper nouns
(12)

single naming HT might add explicit information such as the last name or

roles to a person’s first name to make it easier to comprehend for readers with dif-

ferent cultural backgrounds. Single naming refers to standing alone proper nouns,

i.e., the previous and next word’s PoS tags are not labelled as PROPN. Since adding

extra information is mainly performed by human translators, we hypothesize that

MT will have more counts of single proper nouns, followed by PE and HT.

Single naming = counts of standing alone proper nouns (13)

mean multiple naming As mentioned above, if we hypothesize that HT presents

more information than MT/PE in the texts by presenting a greater number of proper

nouns, then HT will have higher values of multiple naming. Multiple naming refers

to the use of consecutive proper nouns in a sentence. Numbers of proper nouns that

are consecutive are summed up and normalized by the total number of such con-

secutive units in each text chunk.

Mean multiple naming =
number of n-grams of proper nouns

number of proper noun blocks
where n > 1 (14)
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function word ratio Function words serve as elements modifying the content

words they are attached to. In Koppel and Ordan (2011), two categories of function

words show a significant difference between originals and HTs - pronouns and

cohesive markers. Cohesive markers help connect the different parts of the text

more closely together, such as therefore and consequently. We hypothesize MT uses

more function words than HT and PE because it might use more cohesive markers

and pronouns.

Function words in our experiment are selected according to Universal Depen-

dencies (UD) relations. Six UD relations are chosen based on their structural cate-

gories5: aux, cop, mark, det, clf, case. We calculate the ratio between total occurrences

of function words and the total number of tokens, as shown in this equation:

Function Word Ratio =
number of function words

number of total words
(15)

4.1.3 Normalization

The normalization hypothesis refers to ’the tendency to conform to patterns and

practices which are typical of the target language, even to the point of exaggerating

them’ (Baker and Somers, 1996). We model this phenomenon with the following

three features.

repetition A study has shown that translations tend to avoid repetition by

eliminating them altogether or replacing them with synonyms (Ben-Ari, 1998). This

feature is realized by calculating content words appearing more than once and nor-

malized by the number of total tokens. As indicated in Volansky et al. (2013), be

and have are excluded as they usually function as auxiliaries. We hypothesize that

MT will have a higher repetition ratio than PE and HT due to the nature of frequent

word usage. On the other hand, HT might have a lower repetition ratio than PE.

Repetition Ratio =
number of content words occurring > 1

number of total words
(16)

average pointwise mutual information (pmi) Translations tend to use cer-

tain collocations. That is, some fixed phrases are overused. PMI is a measure of

5 https://universaldependencies.org/u/dep/

https://universaldependencies.org/u/dep/
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association of two events (words) by considering the probability of each indepen-

dent event as shown in equation 17 where P(w1, w2) refers to the probability of a

co-occurrence of w1 and w2 and p(w1)p(w2) to the product of a single probability of

occurrence. The greater the PMI value, the more likely these two words frequently

occur together as a collocation.

PMI(w1, w2) = log
p(w1, w2)

p(w1)p(w2)
(17)

Following Volansky et al. (2013), we calculate the mean PMI of all bigrams. We

hypothesize that MT will use more collocations than PE and HT, thus resulting in

a higher average PMI.

threshold pmi When PMI equals 0, it indicates that these two words co-occur

just by chance; that is, they do not form a collocation. To exclude this arbitrariness,

we count the numbers of bigrams with PMI above 0, normalized by the number of

all bigrams.

Threshold PMI =
number of bigrams whose PMI > 0

number of total bigrams
(18)

4.1.4 Interference

Interference refers to the footprints of source languages in the translations. The

source language ’shining through’ (Teich, 2003) is modelled by the following six fea-

tures with regard to part-of-speech sequence, sentence length, and function words.

part-of-speech (pos) n-grams We hypothesize that MT/PE has more inter-

ference from the source language compared with HT. Therefore, MT/PE will have a

more similar PoS tag sequence to the source language. To model this, we construct

PoS bigram models6.

The value of this feature is the term frequency–inverse document frequency (tf-

idf) weight for each part-of-speech bigram. A higher tf-idf weight means a certain

word appears more frequently in the given document but is not common in the

other documents in the corpus. This signifies that this word has a higher word

6 We also experiment with unigram and trigram models. However, it does not help with the classification,
so we only use bigrams.
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importance and is more relevant for the given document. The formula of tf-idf is as

follows, where i refers to word and j to document:

Wi,j = t fi,j × log(
N
d fi

) (19)

t fi,j = number of occurrences of i in j

d fi = number of documents containing i

N = total number of documents

We use TfidfVectorizer in scikit-learn to convert each text chunk into a

matrix of hundreds of tf-idf weights of PoS bigrams. However, we do not include

this feature in our final feature analysis in section 5.2 of this thesis. It might bias

our conclusion because this ’Bag of bigrams’ representation is not comparable with

the other translationese features computed as one final value per text chunk.

character n-gram Apart from part-of-speech bigrams, we also compute tf-idf

weights based on character n-grams that capture the given texts’ morphological

characteristics. The counts of unigram, bigram, and trigram in the whole corpus

are first calculated, and then the tf-idf weight of each character n-gram is derived.

Nevertheless, as stated above, we do not include this feature in the feature analysis.

perplexity of pos sequence Following Toral (2019), we assess the interfer-

ence by calculating the difference of the perplexities derived from two language

models, which are trained on the PoS-tagged corpus of the source and target lan-

guage, respectively. If the PoS tag sequences of a given text are more similar to the

source (i.e., it has lower perplexity regarding the source language), then the value

of this feature will decrease, and vice versa. We hypothesize that MT/PE will have

lower values than HT since they have more interference from the source languages.

PP difference = PP(T,LMsource)− PP(T,LMtarget) (20)

length ratio Length ratio has been proven to be lower for PE and MT com-

pared with HT (Toral, 2019). The hypothesis is that since HT is translated from

scratch, the length of HT might be less restricted by the length of source texts, re-
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sulting in a higher value of length ratio. It is calculated as the absolute difference

in characters between source texts S and target texts T, normalized by the length

of the S. If length ratio is lower, the difference between S and T is also smaller.

We hypothesize that this feature will be the main discriminator between HT and

MT/PE.

Length Ratio =
|lengthS - lengthT|

lengthS
(21)

contextual function word This feature is seen as a variant of PoS n-grams

and has achieved 100% of accuracy in the classification task of HT and original

texts in Volansky et al. (2013). In that paper and Koppel and Ordan (2011), a list

of function words is used for computing the frequency of function word trigrams.

However, to identify function words in a more scalable way, we adopt a slightly

different approach using universal dependency relations. We calculate the trigrams’

counts where at least two tokens’ universal dependency relations are labeled as one

of the ’aux,’ ’cop’, ’mark’, ’det’, ’clf’, ’case’. The value is then normalized by the total

number of trigrams in each text chunk. Our hypothesis is that more trigrams in

MT/PE are anchored by specific function words than in HT.

Contextual function words =
number of trigrams consisting function words

number of total trigrams
(22)

positional token frequency The motivation for this feature is that human

translators tend to be conservative in their word choices (Kenny, 2001) and have

limited vocabulary to open or close a sentence.

Firstly, we calculate the frequency for words located at the beginning (first, sec-

ond) and ending (antepenultimate, penultimate, and last) position in the whole

corpus, normalized by the total number of words occurring in those positions. This

shows ’how frequently this word is occurring at those certain positions.’ For exam-

ple, if I is used more often for opening the sentence, then its normalized frequency

at this step will be higher. Secondly, for each sentence, the positional token fre-

quency is the sum of the normalized frequency of each sentence’s opening and

ending words.

For actual computation, we first derive a frequency list FL of all words T at

position 1, 2, n-2, n-1, n in every sentence in the corpus. Then given a sentence
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S = W1W2...Wn, the positional token frequency is calculated as follows, where Wi

presents the counts of word W at position i in FL, and N denotes the sum of fre-

quency in FL:

Positional token frequency (sentence) =
2

∑
i=1

Wi
N

+
2

∑
i=0

Wn−i
N

(23)

We hypothesize that MT/PE will have a stronger tendency to use certain words

to open or end a sentence, resulting in a higher positional token frequency than HT.

4.1.5 Others

Here we list two features that do not fall into any of the translationese hypotheses,

but they instantiate the translationese’s traits.

pronoun ratio In Koppel and Ordan (2011), pronoun ratio is among the most

distinguishing features between HT and originals. We compute this feature by first

identifying the pronouns with PoS tag as PRON. Subsequently, for each text chunk,

the frequency of pronouns is normalized by the total word counts. Since this feature

is somehow related to the previous feature, explicit naming, we hypothesize that

MT/PE will have more pronouns than HT since human translators might replace

pronouns with other phrases.

Pronoun ratio =
number of pronouns

number of total words
(24)

passive verb ratio We defined the structure of passive verbs as either a bi-

gram of AUX,VERB or a trigram of AUX, ADV, VERB. We compute this feature by

counting the number of such formations, normalized by the total number of verbs.

Each sentence is iterated in each text chunk, and the counts of passive verbs are

summed up. The final value is normalized by the total number of verbs in each text

chunk. As passive voice’s goal is to emphasize the importance of the action receiver,

we hypothesize that human translators would adopt this translation strategy rather

than translating literally. Thus, HT will contain more passive voice than MT/PE.

Passive verb ratio =
number of passive verbs

number of total verbs
(25)
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To sum up, Table 7 summarizes the indication of feature values that whether

greater/smaller values are exhibited in MT/PE/HT.

Table 7: Features and their hypothetical values in different translation types. ’-’ indicates the
lowest value, ’+ -’ the relatively higher value, and ’+’ the highest value. PoS and
character n-grams are represented as matrices of hundreds of tf-idf weights so the
hypothetical values are not applicable here.
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4.2 classification with support vector machines

Figure 1: Experiment scheme.

This section presents the experiment structure, as shown in figure 1. Since our

goal is to find the most distinguishing features, we construct a machine-learning

classifier to identify which features are more distinctive between different transla-

tions and explore whether such differences are machine-learnable. Section 4.2.1

shows how feature values are standardized via StandardScalar to avoid the classi-

fication bias and describes how Feature Union works with Pipeline to chain the

features and classifier together. Section 4.2.2 briefly introduces the definition of the

implemented algorithm - Support Vector Machines (SVMs).

Section 4.2.3 presents the hyperparameter tuning process utilizing grid search.

A hyperparameter is a parameter that controls the learning process, and it has to

be tuned to make the machine-learning algorithm achieve the optimal solution for

the classification problem. After the best hyperparameters are found, a feature

selection technique used in the experiment, recursive feature elimination (RFE), is

presented in section 4.2.4. In the following section 4.2.5, we also investigate the

effect of multicollinearity and eliminate features whose Variance Inflation Factor

(VIF) are higher than 5 to prevent volatile coefficients, which will further affect the

interpretation of feature importance.

To summarize, we conduct the classification using three different subsets of

features, as shown below. The results from the first two classifications are the main

focus and used for further feature analysis. We exclude PoS and character n-grams

from the analyses because the representation of hundreds of tf-idf weights is not

comparable with other feature values and it might overshadow the importance of

other features.

1. Features (without PoS n-grams and character n-grams) with RFE

2. Features (without PoS n-grams and character n-grams) with RFE and VIF filter

3. All features with RFE
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4.2.1 Pipeline and feature union

The features as mentioned earlier in section 4.1 are computed and put into one CSV

file so that the training examples have the shape of (number of samples, number of fea-

tures). We extract available features from the CSV file and apply standardscalar7 to

each of them. The idea of standardscalar is to normalize the data before applying

the machine learning model to have the mean of 0 and a standard deviation of 1

for each feature. Since our features are calculated at different scales, the standard-

ization of a dataset is necessary. One advantage of normalizing is to eliminate the

effect of domination of features with greater numeric ranges. Another advantage is

to avoid calculation difficulties as the inner products of big features vectors might

cause numerical problems (Hsu et al., 2003). The standard score of a sample x is

calculated as in equation 26 where u is the mean and s is the standard deviation of

the training samples.

z =
x− u

s
(26)

After the standardization, Feature Union8 is used to concatenate several feature

matrices into a composite feature space. We use the Feature Union together with

Pipeline9 to pass the large feature matrix to the classifier for training. Pipeline

chains several estimators (i.e., the base object implements a fit method to learn

from the data) into a final composite estimator. The last estimator in the pipeline is

a SVMs classifier for training the model and predicting on the test set.

4.2.2 Support vector machines (SVMs)

The support vector machine constructs a hyperplane (i.e., dicision boundary) in

N-dimensional space that has the maximum margin between the data points of dif-

ferent classes. The margin is defined as the perpendicular distance between the

hyperplane and the closest data points. Given training samples x1, ..., xN , with cor-

responding target values t1, ..., tN where tn ∈ −1, 1. New data points are classified

7 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html

8 https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
9 https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.
pipeline.Pipeline

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html##sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html##sklearn.pipeline.Pipeline
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according to the sign of equation 27 where φ(x) denotes a fixed feature-space trans-

formation, wT is the weight vector, and b is the bias (Bishop, 2006).

y(x) = (wTφ(x) + b) (27)

The objective of the support vector machine algorithm is to find the maximum-

margin hyperplane that separates training points whose tn = 1 from training points

whose tn = −1. By maximizing the margin, the classifier’s generalization error will

be lower, and thus the new data points can be predicted more correctly. As shown

in Figure 2, any hyperplane can be defined as (wTφ(x) + b) = 0 and the training

points on the margin are called support vectors.

Figure 2: SVM (Zisserman, 2015)

After some trial and errors, we find non-linear kernels do not perform better

than linear kernel. Thus, Linear Support Vector classification (LinearSVC) is used in

our experiment. LinearSVC is similar to SVC with linear kernel but faster liblinear10

implementation for data with millions of instances and features. The input data

takes training samples of shape (number of instances, # of features) and class label of

shape (number of instances).

4.2.3 Grid search and cross-validation

The estimators’ hyperparameters are not directly learned during the training, so

they are fine-tuned via an optimization process. The grid search provided by

GridSeachCV conducts an exhaustive search over all parameters combinations. That
10 https://www.csie.ntu.edu.tw/~cjlin/liblinear/

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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is, the model is fitted on the dataset with all possible combinations of hyperpa-

rameters. The best hyperparameter combination is the one that yields the best

cross-validation score on the training set. To make sure the results are reproducible,

random state, the seed used by the random number generator is set to 42 for all

combinations. We define the values of hyper-parameters, as shown in Table 8. We

decide to tune five hyperparameters because they affect the calculation of the op-

timal hyperplane. We experiment with a set of different values decided upon the

hyperparameter’s nature; for example, a larger C denotes a smaller margin and vice

versa. Furthermore, tol is the tolerance for stopping criterion; that is, when the loss

is not improving by at least the threshold, the searching for hyperplane and training

will stop.

Hyperparameter Value
C 2,5,100,1000

loss hinge, squared_hinge
class_weight balanced, None
tol 0.001, 0.0001

max_iter 2000, 10000, 100000

Table 8: Values of hyperparameters that are used in the parameter grid for hyperparameter
tuning.

All possible combinations of the hyper-parameters are passed and fitted onto

the estimator. Cross-validation is used together with grid search in GridSearchCV

to calculate the best validation score. While training the model with limited data,

cross-validation is a strategy to evaluate the model’s generality by predicting unseen

data. It first splits the dataset equally into K folds and use K-1 folds as training

data. The resulting trained model is then evaluated on the remaining (unseen)

part of the dataset, as shown in Figure 3.11 This procedure goes on K consecutive

times until each K fold is evaluated. In GridSearchCV, each parameter combination

is trained and evaluated K times. The score of each combination is obtained by

calculating the mean cross-validated score. The best parameter setting is found

with the best performing estimator, which gives the highest score on the left-out

data. We perform a grid search with 10-fold cross-validation to find the optimal

hyper-parameters for the LinearSVC classifier.

11 https://scikit-learn.org/stable/modules/cross_validationhtml

https://scikit-learn.org/stable/modules/cross_validationhtml
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Figure 3: Visualization of cross-validation technique from scikit-learn website. This figure
visualizes 5-fold cross-validation while in our experiment we employ 10-fold cross-
validation.

4.2.4 Recursive feature elimination

We then use the best hyper-parameters to perform feature selection. Recursive

feature elimination (RFE, Guyon et al. (2002)) is a feature selection technique that

eliminates the least important features recursively until the desired feature numbers

are reached. It begins with training the model with all features, then the features

are ranked according to their importance, and the least important feature(s) are

eliminated. The model is re-built with the new subset of features, and the feature

importance is calculated again. However, the optimal feature numbers is another

tuning parameter for RFE (Butcher and Smith, 2020), and it is usually hard to es-

timate in advance the optimal features numbers. We thus employ RFECV12 which

combines RFE with cross-validation to test on different subsets of features and pick

a subset of features that yields the best cross-validation score.

The feature importance is learned during the fitting, and it could be accessed in

scikit-learn through a coef_ attribute for a linear SVM. The value given by coef_ is

the weight vector wT in equation 27 which is orthogonal to the hyperplane. This

weight vector gives the direction for predicting classes by taking the dot product of

any data points with it. Specifically, if a feature obtained a negative coefficient, it

contributes to the classification of the negative label and vice versa. We also take

12 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#
sklearn.feature_selection.RFECV

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html##sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html##sklearn.feature_selection.RFECV
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the absolute values of coefficients, which indicate how important the features are

for the classification.

4.2.5 Variance Inflation Factor (VIF)

If there is a correlation between the predictors (i.e., independent variables) in a re-

gression model, the effect of multicollinearity might be present. Multicollinearity

will result in unstable coefficients since they will change dramatically with a small

change of variables in the model (Montgomery et al., 2012). There are two types

of multicollinearity, one is structural, and another is data-based. Structural multi-

collinearity refers to the correlation between two variables in which one of them is

derived from another. For example, a predictor X2 will be highly correlated with X.

Data-based multicollinearity usually happens with observational data rather than

an artifact of the model. Since some of our features in the experiments might be

correlated, e.g., Type token ratio and Yule’s I are both computing the degrees of

the lexical variety but in different ways, we inspect the effect of structural multi-

collinearity through Variance Inflation Factor (VIF).

The VIF estimates how much the standard errors are inflated. The VIF of an

estimated coefficient bj, denoted as VIFj, means what percentage of the variance of

bj is inflated by the correlation among all the predictors in the model. The VIF of

estimated coefficient bj is calculated as in equation 28 where R2 value is calculated

by regressing each of the predictors against every other predictor in the model

(Dodge, 2008).

VIFj =
1

1− R2 (28)

The numerical value of VIF ranges from one, and if there is no multicollinearity,

the value of VIF equals one, meaning the variance is not inflated. A rule of thumb

for the interpretation of VIF is if it is higher than five, then a further investigation

is needed as it suggests high correlation relationships exist. A value between one

to five indicates a moderate correlation between the specific predictor and other

predictors.

For our experiment, we import a Python package statsmodels13 for the compu-

tation of VIF. VIF values are calculated for all features, and we eliminate the feature
13 https://www.statsmodels.org/stable/index.html

https://www.statsmodels.org/stable/index.html
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with the highest VIF. This VIF calculation and feature elimination are repeated re-

cursively until there is no VIF value higher than 5.



5 R E S U LT S A N D D I S C U S S I O N

This chapter reports the results and analysis for three classification tasks (i.e., MT/HT,

MT/PE, HT/PE). Section 5.1 reports the classification accuracy using three different

subsets of features as listed in section 4.2. In section 5.2, we analyze feature impor-

tance in two ways: 1) feature ranking based on absolute coefficients and 2) features’

average coefficients, across all translation directions. Feature ranking refers to ’how

important a feature is’ for the classification task since greater absolute coefficients

represent greater weights for prediction. Subsequently, if a feature is found to be

useful, then ’which label this feature contributes to classify’ is implied by the sign

of the coefficients.

5.1 classification results

5.1.1 Machine translation vs. human translation

Figure 4 shows the accuracy predicted on the test set using features excluding PoS

and character ngrams. The best accuracy of 0.76 is achieved for gu→en with a

context length of 10. However, it could be due to overfitting as there are only 62

instances (31 instances for each label) used in the test set. The same trend could be

spotted with four other language pairs (gu,kk,lt→en and en→lt, hereafter LP-2019)

trained and tested on the same dataset of newstest2019. They generally perform

better than other translation directions trained with previous years (hereafter LP-

prev).

Figure 5 shows the cross-validation scores during RFE for both groups. For LP-

prev, the cross-validation scores are more stable, but the performance on average

drops more (-0.2) than LP-2019 (-0.05) when predicting on the unseen data. We

expect this might be due to the quality mismatch between training and testing data

as mentioned in section 3.1.1. To further investigate this, we generate data via

DeepL and report the classification results in section 5.1.2.

39
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Figure 4: MT-HT classification results on test set with RFE. PoS and character n-grams are
excluded from the feature set.

For LP 2019, the cross-validation score fluctuates with different numbers of fea-

tures. Besides, accuracy also fluctuates across different context lengths. It has a

higher mean difference in accuracy (0.036) than LP-prev (0.012). The possible rea-

son for such fluctuation might be the fewer training data points for LP-2019, result-

ing in a dramatic difference in the number of data points while varying the context

length.

After filtering out highly correlated features, only the performance of the two

language pairs, en→lt, and en→ru benefit from such filtering as shown in table 9.

This suggests that although some features are highly correlated and might contain

redundant information, they are still useful for the classification.

Language ende enfi enlt enru deen fien guen kken lten ruen zhen
Feature # 0% -76.9% -57.9% -50% -75% -66.6% -87.5% -69.2% -73% -81.3% -81.3%
Accuracy +0 +0 +0.07 +0.02 +0 -0.01 -0.11 -0.2 -0.03 -0.03 -0.06

Table 9: Difference in classification accuracy after dropping features with VIF greater than 5.
Accuracy is measured with a context length of 10 consecutive sentences.

We also conduct the classification with all features, including PoS bi-grams and

character ngrams. Initially, we intend to extract the selected ngrams. Thus we

adopt two approaches - one-step and three-step feature selection with RFE. For the

one-step method, all features are put in the Feature Union, and they are selected
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Figure 5: RFECV scores of LP-prev (upper row) and LP-2019 (lower row) in context length
of 10. The yellow triangle represents the accuracy on test as indicated in Figure 4.
Here we only show selected language pairs from both groups for comparison.

altogether at once. The Three-steps method selects features sequentially. First is

to select features from PoS bi-grams and character ngrams. Then all chosen tf-idf

ngrams are concatenated together with other features via Feature Union to perform

final classification. We only report the results from the one-step method as it yields

better accuracy in the MT/HT task. This method achieves the best result of 0.88 for

en→lt using only four features, " -"," – ","- ", and "– " which are only spaces with

the hyphens. We suspect this is an artifact of the data set that different hyphens are

used in MT and HT.

PoS and character n-grams have much helped the classification, especially for

LP-2019. For LP-prev, the accuracy for fi→en also increases vastly from 0.56 to 0.72.

However, the representation of tf-idf weights is not comparable with other fea-

tures, so we do not involve PoS and character n-grams in our further feature analysis

in section 5.2.
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Figure 6: MT-HT classification results using all features including PoS and character ngrams.

5.1.2 Machine translation by DeepL vs. human translation

One reason why LP-2019 has a better performance might be overfitting. Another

possibility might be the effect of quality mismatch since the translation quality from

previous years might not be on a par with the quality of newstest2019. To investigate

this, we experiment with the data generated from DeepL.

We hypothesize that classifiers do not suffer from the inferior translation in the

training set and could perform better in the unseen data, as mentioned in section

3.1.1. However, as shown in figure 7, only en→ru has better performance while two

other language pairs only show slightly better or even worse performance. Classifi-

cation may depend on the quality of MT systems rather than the quality mismatch
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between training and testing. The better the MT system is, the harder it gets to

distinguish its work from that of HT.

After filtering out highly correlated features, the accuracy drops on average 0.025

across all language pairs and context length. It shows the same trend as in the

WMT setting that highly correlated features still provide useful information. Using

additional PoS bigrams and character ngrams does not help the classification as

well - none of the accuracy scores are above 0.6.

Figure 7: MT-HT classification results using data generated by DeepL. PoS and character
n-grams are excluded from the feature set.

5.1.3 Human translation vs. post-edits

There is only one language pair, zh→en, in the HT-PE classification task. We also

compare the results of HT-PE with MT-HT in which the MT is provided by the

Microsoft NMT system, Combo-6 (Hassan et al., 2018). The HT-PE task achieves the

best accuracy of 0.72 with a context length of 10 using all 26 features. The MT-HT

classification task gets a better accuracy of 0.77 with a context length of 10. The best

cross-validation scores of both tasks are quite similar, but the discrepancy between

cross-validation scores is higher for HT-PE than MT-HT. It also shows that as the

context length increases, the accuracy improves.
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However, it should be taken into account that MT-based translation is generated

differently in both tasks. PE is post-edit based on Google Translate outputs while

MT is generated by the best MT system, namely Combo-6. We hypothesize that since

Combo-6 is a research-based MT system optimized for quality, its output should be

harder to distinguish than MT by Google Translate from HT. Nevertheless, it turns

out that the classifier seems to learn better in the MT-HT task. Another thing to

note is that since there are only 60 instances (30 instances per label) in the test set

with the context length of 10, it might not be representative enough to conclude the

classifier’s performance.

Figure 8: HT-PE and MT-HT classification results on test set with RFE. PoS and character
n-grams are excluded from the feature set.

Removing features with higher VIF values greatly decreases the performance

for both tasks. The smallest decrease (-0.05) in accuracy happens in MT-HT with

a context length of 2. The biggest fall (-0.28) in accuracy is with HT-PE with the

context length of 5. Contrarily, including features from PoS bigrams and character

ngrams helps to improve the performance as shown in figure 9. HT-PE could reach

an accuracy of 0.9 with a context length of 10 consecutive sentences, and MT-HT

achieves an accuracy of 0.84 with a context length of 5 consecutive sentences.
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Figure 9: HT-PE and MT-HT classification results using all features including PoS and char-
acter ngrams.

5.1.4 Machine translation vs. post-edits

The classification results of MT-PE are presented in figure 10. The highest accuracy

of 0.61 is achieved for en→fr with a context length of 10. The selected 23 features

are the same as in the context length of 5, while the accuracy increases from 0.56 to

0.62. This indicates that for this translation direction, longer context length indeed

helps the classification.

It seems the classifier could somehow distinguish between MT and PE. However,

if we look at the cross-validation score of the best performing combination shown

in figure 11, the best cross-validation scores are around 0.574 and 0.566 for en→fr

and en→nl, respectively. It is counter-intuitive that the test set’s accuracy is higher

than the cross-validation score, which implies that the testing part might be a better

representation of the training data than validation. We suspect this might because

data is not randomized well with the sequential split. That is, the first 70% of the

data is for training, and the remaining part is for testing.

If we remove features whose VIFs are above 5, the results drop for three lan-

guage pairs, and none could perform above 0.6. This corroborates the previous

findings that although the effect of multicollinearity exists, the classifiers can still

learn from those highly correlated features. Table 10 gives an overview of how
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Figure 10: MT-PE classification results on test set with RFE. PoS and character n-grams are
excluded from the feature set.

Figure 11: Cross-validation score with different selected feature numbers in the setting of
context length of 10.

much accuracy decreases and displays the feature drop rate with context length set

at 10. For en→ru and en→pt, removing features does not help improve accuracy

but also does not hurt the performance. It suggests that those features are indeed

unnecessary for the classification.

Figure 12 shows the classification results using all features. Including PoS and

character ngrams greatly helps the classification for en→pt, achieving the best ac-

curacy of 0.8 with context length of 10. It is interesting that for en→nl with context
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length of 10, it only selects 2 Pos bigrams features, "punct aux" and "verb aux".

However, it manages to achieve the best accuracy (0.63) than previous experiments.

Language ende enru enfr ennl enpt
Feature # -71.4% -37.5% -73.7% -66.6% -50%
Accuracy -0.02 +0 -0.03 -0.02 +0

Table 10: Difference in classification accuracy after dropping features with high VIFs. Accu-
racy is measured with a context length of 10.

Figure 12: MT-PE Classification results using all features including PoS and character
ngrams.

5.2 feature importance

To interpret each translationese hypothesis’s importance, two metrics - positional

ranking and average coefficients - are computed per feature. Each feature is ranked

firstly according to its absolute coefficients. Then the average rank of each feature

is calculated across all language and context length combinations. This positional

ranking reveals how important each feature is for the classification. That is, when

a feature is ranked higher, it helps the classifier more to distinguish between the

two labels. On the other hand, average coefficients are calculated per feature as the
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mean of coefficients across all combinations. The magnitude of this metric suggests

how useful the feature is for distinguishing between two translation types.

We compute those two metrics based on the selected features before and after the

VIF filter. Nevertheless, the effect of multicollinearity will influence the coefficients’

stability and reliability, as mentioned in section 4.2.5, the interpretation derived

before applying VIF filter might be problematic. We thus mainly focus on analyzing

features derived after the VIF filter.

We visualize the feature’s positional ranking and average coefficients with scat-

ter plots. In the scatter plots shown below, each dot represents a feature, and the

color indicates its corresponding translationese hypothesis. The size of the dot il-

lustrates this feature’s percentage of appearance among all combinations.

5.2.1 Machine translation vs. human translation

Both absolute coefficients ranking and average coefficients imply that interference

and normalization hypotheses are more useful indicators for the classification of

MT-HT. In Figure 13, most simplification and explicitation features are removed due

to their high VIFs. Although the remaining simplification features still have higher

ranks, they are not common among all combinations. Features associated with

interference and normalization hypothesis, length ratio and repetition ratio, are

among the top rank list with a high presence of around 70% across all combinations.

Looking at the average coefficients, as shown in Figure 14 (right), both features

have greater magnitude in coefficients than most of the other features. Another

feature, passive verb ratio, has a relatively higher percentage of presence (48%) and

considerable magnitude in coefficients.

Table 11 shows the weighted coefficients per translationese hypothesis. The

weighted coefficient is derived from multiplying the feature coefficients by the per-

centage of presence. Judging from the weighted coefficients, we could confirm that

interference and normalization have greater magnitude, thus they are distinctive

indicators in distinguishing between MT and HT. We also calculate another metric

by taking the mean of the absolute coefficients for each translationese hypothesis.

It shows that normalization is the most distinctive translationese characteristics in

MT-HT, followed by interference.

We also further inspect the values of interference and normalization features to

validate whether our hypothesis stated in section 4.1 is true. Figure 15 shows that
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Figure 13: Average rank and standard deviation of features used in MT-HT classification.
Left: feature selected after RFE. Right: features whose VIFs are < 5.

Figure 14: Average coefficients and standard deviation of features used in MT-HT classifica-
tion. Left: feature selected with RFECV. Right: features whose VIFs are < 5.

Hypothesis Weighted coef Abs. coef
Simplification -0.015 0.178

Normalization -0.075 0.209
Explicitation -0.008 0.073

Interference -0.068 0.18
Others 0.031 0.064

Table 11: The weighted coefficients and average absolute coefficients for MT-HT.
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the length ratio is lower for MT in most language pairs, which confirms our hypoth-

esis that MT has more interference from the source languages than HT. Nonetheless,

the values of the repetition ratio contradict our hypothesis. They are higher in HT,

implying more repeated content word usage. Notwithstanding, we suspect this

might be related to the greater amount of content words used in HT.

Figure 15: Box-plots of interference (left: length ratio) and normalization (right: repetition)
features derived from the training set of MT-HT.1

5.2.2 Human translation vs. post-edits

Since there is only one language pair involved in HT-PE, there are only three com-

binations (i.e., context length of 2, 5, and 10) to calculate the metrics of feature

importance. Looking at Figure 16 and Figure 17, most explicitation and normaliza-

tion features are eliminated due to the high VIFs, or they are not presented in the

scatter plot with very low presence. Only three features - MDD, PoS perplexity, and

perplexity - remain on the plot. The simplification feature, MDD, has the highest

rank of 1, followed by the interference feature of PoS perplexity.

In table 12, we could see that interference has the highest average of absolute

coefficients of 0.3, followed by Others with an average of absolute coefficients of

0.239. Nevertheless, this result should be regarded with caution because there is

only one feature in this category. Nonetheless, weighted coefficients show that in-

terference has the greatest magnitude in coefficient, followed by simplification. It

is interesting that for this task, compared with MT-HT and MT-PE, totally different

1 We exclude the presentation of zh→en in length ratio because the difference of character counts between
English and Chinese are not in the approximate range as the other language pairs due to the nature of
Chinese character segmentation. This situation inflates the y-axis in the plot.
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Figure 16: Average rank and standard deviation of features used in HT-PE classification.
Left: feature selected with RFECV. Right: features whose VIF are < 5.

Figure 17: Average coefficients and standard deviation of features used in HT-PE classifica-
tion. Left: feature selected with RFECV. Right: features whose VIF are < 5.

subsets of features are selected after the VIF filter. We assume this might be because

of the relatively small data size, which leads to an unexpected bias. Also, filtering

out features with high VIFs dramatically hurts the performance in this task; thus

whether the contributions of the remaining features are positive for this task are

doubtful. Although the data points might be too few to draw a general conclusion

about the feature importance, we could still see a trend that features belonging to
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the interference hypothesis seem to be strong indicators across different classifica-

tion tasks.

Hypothesis Weighted coef Abs. coef
Simplification -0.11 0.22

Normalization - -
Explicitation -0.029 0.098

Interference -0.127 0.3
Others -0.079 0.239

Table 12: Average coefficients and percentage of presence per translationese hypothesis for
HT-PE.

Figure 18 shows the values of simplification and interference features in MDD

and the perplexity difference of PoS sequence. MDD, as expected, HT has a more

complex syntactic structure (i.e., a higher degree of MDD) than MT and HT. Per-

plexity difference is also higher in HT than MT and PE, signifying it is less prone to

interference from source languages, which matches our hypothesis. Nevertheless,

PE is subjected to a more considerable degree of interference than MT. We presume

the reason might be that PE is primed by Google Translate, whose quality is not

comparable with the quality-oriented Microsoft NMT system.

Figure 18: Box-plots of simplification (left: MDD) and interference (right: PoS perplexity)
features derived from the training set with the context length of 10.

5.2.3 Machine translation vs. post-edits

Looking at Figure 19 (right), the more apparent features are from the categories

of interference and explicitation. The length ratio belonging to the interference

hypothesis again is the most common and evident feature. As evident from Figure



5.2 feature importance 53

20, it has greater magnitude in coefficients than the rest of the features, signifying

its importance for the classification.

Three explicitation features are also commonly presented in almost half of the

combinations but only one of them has bigger magnitude (0.205) in coefficients.

Nonetheless, one feature from the normalization hypothesis - repetition - is particu-

larly noticeable. It has a high rank of 3 and great magnitude (-0.151) in coefficients.

To sum up, our experiments show that interference and explicitation are promi-

nent attributes to distinguish between MT and PE.

Figure 19: Average rank and standard deviation of features used in MT-PE classification.
Left: feature selected with RFECV. Right: features whose VIF are < 5.

Table 13 shows the weighted coefficients per translationese hypothesis. Among

all, interference and explicitation have bigger magnitude in weighted coefficients.

When looking at the mean of absolute coefficients, it shows normalization is the

most dominant characteristic, followed by explicitation. This result is, however, not

consistent with our previous interpretation. We suspect this might be because of

the way of how the average of absolute coefficients is calculated that it does not

take the percentage of presence of each feature into account. It might create a bias

towards features with high coefficients but low presence.

Figure 21 shows the values of the most prominent features - length and repeti-

tion ratio. Length ratio is lower in MT than in PE, indicating that MT is influenced

to a more considerable degree by the source languages, as indeed we hypothesized.

However, the average function word does not show a consistent direction towards

any label.
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Figure 20: Average coefficients and standard deviation of features used in MT-PE. Left: fea-
ture selected with RFECV. Right: features whose VIF are < 5.

Hypothesis Weighted coef Abs. coef
Simplification 0.005 0.093

Normalization -0.028 0.242
Explicitation 0.043 0.1
Interference 0.035 0.092

Others -0.025 0.062

Table 13: The weighted coefficients and average of absolute coefficients for MT-PE.

Figure 21: Box-plots of interference (left: length ratio) and explicitation (right: average func-
tion words) features derived from the training set with the context length of 10.
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5.3 direct assessment and edit distance

As a previous study points out, there is a negative relationship between the classi-

fication accuracy and the quality of the MT systems (Aharoni et al., 2014). Figure

22 (left) shows the Pearson correlation and 95% confidence region of the DA score

of the best MT system against the classification accuracy with a context length of

10. This negative relationship is significant (r(9)=-.82, p=0.0018), corroborating the

previous findings. This negative relationship is also significant when the classifica-

tion is based on the context length of 2 (r(9)=-.81, p=0.0025) and context length of 5

(r(9)=-.68, p=0.022).

We also hypothesize that if the amount of edits required to change MT output

into PE is fewer (i.e., PEs are more similar to MT), it is harder to distinguish between

the two, resulting in a positive relationship between the two metrics. Figure 22

(right) shows the Pearson correlation and 95% confidence region of the Translation

Edit Rate (TER) against the classification accuracy with a context length of 10. This

relationship is strong but not significant, which might also be the case with the

context length of 2. However, this positive relationship is strong and significant

(r(3)=.95, p=0.014) with the context length of 5.

Figure 22: Pearson correlation between and classification accuracy with context length of 10

and the direct assessment score (left) and translation edit rate (right).



6 C O N C L U S I O N

Studies have shown that readers still prefer human translation (HT), even over trans-

lations produced by state-of-the-art Machine Translation systems. What often ne-

glected when measuring translation quality in MT as compared to HT are lexical

and syntactic differences. With this research, we aim to fill in this research gap and

focus on identifying the characteristics that enable us to distinguish between three

types of commonly available translations - MT, PE, and HT.

We have employed a machine-learning algorithm and conducted three binary

classification tasks (i.e., MT-HT, MT-PE, and HT-PE) using the linguistic attributes

inspired by translation studies. Those linguistic features model the phenomenon

of translationese in four aspects - simplification, explicitation, normalization, and

interference. It achieves the mean accuracy of 0.55 for MT-HT, 0.56 for MT-PE, and

0.72 for HT-PE with a context length of 10 consecutive sentences. We analyzed the

importance of each translationese aspect through the absolute coefficients ranking

and average coefficients. The effect of multicollinearity is also taken into account,

and highly correlated features are eliminated for reliable and stable coefficients.

Finally, we conducted the Pearson correlation test, and it confirms the previous

finding (Aharoni et al., 2014) that classification accuracy has a strong and significant

inverse relationship with the DA score. Although the classifier’s performance is

only slightly better than the chance level for two of the three tasks, this study still

sheds light on the unique translationese phenomenon exhibited nowadays among

the currently flourishing translation types.

Based on the absolute coefficient ranking and average coefficients, we conclude

that for HT-PE, machined-based translation (i.e., PE) can be distinguished from HT

with relatively good accuracy, while for MT-HT, the accuracy is dependent on the

translation quality of the MT systems as there is a significantly negative relationship

between classification accuracy and DA score. (RQ1) However, we should treat

the result of HT-PE with caution as the data amounts are few, which has possibly

caused overfitting.

56
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Our experiment result also shows that different aspects of translationese are

useful for distinguishing machine-based translation from HT. Features associated

with interference and normalization help the classifier to discriminate MT from

HT whereas features indicative of interference and simplification are among the

most useful indicators for HT-PE. (RQ2) Interference seems to be the common and

primary characteristic, however, it is difficult to make a generalization of the impor-

tance of any translationese aspects as the datasets in each task are different. Finally,

features which exemplify the phenomenon of interference and explicitation have

the best discriminating power between the two machine-based translation (i.e., MT

and PE). (RQ3) We also find that features indicative of interference (length ratio and

PoS perplexity) reveal that the source languages indeed influence machined-based

translations to a larger degree than HT.

Given the previous findings, some suggestions for further research are worth

exploring in the future. Firstly, it might be beneficial to implement other features in-

spired by previous studies. For example, Kendall’s tau distance (Birch and Osborne,

2011; Toral and Sánchez-Cartagena, 2017) can be used to measure the similarity be-

tween the word alignments of translation and reference texts. Moreover, since most

of our features are modeled at the lexical level, incorporating more syntactic fea-

tures which have proved to have considerable predictive power in translationese

detection (Kunilovskaya and Kutuzov, 2017) might be useful. Secondly, since drop-

ping the highly correlated features hurts the classifier, the trade-off between one

feature’s weights and multicollinearity degree could also be further investigated.

Thirdly, we use different datasets in which translations are not only generated

differently but in different domains. It further affects the interpretation of the gener-

ality of the translationese aspects across translation types. For example, the MT-PE

task uses data from IT and legal domains, which are very different from the news

domain in MT-HT. Future works could consider using a more open domain dataset,

such as eScape (Negri et al., 2018), which contains several corpora belonging to

various domains. Finally, for the methodology, a potential approach could incorpo-

rate translationese features into fine-tuned BERT (Devlin et al., 2018). One possible

approach is to convert translationese features into embeddings via a multilayer per-

ceptron (MLP) network and combine it with BERT embeddings.

To sum up, our work explores the phenomenon of translationese in the commonly-

used translation types by integrating translation studies with a computational ap-

proach. We confirm that different translations demonstrate various linguistic at-
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tributes, exhibiting different levels and dimensions of so-called translationese. How-

ever, under the scope of our work, it is difficult to make a general conclusion on the

importance of any translationese aspect due to the limitation of the datasets used.

Lastly, we would like to mention that all the code and data used in our experi-

ments are available on Github1.

1 https://github.com/yuwenchen31/translation_detection

https://github.com/yuwenchen31/translation_detection
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a implemented features per language pair
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b box-plot of feature values

Figure 23: Feature values computed on the training set of MT-HT.
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Figure 24: Feature values computed on the training set of MT-HT.
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Figure 25: Feature values computed on the training set of HT-PE.



b box-plot of feature values 64

Figure 26: Feature values computed on the training set of HT-PE.
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Figure 27: Feature values computed on the training set of MT-PE.
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Figure 28: Feature values computed on the training set of MT-PE.
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c classification results using features whose vif < 5

Figure 29: MT-HT Classification results using features whose VIFs are below 5.

Figure 30: MT-HT classification results using data generated by DeepL with features whose VIF < 5.
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Figure 31: HT-PE and MT-HT Classification results with features whose VIFs are below 5.

Figure 32: MT-PE Classification results with features whose VIFs are below 5.
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d cross-validation scores during rfe

Figure 33: Cross-validation score with different number of selected features on training set during RFE
for MT-HT.
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Figure 34: Cross-validation score with different number of selected features on training set during RFE
for MT-HT.
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Figure 35: Cross-validation score with different number of selected features on training set during RFE
for HT-PE.



d cross-validation scores during rfe 72

Figure 36: Cross-validation score with different number of selected features on training set during RFE
for MT-PE.
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e mt by deepl vs. ht

Figure 37: MT-HT classification results. Data is generated by DeepL and the classifier is trained with all
features (including PoS and character ngrams.)
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f absolute coefficient ranking

Feature name Ave. rank Std Presence Hypothesis

length ratio 2.8 2.95 85% I
syllable ratio 3.9 3.38 55% S
average sentence length 4.9 4.49 67% S
yulesi 7.2 5.81 67% S
mtld 7.2 6.52 52% S
mean word rank 7.3 3.34 61% S
5 most frequent word 7.4 5.08 70% S
average word length 7.6 4.49 76% S
pronoun ratio 8.3 6.08 67% O
lexical density 8.8 5.44 58% S
pmi 9.2 6.05 61% N
10 most frequent word 9.5 4.73 52% S
average function words 9.8 6.29 70% E
thresold PMI 11.1 6.41 52% N
type token ratio 11.3 7.17 48% S
contextual function word 11.4 7.37 52% I
repetition ratio 11.5 6.28 73% N
50 most frequent word 11.6 5.54 52% S
positional token frequency 12.3 5.11 48% I
pos perplexity 12.3 5.23 39% I
explicit naming 13.1 5.39 33% E
passive verb ratio 13.5 5.75 48% O
mdd 14.0 7.24 36% S
perplexity 15.1 6.23 27% S
mean multiple naming 15.2 3.97 33% E
single naming 17.6 5.3 36% E

Table 15: Feature ranking based on absolute coefficients of MT-HT classification. Translationese hypothe-
ses are denoted as Simplification, Normalization, Explicitation, Interference, and Others.

Feature name Ave. rank Std Presence Hypothesis

pmi 1.0 3% N
length ratio 1.3 0.868 73% I
50 most frequent word 2.0 3% S
mean word rank 2.0 3% S
mtld 2.4 1.673 15% S
average function words 2.5 0.707 6% E
syllable ratio 2.8 0.5 12% S
mdd 3.3 1.799 21% S
type token ratio 3.7 2.082 9% S
repetition ratio 3.8 2.57 70% N
pos perplexity 4.0 2.0 27% I
passive verb ratio 4.1 2.265 48% O
explicit naming 4.2 2.136 33% E
yulesi 4.3 3.069 33% S
perplexity 4.7 2.693 27% S
contextual function word 4.9 3.643 24% I
single naming 5.2 1.697 36% E
mean multiple naming 5.5 2.423 33% E
5 most frequent word 5.6 3.435 15% S

Table 16: Feature (VIF < 5) ranking based on absolute coefficients of MT-HT classification.
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Feature name Ave. rank Std Presence Hypothesis

length ratio 3.3 2.31 100% I
positional token frequency 3.7 2.31 100% I
50 most frequent word 5.0 1.73 100% S
average function words 5.3 6.66 100% E
mdd 5.5 3.54 67% S
average word length 6.0 2.83 67% S
mean word rank 6.7 3.51 100% S
contextual function word 8.0 1.41 67% I
mtld 10.0 12.73 67% S
single naming 10.0 1.41 67% E
average sentence length 10.0 33% S
lexical density 10.7 3.51 100% S
pmi 11.0 9.9 67% N
pronoun ratio 11.0 33% O
passive verb ratio 12.0 33% O
repetition ratio 13.0 33% N
thresold PMI 13.3 11.15 100% N
type token ratio 14.0 14.14 67% S
perplexity 15.0 9.9 67% S
mean multiple naming 15.0 33% E
yulesi 15.0 7.07 67% S
syllable ratio 16.0 33% S
10 most frequent word 17.0 33% S
pos perplexity 17.5 7.78 67% I
5 most frequent word 21.0 33% S
explicit naming 25.0 33% E

Table 17: Feature ranking based on absolute coefficients of HT-PE classification. Translationese hypothe-
ses are denoted as Simplification, Normalization, Explicitation, Interference, and Others.

Feature name Ave. rank Std Presence Hypothesis

mdd 1.0 0.0 67% S
contextual function word 1.0 33% I
single naming 2.0 33% E
yulesi 2.0 33% S
pos perplexity 2.5 0.71 67% I
passive verb ratio 3.0 33% O
mean multiple naming 4.0 33% E
perplexity 4.5 2.12 67% S
explicit naming 5.0 33% E

Table 18: Feature (VIF < 5) ranking based on absolute coefficients of HT-PE classification.
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Feature name Ave. rank Std Presence Hypothesis

length ratio 4.4 5.68 93% I
average sentence length 6.0 3.37 27% S
pmi 6.1 6.47 53% N
50 most frequent word 6.4 3.7 53% S
thresold PMI 6.8 4.64 67% N
mtld 7.4 8.0 60% S
yulesi 7.7 4.15 47% S
lexical density 7.9 6.85 53% S
type token ratio 8.0 4.8 47% S
repetition ratio 8.1 6.17 60% N
mean multiple naming 8.3 8.02 60% E
average function words 8.5 7.84 73% E
pos perplexity 8.5 3.54 13% I
5 most frequent word 9.0 7.75 27% S
explicit naming 9.1 6.56 53% E
positional token frequency 10.0 6.4 33% I
pronoun ratio 10.5 5.28 40% O
single naming 11.0 9.55 40% E
mean word rank 11.5 6.86 40% S
10 most frequent word 13.2 5.78 40% S
average word length 13.5 3.83 40% S
mdd 14.2 6.18 33% S
passive verb ratio 14.8 7.57 40% O
contextual function word 16.4 1.52 33% I

Table 19: Feature ranking based on absolute coefficients of MT-PE classification. Translationese hypothe-
ses are denoted as Simplification, Normalization, Explicitation, Interference, and Others.

Feature name Ave. rank Std Presence Hypothesis

average function words 1.5 0.71 13% E
mtld 1.8 0.5 27% S
pmi 2.0 7% N
mean multiple naming 2.0 1.5 60% E
single naming 2.7 0.52 40% E
yulesi 3.0 2.65 20% S
repetition ratio 3.0 2.2 53% N
length ratio 3.1 2.12 73% I
pos perplexity 3.5 2.12 13% I
type token ratio 4.3 1.53 20% S
explicit naming 5.0 2.0 53% E
50 most frequent word 5.0 7% S
passive verb ratio 5.5 2.74 40% O
mdd 5.6 1.82 33% S
10 most frequent word 6.5 2.12 13% S
positional token frequency 11.0 7% I
contextual function word 12.0 7% I

Table 20: Feature (VIF < 5) ranking based on absolute coefficients of MT-PE classification.
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g average coefficients ranking

Feature name Ave. coef Std Presence Hypothesis

syllable ratio -0.459 1.318 55% S
mtld -0.389 0.414 52% S
length ratio -0.364 0.426 85% I
pronoun ratio -0.257 0.225 67% O
lexical density -0.237 0.31 58% S
repetition ratio -0.195 0.185 73% N
mean word rank -0.193 0.188 61% S
pmi -0.186 0.302 61% N
mdd -0.136 0.156 36% S
mean multiple naming -0.109 0.215 33% E
50 most frequent word -0.061 0.223 52% S
pos perplexity -0.05 0.178 39% I
single naming -0.041 0.121 36% E
10 most frequent word -0.037 0.322 52% S
type token ratio -0.015 0.507 48% S
average function words 0.008 0.273 70% E
average word length 0.022 0.305 76% S
passive verb ratio 0.038 0.228 48% O
contextual function word 0.04 0.368 52% I
explicit naming 0.055 0.189 33% E
positional token frequency 0.08 0.252 48% I
thresold PMI 0.097 0.345 52% N
yulesi 0.173 0.449 67% S
5 most frequent word 0.292 0.27 70% S
average sentence length 0.345 1.116 67% S
perplexity 1.171 3.298 27% S

Table 21: Average coefficients of MT-HT classification. Average coefficient is calculated across 11 lan-
guage pairs and context length of 2, 5, and 10.

Feature name Ave. coef Std Presence Hypothesis

mtld -0.483 0.487 15% S
length ratio -0.32 0.453 73% I
yulesi -0.216 0.352 33% S
pmi -0.213 3% N
repetition ratio -0.206 0.209 70% N
mdd -0.146 0.196 21% S
syllable ratio -0.118 0.086 12% S
mean word rank -0.076 3% S
mean multiple naming -0.061 0.099 33% E
pos perplexity -0.047 0.105 27% I
single naming -0.032 0.113 36% E
explicit naming -0.027 0.189 33% E
type token ratio 0.029 0.014 9% S
passive verb ratio 0.064 0.199 48% O
perplexity 0.079 0.125 27% S
average function words 0.173 0.149 6% E
contextual function word 0.175 0.221 24% I
5 most frequent word 0.179 0.337 15% S
50 most frequent word 0.276 3% S

Table 22: Average coefficients of MT-HT classification with features whose VIF < 5.
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Feature name Ave. coef Std Presence Hypothesis

average function words -0.645 0.545 100% E
pronoun ratio -0.612 33% O
length ratio -0.581 0.396 100% I
passive verb ratio -0.561 33% O
50 most frequent word -0.55 0.341 100% S
repetition ratio -0.545 33% N
mean multiple naming -0.519 33% E
pmi -0.513 0.131 67% N
average word length -0.484 0.494 67% S
mdd -0.479 0.418 67% S
mean word rank -0.461 0.441 100% S
single naming -0.451 0.292 67% E
10 most frequent word -0.431 33% S
lexical density -0.356 0.228 100% S
mtld -0.323 0.111 67% S
thresold PMI -0.242 0.31 100% N
type token ratio -0.129 0.052 67% S
yulesi -0.098 0.285 67% S
pos perplexity -0.096 0.015 67% I
explicit naming -0.05 33% E
5 most frequent word 0.223 33% S
perplexity 0.284 0.123 67% S
syllable ratio 0.441 33% S
contextual function word 0.53 0.361 67% I
positional token frequency 0.622 0.398 100% I
average sentence length 0.633 33% S

Table 23: Average coefficients HT-PE classification.

Feature name Ave. coef Std Presence Hypothesis

mdd -0.498 0.426 67% S
contextual function word -0.44 33% I
passive verb ratio -0.239 33% O
pos perplexity -0.163 0.134 67% I
mean multiple naming -0.142 33% E
single naming -0.137 33% E
yulesi -0.109 33% S
explicit naming 0.015 33% E
perplexity 0.055 0.086 67% S

Table 24: Average coefficients of HT-PE classification with features whose values are < 5.
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Feature name Ave. coef Std Presence Hypothesis

50 most frequent word -0.117 0.191 53% S
repetition ratio -0.114 0.136 60% N
thresold PMI -0.104 0.101 67% N
passive verb ratio -0.069 0.11 40% O
yulesi -0.054 0.189 47% S
type token ratio -0.054 0.212 47% S
average sentence length -0.053 0.201 27% S
lexical density -0.033 0.091 53% S
contextual function word -0.029 0.064 33% I
mean word rank -0.026 0.1 40% S
average word length -0.018 0.075 40% S
explicit naming -0.016 0.108 53% E
10 most frequent word -0.012 0.113 40% S
mdd -0.004 0.025 33% S
single naming 0.034 0.034 40% E
5 most frequent word 0.035 0.139 27% S
pronoun ratio 0.046 0.045 40% O
average function words 0.066 0.118 73% E
positional token frequency 0.067 0.083 33% I
mtld 0.094 0.108 60% S
pos perplexity 0.135 0.017 13% I
mean multiple naming 0.156 0.198 60% E
length ratio 0.203 0.237 93% I
pmi 0.214 0.22 53% N

Table 25: Average coefficients of MT-PE classification. Average coefficient is calculated across 4 language
pairs and context length of 2, 5, and 10.

Feature name Ave. coef Std Presence Hypothesis

50 most frequent word -0.225 7% S
repetition ratio -0.151 0.194 53% N
passive verb ratio -0.062 0.102 40% O
10 most frequent word -0.047 0.054 13% S
yulesi -0.041 0.074 20% S
contextual function word -0.009 7% I
explicit naming 0.014 0.058 53% E
mdd 0.015 0.014 33% S
positional token frequency 0.036 7% I
single naming 0.061 0.081 40% E
type token ratio 0.111 0.128 20% S
average function words 0.118 0.242 13% E
mtld 0.121 0.123 27% S
pos perplexity 0.16 0.042 13% I
length ratio 0.161 0.226 73% I
mean multiple naming 0.205 0.23 60% E
pmi 0.333 7% N

Table 26: Average coefficients of MT-PE classification with features whose values are < 5.
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h correlation plot

Figure 38: Pearson correlation between and classification accuracy and the direct assessment score (left)
and translation edit rate (right). The accuracy is obtained with context length of 2.

Figure 39: Pearson correlation between and classification accuracy and the direct assessment score (left)
and translation edit rate (right). The accuracy is obtained with context length of 5.
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