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Chapter 1

Introduction

1.1 Part-of-speech Tagging

A Part-of-speech (POS) is the morphological category of a lexical item (word).
Lexical items which share the same POS are believed to have similar morpholog-
ical behavior. Common POS include Verb, Noun, Adjective, Pronoun, Adverb,
Preposition and so forth. POS information is used to disambiguate di�erent
morphological categories. For example, in the sentence �We can can a can", the
word �can" belongs to di�erent categories: (1) a modal verb, ie, somebody can
do something ; (2) a verb which is making a bottle; (3) a noun which refers to a
container. A POS tagger is a system for automatically determining the POS tag
in a given text, and it should be able to distinguish morphological categories by
assigning tags to words. The above sentence can be tagged as �WeN canMD canV
aDet canN" where N is noun, MD is modal verb, V is verb, Det is determiner.
Another example is the word �running", the common interpretation is a verb
(e.g. �he is running"). However, it could be an adjective (e.g. �running shoes")
or noun (e.g. �running is good for health").

POS tagging is one of the most basic operations of computational linguistic.
Since it helps to disambiguate morphological categories, POS are regularly used
in various natural language processing (NLP) tasks such as parsing (Klein and
Manning, 2003), sentence classifying (Zaanen et al., 2005), name entity recogni-
tion (Finkel et al., 2005) etc.

1.2 Tag set

Tag set is the list of possible tags that lexical items (word) can have. Nor-
mally, the tag set is di�erent across languages. For English, the well-known tag
set is Penn Treebank (Marcus et al., 1993) tag set which contains 48 tags; for
more information please see Appendix A. The tag set is used to disambiguate
morphology of lexical items. Therefore, the number of tags generally shows the
morphological complexity of a language. For example, there might be up to 4000
POS tag in the Prague Dependency Tree Bank (Haji£ et al., 2000) which shows
the greater morphological complexity of Czech language compared with English.
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1.3 Evaluation

The most straightforward evaluation for POS tagging is per-token accuracy.
Firstly, sentence is tokenized, which will separate token (word, number, punc-
tuation) from each other. Normally, space is used as the delimiter and period
�." indicates a sentence boundary. However, there are cases where this will not
work, for example, the sentence �Mr. Peter ate a banana" should be tokenized
as (Mr.) (Peter) (ate) (a) (banana) but not (Mr) (.) (Peter) (ate) (a) (banana).
Second, the whole sentence is tagged. The tag of each token is then compared
with the tag in the gold-standard test data which is manually annotated by a
linguist. The percentage of correctly tagged tokens is known as per-token ac-
curacy. This measure is widely applied and has become the default evaluation
measure. Supervised POS taggers achieve as high as 97 % per-token accuracy
for English (Toutanova et al., 2003), French (Denis and Sagot, 2012) and many
other languages.

People might argue that this per-token accuracy is not meaningful because
it takes into account punctuation marks and tokens that are not ambiguous.
Therefore, another evaluation metric is ambiguous-token accuracy which only
counts tokens that have more than one possible tag. The list of possible tags for
each word can be acquired using dictionary or large manually annotated data.
To the best of our knowledge, the best system (Yoshida et al., 2007) reports
ambiguous-token accuracy around 87% for English.

Other evaluation is per-sentence accuracy. That is, accuracy is calculated on
the number of sentences for which all tokens are correctly tagged. This measure
is more meaningful for tasks such as dependency-parsing where a single mistake
in POS tagging might lead to a completely wrong parsed sentence. The current
good taggers report per-sentence accuracy around 55-57% for English (Manning,
2011). In this thesis, we employ per-token accuracy for comparison purposes,
thus, when we report accuracy of a tagger, we implicitly mean per-token accuracy.

1.4 Traditional approach

The traditional approach to POS tagging builds a separate tagger for each
target language. It does not take into consideration the relationship between
languages. The supervised method which employs supervised machine learning
algorithms is usually used (Brants, 2000), (Brill, 1995), (Toutanova et al., 2003).
For each language they collect and build a large amount of manually annotated
data and train a supervised POS tagger on it. The supervised style for the
traditional approach has achieved very high tagging accuracy. The only issue
is handling the out-of-vocabulary (OOV) case where lexical items in test data
are not present in training data. Therefore, we have very little information to
predict the tag of an OOV word. The straightforward solution for the OOV is
based on frequency of tags. That is assigning the highest frequency tag for the
OOV word. More advanced solution might use the su�x/pre�x of this word or
the prior tag sequences. For example, the su�x -ly (e.g. beautifully, quickly,
lovely etc), indicates an adverb, while the su�x -ive (e.g. attractive, possessive)
indicates an adjective. Also, the information about tag sequences indicates that
after determiner is usually a noun.
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1.5 Challenges in POS tagging

The �rst challenge for POS tagging is the training data. Currently, most su-
pervised taggers outperform unsupervised ones. Supervised algorithms for POS
tagger perform as accurate as 97% for English (Ratnaparkhi, 1996), French (De-
nis and Sagot, 2012) and many other languages. However, supervised learning
needs manually annotated data which is time consuming and costly to construct.
There are approximately 7000 languages in the world (Lewis, 2009) but very small
fraction have su�cient POS manually annotated data for building reliable super-
vised POS tagger. Unsupervised POS tagging, on the other hand, does not need
any manually annotated data. It is more or less equivalent to unsupervised clus-
tering task. That is, they tried to group words into morphological cluster. The
hypothesis is that words in the same cluster must share the same POS. However,
there is a huge gap between supervised and unsupervised learning accuracy (Das
and Petrov, 2011).

Current POS taggers are language speci�c; there is a lack of consensus about
the tagset. Tag set are adapted to each language, an obstacle for cross-language
processing. For example, when calculating morphological similarity between two
languages, we might need to compare tag sequence similarity. However, since
tag sets for each language are di�erent, they are incomparable. Another example
is when working with a multilingual environment such as the World Wide Web,
giving a solution that can work for every language is in high demand. However,
if we keep individual tagsets for each language, we might have to manually or
semi-automatically map tagsets between languages pairwise.

1.6 Universal Tagger

In this thesis, we are going to investigate a solution to address the current
challenges for POS tagging using a Universal Tagger. Supervised styles, as men-
tioned above, are impossible for our Universal Tagger, which aims at building
taggers not only for resource-rich but also for resource-poor languages. A com-
pletely unsupervised style is possible but low accuracy makes unsupervised POS
tagging impractical. In this paper, we would like to investigate an unsupervised
approach but additionally, exploit parallel data to copy tag information from
resource-rich to resource-poor languages. Parallel data is acquired from a par-
allel corpus which contains many pairs of source sentences and their translation
to the target language. We can use parallel data to bridge between languages
and transfer annotation of data from one language to the other. The intuition
is that, for many resource-poor languages, there is no manually POS annotated
data. Such data involves the intensive work of linguists, but parallel data is easier
to acquire.

The development of parallel data motivates us to build the Universal Tag-
ger. Multilingual government documents, �lm subtitles, and a large amount of
translation memory from books and news-papers, which are the source for par-
allel data, are becoming more and more widely available. Not only the size but
also the language coverage of parallel data has improved drastically. The era of
English dominating one side of parallel data is shifting to a far wider range of
languages.
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Moreover, the Universal Tagger aims at pushing the boundary for cross-lingual
natural language processing (NLP). Thus, the output of the Universal Tagger for
each language must be comparable. To do this, we must employ the same tagset
across languages. In this ways, we resolve the traditional �language speci�c"
issues of the conventional POS tagger.

1.7 Main contributions

In this thesis, we concentrate on the single task of unsupervised multilingual
POS tagging (Universal Tagger) which exploits parallel data. We give thorough
reviews of related works on both the traditional approach (monolingual) and
modern approach (multilingual). We show both the strong and weak points of
these approaches in Chapter 2.

In Chapter 3 we are going to build a Universal Tagger which employs the
consensus 12 Universal Tagset (Petrov et al., 2012) which will enable cross-lingual
comparison. Given a tagger for the source language and source-target language
parallel data, we are able to build a tagger for the target language. We evaluate
this on the same test data on the same 8 languages with the state-of-the-art (Das
and Petrov, 2011) using the same per-token accuracy metric. On average, our
system performs on par with theirs but is penalized by using less data. Moreover,
our method is much less sophisticated and runs much faster.

Out of 8 languages, we perform better at 4 languages which are in the same
language family (Germanic) with source language (English). This fact motivates
us for Chapter 4 which we dedicate to investigate the e�ectiveness of choosing
di�erent source languages. It turns out that English is rarely the best source
language in many cases. We are also able to build a model that can predict the
best source language just based on monolingual data. This model performs better
than always �xing a single best source language. The further accurate predic-
tion can be acquired if we additionally use multilingual data from the parallel
corpus. Finally, we show that, if multiple source languages are available we can
even get further improvement by incorporating information from multiple source
languages.

Chapter 5 contains the conclusion and discussion of future work. We organize
future work into di�erent categories chronologically. That is: (1) immediate work
which might take few weeks to �nish; (2) near future work which might take a
few months, and (3) longer future work which might take years.
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Chapter 2

Background and Literature Review

This chapter reviews methods for monolingual and multilingual POS tag-
ging. It provides background knowledge that is necessary for the next chapters.
Monolingual POS tagging aims at building a tagger for a single language, and it
does not take into account the relationship with other languages. Monolingual
POS tagging is language-speci�c, meanwhile, multilingual POS tagging favoring
a language-independent approach. It takes into account the relation between
languages and aims at building taggers for many languages. More speci�cally,
multilingual taggers build a tagger for one language based on data in other lan-
guages. Monolingual POS taggers exploit supervised, semi-supervised or unsuper-
vised methods depending on the availability of data. Multilingual POS tagger, in
contrast, is rather unsupervised methods although it exploits some �supervised"
information from the source (resource-rich) languages.

2.1 Monolingual POS Tagger

As mentioned before, POS tagging has gained much attention in the past and
has achieved great success. Many algorithms for POS tagging have been devel-
oped over time. In this section, we are going to review some of them. Moreover,
all POS taggers can be divided into 3 categories: supervised, unsupervised and
semi-supervised. The current best taggers for English are showed in Table 2.11.
All these taggers used the Penn Treebank Tagset (Marcus et al., 1993) and are
evaluated on the Wall Street Journal (WSJ) (Zhang et al., 2002) data set. The
performance is measured based on per-token accuracy. Moreover, the accuracy for
all tokens and unknown tokens are also given. As expected, all the best systems
use some of the labeled data as training data in supervised or semi-supervised
style. Moreover, some systems also used external resources to handle OOV or
improve the accuracy.

2.1.1 Supervised

In this part we review some supervised tagging algorithms. Each algorithm
is in a di�erent style, that is, rule based, probabilistic, feature based and other
approaches.

1http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)
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System name Short description All tokens OOV
TnT Hidden markov model 96.46% 85.86%
MElt MEMM with external lexical in-

formation
96.96% 91.29%

GENiA Tagger** Maximum entropy cyclic depen-
dency network

97.05% NA

Maxent easiest-�rst Maximum entropy bidirectional
easiest-�rst inference

97.15% NA

SVMTool SVM-based tagger and tagger
generator

97.16% 89.01%

Stanford Tagger 1.0 Maximum entropy cyclic depen-
dency network

97.24% 89.04%

Stanford Tagger 2.0 Maximum entropy cyclic depen-
dency network

97.29% 89.70%

Stanford Tagger 2.0 Maximum entropy cyclic depen-
dency network

97.32% 90.79%

SCCN Semi-supervised condensed near-
est neighbor

97.50% NA

Table 2.1: List of best English taggers (all > 96% on WSJ test set).

Transformation Based Tagging - a rule based approach

Transformation base tagging (TBT) (Brill, 1995) uses rules to tag. For exam-
ple, a rule could be, �A word after determiner is Noun" or �a/an/the are determin-
ers". These rules are acquired from training data. So, basically, TBT contains
two components, the learner and the tagger. The learner learns transformation
rules from training data. The tagger uses these rules to tag.

The learner The steps of the learner are visualized in Figure 2.1. More detail
is as follows:

• Strip the tags o� the annotated data but keep the original data for evalua-
tion.

• Initialize the tag for the stripped data by some simple method such as,
using frequency or any available tagger.

• Start with an empty set of selected rules S.

• Repeat until the stopping criterion is applied. Each iteration, the input is
the truth data, pool of possible rules and intermediate data from the previ-
ous iteration. For each rule r in the pool of rules, compute its contribution
as follow:

contrib(r) = cimproved(r)− cworsened(r)

where cimproved(r) is the number of correct items which originally incorrectly
tafgged and cworsened(r) is the number of incorrect items (originally correctly
tagged) after applying the rule r. Afterward, select a rule r which has the
biggest contribution contrib(r) and add r to the �nal set of selected rules S.
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Figure 2.1: The learner component of TBT. (Source: Jan Hajic, Natural Lan-
guage Processing II course material, Charles University in Prague)

The pool of rules is acquired automatically or manually. Rules are designed
in the form, �change the tag from A to B / condition". For example, the
rule �NN → NNS / preceded by NN VBP", says: change the tag at current
position from NN to NNS if two previous tags are NN and VBP. This step
stops when no improvement can be made or the improvement is less than
a threshold.

• Output the set of rule S

The Tagger The input of the tagger is unlabeled data and the set of rules S
from the learner. The steps of the tagger are straightforward.

• Initialize the tags for lexical items in the same way as the learner did.

• Loop for all the rules. For each rule r, apply this rule to the whole inter-
mediate data to change some tags.

• The last intermediate data is the output.

TBT is one of the oldest and a very straightforward algorithm, however, it
might be used to improve the accuracy of the original tagger. That is, use the
original tagger to initialize the learner. Dien and Kiem (2003) initialize the learner
by using an available English tagger i.e. SVM Tool (Gimenez and Marquez,
2004). They also exploit external information from Vietnamese-English parallel
data. The English tagger's performance is signi�cantly improved from 95.4% to
97.5% (absolute).

The Brill Tagger (Brill, 1995) is one of the implementations of transformation-
base learning. TBT is straightforward but the learning and tagging is quite slow.
Performance of TBT largely depends on having a pool of rule templates which

9



are developed by linguists or acquired from machine learning algorithm applied
on annotated corpus. Moreover, compared with other taggers, this approach has
rather poorer performance (Brants, 2000), (Toutanova et al., 2003).

Hidden Markov Model - a probabilistic approach

The idea of Hidden Markov Model (HMM) tagger is very similar to the noisy
channel or translation model in statistical machine translation. The di�erence
is that the output is not a target text but a sequence of tags. Given a sentence
which is a sequence of wordsW = w1w2w3....wn, we need to �nd the corresponding
sequence of tags T = t1t2t3..tn which maximizes the following probability.

Tags = argmax
ti

P (t1t2t3..tn|w1w2w3....wn) = argmax
T

P (T |W )

According to Bayes' rules

P (T |W ) =
P (W |T )× P (T )

P (W )

Since we're choosing tags, P (W ) is not considered, therefore

Tags = argmax
T

P (T |W ) = argmax
T

P (W |T )× P (T )

where
P (W |T )× P (T ) = P (w1w2..wn|t1t2..tn)× P (t1t2..tn)

According to the chain rule

P (W |T )×P (T ) = P (w1|t1t2..tn)×P (w2|t1t2..tn)×P (w3|t1t2..tn)×....×P (wn|t1t2..tn)×

P (tn|t1..tn−1)× P (tn−1|t1..tn−2)× ...× P (t1)

=
n∏

i=1

P (wi|w1t1....wi−1ti−1)× P (ti|w1t1....wi−1ti−1) (2.1)

With the assumption that the probability of word does not depend on the context
but only on the current tag, we have:

P (wi|w1t1....wi−1ti−1) ≈ P (wi|ti) (2.2)

With the assumption that the choice of tag depends on limited history (for ex-
ample bigram context), we have:

P (ti|w1t1....wi−1ti−1) ≈ P (ti|ti−1) (2.3)

From equation (2.1), (2.2) and (2.3):

Tag Sequence = argmax
T

P (W |T )× P (T ) ≈ argmax
ti

n∏
i=1

P (wi|ti)× P (ti|ti−1)

(2.4)
P (wi|ti) is called the emission probability and P (ti|ti−1) is called the transition

probability as shown in Figure 2.2. We estimate these probabilities from training
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Figure 2.2: Emission and transition probabilities in HMM. Wi is a word and Ti
is a tag.

data and then smooth them using method such as interpolation (Reinsch, 1967)
or Good-Turing (Gale, 1994). Smoothing is needed because training data might
not cover everything that appears in test data.

HMM tagging is not as trivial as transformation based tagging. The straight-
forward tagging solution is that we list all possible tag sequences and calculate
the probability of each sequence based on equation 2.4. The result is the tag
sequence that gave the highest probability. However, this solution is not realistic
because of the exponential complexity. Therefore, people use dynamic program-
ming algorithms such as Viterbi (Ryan and Nudd, 1993) or beam search (Reddy,
1976).

TNT (Brants, 2000) is an implementation of the HMM approach which uses
trigram tag model, i.e. P (ti|ti−1ti−2) instead of the bigram tag model as men-
tioned above. Back to Table 2.1 (page 8) , we can see that TNT performs well
and achieves comparable result to the state-of-the-art tagger.

Maximum Entropy - a feature based approach

We aim at maximizing the following probability

argmax
ti

P (t1t2t3..tn|w1w2w3....wn) = argmax
T

P (T |W )

HMM tried to maximize the joint probability P (W,T )

argmax
T

P (T |W ) = argmax
T

P (W |T )× P (T ) = argmax
T

P (W,T )

Maximum Entropy Tagging (MaxEnt) (Ratnaparkhi, 1996) directly targets max-
imizing conditional probability P (T |W ). The disadvantage of HMM tagging is
that it cannot incorporate many sources of evidence from the text. It just uses
lexical and tag information which denoting in emission and transition probability.
The MaxEnt model resolves this disadvantage. We can embed as much informa-
tion as we want in to this MaxEnt model. This information might vary from
position, lexical, tag, global document and so forth. Each of these pieces of infor-
mation is call feature. This is the reason why Maximum Entropy tagger belongs
to the feature-based approach. Formally, a feature is de�ned as:

fi(C, t) =

{
1 if context C is satis�ed

0 otherwise
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The feature could be complicated or simple, but always in the form, the tag
t in the context C. For example, the feature �su�x = -ing and tag = VBG" can
be formally described as

fi(C, t) =

{
1 if su�x = -ing & t = VBG

0 otherwise

The model using these features has to obey the constraints, that is, the expected
value of the feature fi which is Epfi must comply with training data.

Epfi = Ep′fi

Where

Ep′fi =
1

N

N∑
j=1

fi(Cj, tj)

Ep′fi is the expected value of feature fi which is derived from training data
(C1, t1),(C2, t2) .. (Cn, tn). This list can be derived easily from manually anno-
tated data. By applying Lagrangian Multipliers on these constraints, we derive
MaxEnt model which has the form as follows:

p(t|C) = 1

Z(C)
exp
( n∑

i=1

λifi(C, t)
)

(2.5)

Where

• fi is a feature function as de�ned above

• C is the context, t is the tag

• Z(C) is the normalization factor to ensure proper distribution probability.

• λi is the weight for features fi

The more common name for this model is �log-linear model". We use Generalized
Iterative Scaling (GIS) (Darroch and Ratcli�, 1972) to estimate λi. The value
of λi shows the importance of feature fi. This value has to obey the constraints
applied for feature fi. The GIS algorithm is shown in Algorithm 1.

Algorithm 1 Finding λi.

λ
(0)
i ← 0
while not convergence do
Z ← maxC,t

∑n
i=1 fi(C, t)

λ
(t+1)
i ← λti +

1
Z
log

Ep′fi
E

p(t)
fi

end while

It is very important to notice that the constraints cannot uniquely de�ne the
model in Equation (2.5). So, from all models that satisfy the constraints, we
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choose a model that maximizes entropy, that is, as uniform as possible. More-
over, tag probability truly depends on the context which is described by features,
therefore:

Tag Sequence = argmax
T

P (T |W ) = argmax
T

P (T |C) ≈ argmax
ti

n∏
i=1

p(ti|Ci)

(2.6)
Finally, the most probable sequence of tags (result tag sequence) is obtained
by performing beam search (Reddy, 1976) or Viterbi (Ryan and Nudd, 1993)
algorithms to maximize equation (2.6).

The common implementation of the MaxEnt tagger uses features from two
words back and two words ahead, the current word, and two tags back. That is,
context C = (wi−2, ti−2, wi−1, ti−1, wi, wi+1, wi+2). The features can be anything
based on this context. Therefore, the number of features can be numerous and
degrade the performance. The e�ective implementation always use some heuris-
tic methods to limit the number of features. The Stanford Maximum Entropy
tagger (Toutanova et al., 2003) is one of the notable implementation. From Table
2.1 (page 8), we can see that aside from Stanford MaxEnt, there are many other
systems e.g. GENiA Tagger (Toutanova et al., 2003) or Maxent easiest-�rst (Tsu-
ruoka and Tsujii, 2005) which exploit MaxEnt idea and acquire very good results.
This is somehow understandable because MaxEnt has the power to incorporate
a large number of features. In that way, we capture all the evidence that could
help to predict POS tags.

Other algorithms

Apart from the above mentioned approaches (rule based, probabilistic, feature
based), there are other approaches for supervised POS taggers.

The classi�er base approach is one of those. A classi�er is built based on
machine learning algorithms such as Naive Bayes, Decision Tree, kNN or more
advanced methods: Support Vector Machines (SVM) or Conditional Random
Fields (CRF) and so forth. Each lexical item (word) is converted into features,
then a classi�er is trained on this data. The test data is also converted into
features. The classi�er is applied on test data and produce tag labels. Steps
for classi�er approach are described in Figure 2.3. Back to Table 2.1 (page 8),
SVMtool (Gimenez and Marquez, 2004) implementing SVM machine-learning
algorithm performs very well on Wall Street Journal (WSJ) data set.

Parsing approach exploits the idea of building a constituency parse tree as in
Figure 2.4. Afterward, we need to track down the rules to determine the tags. For
example, from rule NP→ DT NN, we extract �a" (DT) and ��y" (NN). However,
the parsing task is more di�cult than tagging and actually uses information from
the tagging processes. Nevertheless, parsing could be very helpful for tagging
especially in the case where disambiguation needs a long range syntactic infor-
mation as in Chinese or Japanese. Traditionally, a constituency parser is built
from a treebank using algorithms such as shift-reduce parsing (Yeh, 1983). Mod-
ern approach does POS tagging and parsing at the same time in an incremental
way (Hatori et al., 2012).
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Figure 2.3: Steps to build a classi�er.

Figure 2.4: Constituency parse tree. (Source: Jan Hajic, Natural Language
Processing II course material, Charles University in Prague)
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2.1.2 Unsupervised

Unsupervised tagging does not use any labeled data for training. There are
several well-known methods for unsupervised tagging.

Clustering

Words having the same morphological/syntactical properties are grouped into
the same group (cluster). It is believed that words in the same cluster are likely
to have the same POS tag. The �rst issue a clustering tagger has to tackle is mea-
suring morphological similarity. That is if each word is a vertex in a graph, and
the weight of edges between vertices is the morphological similarity, then words
which have the same POS tag should be close to each other. Normally, similar-
ity measurement algorithm is based on nearby content words. For example, in
two sentences �He bought a pair of shoes" and �He ate a banana". Two words
�bought" and �ate" are surrounded by �He" and �a", therefore �buy" and �eat"
are likely to have the same POS tag. Schütze (1995) proposes to use distribu-
tional similarity for measurement. This approach is based on the hypothesis that,
�we can understand a word by looking at its neighbor feature words" (Schütze,
1995). Afterward, a word is represented as a vector of feature word weights. To
compensate for the frequency e�ects, the weight for each feature word is calcu-
lated using a method such as tf.idf (Robertson, 2004). Schütze (1995) considers
the top n most frequent words as feature words. A word is represented as:

−−−−→
wordA = (w1, w2, w3......wn)

where wi is the weight of the ith feature word and wi = 0 if that feature word
does not appear in the context of the current wordA. The similarity between two
words is the cosine similarity between the corresponding vectors.

Another problem with tagging based on clustering is determining the num-
ber of clusters. De�ning that number beforehand might not be a good solution.
We might force the algorithm to separate coherent clusters or to join unrelated
ones. On the other hand, letting the algorithm choose when to stop could result
in a too speci�c or too general clusters.

Evaluation is also another major consideration. Normally, clustering algo-
rithms are evaluated based on the perplexity (or entropy) of the cluster (Christ
et al., 2010). In the case of tagging, we are expecting that all words in the same
cluster have the same tag. Therefore, the lower the perplexity, the better. How-
ever, is it what we are looking for? The answer is no, we want to compare with
gold-standard test data to know the tagging performance. Johnson (2007) sug-
gested a many-to-one evaluation. The induced tag for each cluster is the most
frequent tag of the items in the cluster, consulting the gold-standard data. How-
ever, there can be cases where two clusters have the same tag. To resolve this
issue, one-to-one evaluation puts the restriction that each gold tag corresponds to
one cluster only. Normally, this is done by greedy matching, which aims at max-
imizing accuracy. Nevertheless, the number of clusters and gold tags are likely to
be di�erent. In that case, some clusters or gold tags will not be matched. How-
ever, both many-to-one and one-to-one evaluation schemes require gold-standard
data to �nd the most appropriate tag for each cluster. This is a chicken-and-egg
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problem since if we have gold-standard data then we do not need to take an unsu-
pervised approach. Besides, we can also use some heuristic method to determine
the tag for each cluster such as cluster size (e.g. the biggest cluster is Noun).

UnsuPOS2 (Biemann, 2006b) is an implementation of a clustering tagger. He
divides words into two partitions: high and medium frequency words, medium
and low frequency words. In each partition, he builds a di�erent graph using
a di�erent similarity measurement. For high and medium frequency words, he
uses distributional similarity as mentioned above. For the other partition, he
calculates similarity between two words based on how many direct neighbors
they have in common. The edge is made between words (vertex) if the weight
is higher than a threshold. Afterward, the Chinese Whispers (Biemann, 2006a)
clustering algorithm is performed on both graphs. The steps of Chinese Whispers
are simply as follows: (1) each node is assigned to a cluster; (2) sort the nodes
in a random order; (3) join each node to it most popular neighborhood where
popularity is de�ned as the total weight of the inside nodes; (4) repeat (3) until
the number of cluster reaches the �xed threshold.

Thereafter, on each partition, there is a set of clusters. It is worth noticing that
there are many words in common (medium frequency words) between clusters.
Then, Biemann (2006b) merges these two sets into a single set. Again, each
cluster is considered as a vertex and the number of common words is the weight
between vertices. Chinese Whisper is applied again to acquire �nal clusters.
Every word inside a cluster has the cluster ID the same as the tag label. Finally,
he build a tagging model using a trigram HMM.

Unsupervised tagging using a clustering algorithm is useful since it provides
the �rst overview about morphological categories of lexical items. In reality, it is
usually used with other applications, for example, Søgaard (2011) uses unsuper-
vised tagging information as the feature in another tagger.

HMM unsupervised tagging

In a supervised HMM tagger, we estimate the emission probability p(wi|ti) and
transition probability p(ti|history) from the labeled training data. In the unsu-
pervised style, these two probabilities are estimated using the Baum-Welch (Baum
et al., 1970) algorithm, which is a variant of the Expectation Maximization (EM)
algorithm. It means that Baun-Welch can only output the local optimum but
not the global optimal solution. Baum-Welch makes use of the forward and back-
ward algorithms (Zweig, 1996). It is trained on the sequence of observations and
outputs the most likely parameters (emission and transition probability) for the
HMM. Roughly speaking, the steps for Baum-Welch are described in Algorithm
2.

Feature based HMM (FB-HMM) (Berg-Kirkpatrick et al., 2010) is another
variant of unsupervised HMM tagging. The emission probability model P (wi|ti)
is estimated using a log-linear model:

P (wi|ti) =
exp(weight× f(wi, ti)∑

x∈V oc exp(weight× f(x, ti))

where V oc is the entire vocabulary and f(wi, ti) is the feature as in supervised

2http://wortschatz.uni-leipzig.de/~cbiemann/software/unsupos.html
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Algorithm 2 Baum-Welch algorithm.
Initialize emission probability PY

Initialize transition probabilityPS

while not convergence do
Compute forward probability
(1) Using current setting of PS and PY

(2) Follow the procedure of trellis algorithms
Compute backward probability
(1) Same as forward probability
(2) Start from the end
for each emission/transition pair do
Collect count base on forward & backward prob

end for
Re-estimate PS and PY

end while

Model da nl de el it pt es sv Avg

Without dic.
EM-HMM 68.7 57.0 75.9 65.8 63.7 62.9 71.5 68.4 66.7
FB-HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

With dic. FB-HMM 93.1 94.7 93.5 96.6 96.4 94 95.8 85.5 93.7

Table 2.2: Comparison between with and without dictionary unsupervised POS
tagger for 8 languages Danish (da), Dutch (nl), German (de), Greek (el), Italian
(it), Portuguese (pt), Spanish (es), Swedish (sv).

feature based learning. Again, this model can incorporate many sources of ev-
idence from the observation wi. In the original paper, Berg-Kirkpatrick et al.
(2010) use features including: (1) original word wi; (2) whether wi contains digit
or not; (3) whether wi contains a hyphen or not; (4) whether the �rst character
is capital or not and (5) the features from the previous 3 words. The feature
based HMM performed better than EM-HMM, simply because it exploits more
information. Table 2.2 shows the margins of 6.3 % (absolute) in average accuracy
between FB-HMM (73%) and EM-HMM (66.7%).

In the unsupervised HMM approach, we assume that we know the tag set
and possible tags for each word. We can get this list of possible tags from the
dictionary or from training data. If we do not have this resource, the system
would be completely unsupervised. However, without this list, the performance
would degrade substantially. Das and Petrov (2011) use the same tagset for di�er-
ent languages, the comparison of supervised, completely unsupervised (without
dictionary EM-HMM and FB-HMM), and unsupervised with dictionary (with
dictionary FB-HMM) tagger is given in Table 2.2. The e�ectiveness of the gold-
standard dictionary is clearly visible. The average accuracy increases from 73.0%
to 93.7% (absolute).

2.1.3 Semi-supervised

Semi-supervised learning is the combination of a supervised and unsupervised
method. The amount of labeled data is not enough to build a reliable supervised
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system. On the other hand, unlabeled data is widely available and easy to access
in large quantity. In this circumstance, semi-supervised learning is the solution.
Moreover, even in the case where labeled data is big enough, combining with
unlabeled data might give better performance.

Self-training, Tri-training approach

The most straightforward approach to semi-supervised tagging is self-training.
That is, we train a supervised classi�er c from a labeled data L. This model is
used to tag an unlabeled data U , so U will become the labeled data L′. Afterward,
we merge L′ and the gold labeled data L, and train a new classi�er c′ on them.
The process is repeated until no new classi�er is constructed. Tri-training (Zhou
and Li, 2005) is the extension of self-training. Instead of using just one classi�er,
tri-training uses three classi�ers. All three classi�ers are originally trained on
bootstrapped gold-standard data. Bootstrapping is a technique for re-sampling
the data. It is very important to use bootstrapped data, because if training data
for three classi�ers is not diverse, the three classi�ers would be the same and tri-
training would become self-training. When tagging a data item from unlabeled
data U , two classi�ers would help to determine the tag label. The intuition
here is that when two classi�ers agree upon a label, it is likely to be correct.
The algorithms stop when no new classi�ers are built. The detailed steps are
described in Algorithm 3.

Algorithm 3 Tri-training algorithm.

1: Li ← bootstrap(L) : i = 1..3
2: ci ← train_classifier(Li) : i = 1..3
3: repeat
4: for i : 1..3 do
5: for x ∈ Unlabeled data do
6: if cj(x) = ck(x) & (j, k : 1..3) & (j, k 6= i) then
7: Li ← Li ∪ (x, cj(x))
8: end if
9: end for
10: ci ← train_classifier(Li) : i = 1..3
11: end for
12: until ci not change
13: Final classifier ← vote of ci : i= 1..3

Søgaard (2010) suggested a simple improvement for tri-training, that is, tri-
training with disagreement. He just simply replaced the condition if cj(x) =
ck(x) (in line 6, Algorithm 3) with the condition, if cj(x) = ck(x) 6= ci(x).
The accuracy and especially speed improved. It might be because the new
condition just focuses on the weak point of the classi�er. The advantage of
self-training is the method's simplicity. However, in practice, without exploiting
extra information, self-training gives very little improvement. Table 2.3 shows the
result of self-training, tri-training and tri-training with disagreement on the same
WSJ data set based on two taggers: SVM Tool (Gimenez and Marquez, 2004)
and MaxEnt (Toutanova et al., 2003). Tri-training with disagreement performs
exactly the same as tri-training on both models. However, due to the modi�cation
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Original Self-training Tri-training Tri-training with dis.
SVM Tool 97.15 97.26 97.27 97.27
MaxEnt 96.31 96.36 96.36 96.36

Table 2.3: Comparing self-training, tri-training and tri-training with disagree-
ment.

Gold tag Supervised tag Unsupervised tag
NN NN 14
VB VBZ 121
DET DET 11
... ... ...

Table 2.4: Sample data point in training data.

in the condition, Tri-training with disagreement runs faster. The improvement of
Tri-training over self-training is not clearly visible.

Semi-supervised condensed nearest neighbor

Looking back at Table 2.1 (page 8), the semi-supervised condensed nearest
neighbor (SCCN) tagger (Søgaard, 2011) gave the highest accuracy (97.5%) on the
WSJ data set. Søgaard (2011) exploited the vast amount of unlabeled data to �nd
a better center point for each cluster. SCCN is based on the kNNmachine learning
algorithm. That is, the tag is chosen based on the vote of k nearest neighbors.
Similarity measurement between data points are �rst to be put into consideration.
Each data point is translated into a vector −→x = (m,n), where m is the tag
given by the supervised tagger SVMTool (Gimenez and Marquez, 2004) and n
is the tag/clusterID given by unsupervised clustering tagger UnSuPos (Biemann,
2006b). Examples of data points for training are given in Table 2.4. The similarity
between two data points is calculated based on euclidean distance between two
corresponding vectors.

kNN is considered as a lazy method as it does not actually build a model.
Every time, it needs to scan through all the data points again. Therefore, the
complexity of kNN for each tag is proportional to the number of labeled data
points. In this way, it is not possible for kNN to run on big data sets. The con-
densed nearest neighbor (CNN) (Søgaard, 2011) is an intuitive solution. CNN
tries to condense the data by �ltering out the data points which are not a good
representations. The condense technique is straightforward, as shown in Algo-
rithm 4. L is the labeled data points, where xi is data and yi is the tag. The
initial classifier is trained on L. Søgaard (2011) uses this classi�er to discard
all the data points that are correctly tagged. An extension of CNN is weakened
condensed nearest neighbor (WCNN) where they just discard any high con�dence
correctly classi�ed items. It means that line 4 of Algorithm 4 will be replaced by
if Classifier(xi) 6= yi or Prob(xi, yi) < threshold. where Prob(xi, yi) denotes
the classi�er con�dence. Basically, CNN or WCNN tries to �nd the best repre-
sentative points for each cluster. Ideally, each cluster will have one and just one
single point located at the center of cluster. However, since the amount of labeled
training data is not big enough, it is unlikely to meet this point. This is exactly
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Algorithm 4 Condense nearest neighbor algorithm.

1: L = {(x1, y1), (x2, y2)....(xn, yn)}
2: C ← {}
3: for (xi, yi) ∈ L do
4: if Classifier(xi) 6= yi then
5: C ← C ∪ (xi, yi)
6: end if
7: end for

where unlabeled data comes into play, with the advantages of a gigantic
size, it is high chance that unlabeled data points would be close enough to the
center point. Semi-supervised weakened condensed nearest neighbor is described
in Algorithm 5. Firstly, they obtain condensed data points C using WCCN. For
each unlabeled data item, they try to tag it using C. If it is tagged with high
con�dence (greater than some threshold, e.g. 0.9), they add this point and its tag
to C. In the last step, they apply the condense technique again on C to get the
�nal condensed set of data points C ′. Using C ′ to tag is as trivial as in any kNN
algorithms. For the WSJ dataset, this method actually gave the highest accuracy
97.5%. Moreover, it also runs extremely quickly thanks to very small number of
data point in C ′. Søgaard (2011) pointed out that it condenses the 1.2 million
data points of the Brown Corpus to just 2249 items.

Algorithm 5 Semi-supervised weakened condense nearest neighbor algorithm.

1: L = {(x1, y1), (x2, y2)....(xn, yn)}
2: U = {(x′1), (x′2), ....(x′m)}
3: C ← WCNN(L)
4: for (x′i) ∈ U do
5: if TagProb(x′i) > threshold then
6: C ← C ∪ (x′i, y

′
i) where y

′
i is the tag of x′i from tagger using C

7: end if
8: end for
9: C ′ ← WCNN(C)

2.2 Multilingual POS Tagger

This section reviews methods for creating taggers for multiple languages based
on parallel/comparable data. Comparable documents contain the rough transla-
tion of each other, for example, Wikipedia documents for di�erent languages are
comparable. Yarowsky and Ngai (2001), Xi and Hwa (2005), Snyder et al. (2008)
and Das and Petrov (2011) exploit this idea. An overview of their approaches is
as follow.

2.2.1 Typologically related languages approach

This approach restricts to very closely related language such as Czech and
Russian, Telugu and Kannada and so forth. Hana et al. (2004), Feldman et al.
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(2006), Reddy and Sharo� (2011) have exploited this idea. HMM taggers need
emission probabilities and transition probabilities. The intuition here is that if
two languages are typologically related, their transition probabilities would
be very similar, that is, the tag sequences between these languages are similar
to each other. Therefore, we can use the transition probability interchangeably.
Reddy and Sharo� (2011) built a tagger for Kannada from Telugu. Kannada and
Telugu are both spoken in India by 35 million and 70 million people respectively.
Telugu are more widely spoken and has better resources. The steps to construct
Kannada tagger is as follows:

1. Collect a large corpus for Kannada and Telugu

2. Tag the Telugu side using the available tagger

3. Calculate the Telugu transition probabilities p(ti|ti−1, ti−2)
4. Estimate the Kannada emission probabilities p(wi|ti)
5. Build the Kannada tagger from steps 3 and 4

It is worth noticing that this method does not need to collect the parallel
data of Kannada and Telugu. Monolingual or comparable corpora would work
in this case. Hence, Reddy and Sharo� (2011) used Corpus Factory (Kilgarri�
et al., 2010) to crawl monolingual data from the internet. Telugu has manually
POS-annotated data. Therefore, constructing a tagger, tagging and calculating
the transition probability (Step 2 and 3) is not a problem. However, step 4 is
not trivial. The �rst solution is that we can also estimate the Kannada emission
probability pK(wi|ti) via the Telugu emission probability pT (w

′
i|ti) where w′i and

wi are very similar to each other. Kannada and Telugu are very closely related
languages, therefore, they share many lexical item in common. It is possible
to �nd the closest word w′i of wi using any approximate string matching (fuzzy
matching). Reddy and Sharo� (2011) also suggested using a uniform distribution
of all possible tags for the emission probability. For each words, they get the list
of possible tags from dictionary, and then assume that the tags are distributed
uniformly. This turned out to be quite e�ective. Table 2.5 shows some results.
The emission probability of model 1 is based on string approximation. It gave
an encouraging result since they actually did not use any resource aside from the
monolingual data. The result of model 2 is surprisingly high. However, model
2 uses gold-standard dictionary to look for possible tags of each words which
is hard to acquire. Model 3 uses actual emission probabilities from the target
language. That is, we estimate the emission probabilities using a supervised
target language (Kannada) tagger. Model 3 is added for comparison purposes
only. Model 4 is more or less the upper bound that the other models can get.
Transition and emission probabilities are estimated directly from the Kannada
side (using supervised tagger). Remarkably, model 3 and 4 gave very close results.
This consolidates the hypothesis that �for closely related languages, transition
probability are interchangeable".

2.2.2 Unsupervised simultaneous tagging approach

A previous approach used typologically related languages. It assumed the
presence of a tagger or labeled data for a source language and then copied transi-
tion probabilities to the target language. This approach, however, does not need
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Model Transition Prob. Emission Prob. F-measure
1 From source language Approximate string matching 56.88
2 From source language Uniform distribution target tags 75.10
3 From source language Target language emission Prob. 77.63
4 From target language Target language emission Prob. 77.66

Table 2.5: Various tagging model exploit topologically related language.

any labeled data in both languages, words are tagged simultaneously (Sny-
der et al., 2008). Firstly, each sentence is word-aligned using IBM models (1-5)
trained on a large amount of parallel data. The output of the aligner is the list
of mappings between words in the source and target sentence going with a con-
�dence score. We discard low con�dence, cross-edges and multiple mapping. So,
the remaining is high con�dence one-to-one word alignment. These word pairs
would be the observations of the model. Thus, for each sentence pair, only certain
words are aligned and the rest (the majority) is unaligned. They try to maximize
the following probability given the observed alignment and words.

(2.7)

P (x1, x2...xm, y1, y2..yn|a, φ, φ′, w) =
∏

unaligned i

φxi−1
(xi)

×
∏

unaligned j

φ′yi−1
(yj)×

∏
(i,j)∈a

P (xi, yj|xi−1, yj−1, φ, φ′, w)

where x1, x2...xm is a tag sequence of the source language, y1, y2..yn is a tag se-
quence of the target language, a is the alignment, φ and φ′ are the transition
probabilities of the source and target language respectively; and w is the bilin-
gual coupling distribution w : T × T ′ where T and T ′ are the tag sets of the
two languages. They infer Equation 2.7 using Gibbs Sampling. They sample
(1) the tag sequence (xi, yj), (2) monolingual transition probability φ and φ′, (3)
coupling distribution w and then integrate over the emission probabilities. The
model is evaluated on 4 languages: English (en), Bulgarian (bg), Slovene (sl) and
Serbian (sr). The baseline for each language is calculated using a monolingual
unsupervised HMM with a gold-standard dictionary. That is, possible tags for
each word are provided. Table 2.6 shows the constant improvement of bilingual
simultaneous tagging over monolingual tagging. Of particular note, tagging accu-
racy of Slovene improves 7.69% when paired with Serbian which is a very closely
related language, but only 1.3% when going with English. Thus, we can see that
choosing the right language pair would signi�cantly improve the performance.

They further reduce the size of the gold-standard dictionary to just the 100
most frequent words. The e�ectiveness of bilingual tagging is highlighted. Table
2.7 shows the huge improvement of bilingual simultaneous tagging. This table also
highlights the di�erences in performance when changing the source language. For
example, pairing BG with SR improves SR only 1.53% when full size dictionary
is used (Table 2.6), however, improve ≈ 16% on reduced dictionary (Table 2.7).

2.2.3 Tag projection approach

A number of studies have used tag projection to copy tag information from
a resource-rich to resource-poor language, based on word alignments in a paral-
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Monolingual Simultaneously Improvement
en 90.71 91.01 +0.30
sr 85.05 90.06 +5.03
en 90.71 92.00 +1.29
bg 88.88 94.48 +5.61
en 90.71 92.01 +1.30
sl 87.41 88.54 +1.13
sl 87.41 95.10 +7.69
sr 85.05 91.75 +6.70
bg 88.88 91.95 +3.08
sr 85.05 86.58 +1.53
bg 88.88 90.91 +2.04
sl 87.41 88.20 +0.79

Table 2.6: Per-token tagger accuracy with gold-standard dictionary for unsuper-
vised monolingual and bilingual simultaneous tagging.

Monolingual Simultaneous Improvement
en 63.57 68.22 +4.66
sr 41.14 54.73 +13.59
en 63.57 71.34 +7.78
bg 53.19 62.55 +9.37
en 63.57 66.48 +2.91
sl 49.90 53.77 +3.88
sl 49.9 59.68 +9.78
sr 41.14 54.08 +12.94
bg 53.19 54.22 +1.04
sr 41.14 56.91 +15.77
bg 53.19 55.88 +2.70
sl 49.90 58.50 +8.60

Table 2.7: Per-token accuracy with reduced gold-standard dictionary size for un-
supervised monolingual and bilingual simultaneous tagging. Huge improvements
are in bold.
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Description Features
Trigram + Context x1x2x3x4x5
Trigram x2x3x4
Left Context x1x2
Right Context x4x5
Center Word x3
Trigram - Center Word x2x4
Left Word + Right Context x2x4x5
Left Context + Right Word x1x2x4
Su�x hasSu�x(x3)

Table 2.8: Features used for computing similarity between trigram vertices.

lel corpus. After alignment, the resource-rich language is tagged, and tags are
projected from the source language to the target language based on alignment
(Yarowsky and Ngai, 2001). Das and Petrov (2011) achieved the current state-
of-the-art for unsupervised tagging by exploiting high con�dence alignments to
copy tags from the source language to the target language.

Graph-based label propagation was used to automatically produce more la-
belled training data. First, a graph was constructed in which each vertex corre-
sponds to a unique trigram in the target language, and edge weights represent the
morphological (POS) similarity between two vertices. The morphological simi-
larity score is calculated from the window of two words around the target words.
The features for trigram x2x3x4 in the sequence of x1x2x3x4x5 are described in
Table 2.83. The idea here is that they expect the same part-of-speech for words
used in the same context. For example, two trigrams �he-has-lunch" and �he-gets-
lunch" share the same x2 = he, x4 = lunch therefore, �has" and �gets" are likely
to have the same POS tag.

The tag labels were then propagated by optimizing a convex function to favor
the same tags for closely related nodes while keeping a uniform tag distribution
for unrelated nodes. They extract tag dictionary from the automatically labelled
data. This dictionary, in turn, was used to constrain a feature-based HMM tagger
(Berg-Kirkpatrick et al., 2010).

Das and Petrov (2011) experimented on 8 languages: Danish(da), Dutch(nl),
German(de), Greek(el), Italian(it), Portuguese(pt), Spanish(es), Swedish(sv). They
used parallel data from Europarl (Koehn, 2005) and the ODS United Nations
dataset (Franz et al., 2007) which has English in the source side. They evaluated
target language tagger performance on gold-standard test data mainly from the
CoNLL-X and CoNLL 2007 shared tasks. Table 3.6 (page 37) shows the detailed
source and size for each gold-standard test data set. To avoid mapping between
di�erent tagsets, they use consensus 12 Universal Tagset (Petrov et al., 2012)
across languages.

Das and Petrov (2011) experimented with 7 di�erent models.

1. Unsupervised EM-HMM, which is a traditional expectation maximization
unsupervised HMM. EM-HMM is mentioned in section 2.1.2 (page 16).

2. Unsupervised Feature based - HMM is another style of an unsupervised

3hasSu�x(x3) feature check the target word x3 has su�x or not
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HMM which is also mentioned in section 2.1.2 (page 16)

3. Direct projection, that is, tags are projected from the source language to
the target language. Unaligned words are tagged with the most frequent
tag. Afterward, supervised POS tagging is trained on this data.

4. No label propagation. The dictionary is extracted from the direct projected
tags. The graph-based label propagation step is not performed.

5. With label propagation. The full model, dictionary is extracted after the
label propagation step.

6. With gold-standard dictionary. Gold-standard dictionary is extracted from
annotated data. This dictionary is fed into a feature base-HMM tagger as
the constraint.

7. Supervised. The supervised POS tagger is trained on annotated data.

Models (1), (2), (3) are used as the baseline to compare. Comparing (4) and (5)
shows the e�ectiveness of label propagation. Model (6) shows the upper bound
of this approach. Model (7) is for comparing with the supervised method. The
performance of each model on the 8 languages is described in Table 2.9.

As expected, unsupervised feature based HMM (model 2) performs better
than the traditional EM-HMM (model 1). The tagger built on direct projection
(model 3) is actually a weakly supervised 4 system, because the target language
labels are not 100% correct, coming from the heuristic (projection) step. However,
it still performs better than the completely unsupervised method, EM-HMM
(model 1) and Feature-HMM (model 2). Label propagation (model 5) shows
constant improvements over all 8 languages, improved 2% (absolute) compared
with model 4 where label propagation was not employed. This improvement is
mainly because performing label propagation enlarges the dictionary size and
thus, improves the vocabulary coverage. This full model with Label Propagation
(model 5) outperforms unsupervised methods (model 1, 2) and does better than
direct projection (model 3) at 7 languages out of 8. It also narrows the gap
between unsupervised and supervised methods (model 7). In this thesis, we will
mainly compare with this work as it is considered as the state-of-the-art system
for unsupervised multilingual POS tagger

4Unlike supervised, weak supervised (or some time called distant supervised) learning doesn't
have the actual gold-standard training data, these data are induced from heuristic step and not
completely correct.
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Model da nl de el it pt es sv Avg
(1) EM-HMM 68.7 57.0 75.9 65.8 63.7 62.9 71.5 68.4 66.7
(2) Feature-HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0
(3) Projection 73.6 77.0 83.2 79.3 79.7 82.6 80.1 74.7 78.8
(4) No LP 79.0 78.8 82.4 76.3 84.8 87.0 82.8 79.4 81.3
(5) With LP 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4
(6) With gold Dic 93.1 94.7 93.5 96.6 96.4 94.0 95.8 85.5 93.7
(7) Supervised 96.9 94.9 98.2 97.8 95.8 97.2 96.8 94.8 96.6

Table 2.9: Accuracy of multiple models on 8 languages. The best unsupervised
performance for each language is in bold.
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Chapter 3

Universal Tagger

3.1 Idea and Motivation

We have reviewed the possible approach for monolingual and multilingual
POS tagger in the previous chapter. In this chapter, we aim to create our own
universal tagger for many languages. Currently, there are separate taggers for
many languages such as English, French, German, Italian, Arabic and so forth,
where manually annotated data are available. Petrov et al. (2012) show that the
average accuracy for supervised learning for languages in Table 3.1 is as high as
95.2% using the basic TNT tagger (Brants, 2000). However, not many languages
have enough labeled data to build a supervised tagger. Table 3.21 shows some
major languages with no or very limited annotated data available. However, with
the growth of multilingual websites, government documents and large archives of
human translation of books, news and so forth, unannotated parallel data is
becoming more widely available. We believe that we can base on parallel data
to build a bridge between languages and then copy tagging information from one
language to another. This approach also exploits the idea that tag ambiguity in
one language is likely to correspond to tag-unambiguous words in other languages.
Consider the example, �we can can a can" as in Figure 3.1 and its Vietnamese
translation �Chung toi co the lam mot cai hop". The ambiguous words �can" have
di�erent translations: �co the" (modal verb), � lam" (verb), �cai hop" (noun).
Thus, the di�erent translations help to disambiguate the morphological category
(POS tag) of the word �can". Moreover, the underlining structure of a language
can also be used to disambiguate. For example, in English, the word right after
article is likely to be Noun or a capitalized word in German has a high chance
to be Noun. Thus, the general idea of our Universal Tagger is exploiting the
evidence from multiple languages via a parallel corpus.

3.2 Universal Tagset

The universal tagset is the tagset used for our universal tagger. One goal
of the universal tagger is to enable comparison between languages. Thus, the
universal tagset should be the common denominator of all languages. We adopt
the work of Petrov et al. (2012) on 12 universal tags which is described in Ta-

1source : http://www.ethnologue.org/ethno_docs/distribution.asp?by=size
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Language Source #Tags Accuracy
Arabic PADT/CoNLL07 21 96.1
Basque Basque3LB/CoNLL07 64 89.3
Bulgarian BTB/CoNLL06 54 95.7
Catalan CESS-ECE/CoNLL07 54 98.5
Chinese Penn ChineseTreebank 34 91.7
Chinese Sinica/CoNLL07 294 87.5
Czech PDT/CoNLL07 63 99.1
Danish DDT/CoNLL06 25 96.2
Dutch Alpino/CoNLL06 12 93.0
English PennTreebank 45 96.7
French FrenchTreebank 30 96.6
German Tiger/CoNLL06 54 97.9
German Negra 54 96.9
Greek GDT/CoNLL07 38 97.2
Hungarian Szeged/CoNLL07 43 94.5
Italian ISST/CoNLL07 28 94.9
Japanese Verbmobil/CoNLL06 80 98.3
Japanese Kyoto4.0 42 97.4
Korean Sejong 187 96.5
Portuguese Floresta Sint'a(c)tica/CoNLL06 22 96.9
Russian SynTagRus-RNC 11 96.8
Slovene SDT/CoNLL06 29 94.7
Spanish Ancora-Cast3LB/CoNLL06 47 96.3
Swedish Talbanken05/CoNLL06 41 93.6
Turkish METU-Sabanci/CoNLL07 31 87.5

Average 95.2

Table 3.1: Tagging accuracy of many languages using TNT.

Figure 3.1: English - Vietnamese parallel sentence.

Language Native Speaker(millions)
Bengali 181
Javanese 85
Lahnda 78
Telugu 70
Vietnamese 69
Tamil 66
... ...

Table 3.2: Major languages with less annotated data. (Source:
www.ethnologue.org)
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Tag Description

NOUN nouns
VERB verbs
ADJ adjectives
ADV adverbs
PRON pronouns
DET determiner and articles
ADP preposition and postpositions
NUM numerals
CONJ conjuctions
PRT particles
. punctuation marks
X all other categories such as foreign word, abbreviation etc.

Table 3.3: 12 tags of the universal tagset.

ble 3.3. We believe that these basic 12 tags are shared among most languages
of the world. The universal tagset bene�ts downstream applications that work
across languages such as multilingual taggers, multilingual parsers and so forth.
With the consensus universal tagset, the questions such as �Tagging language A
is harder than language B" would become easier to answer. Moreover, the uni-
versal tagger exploits the idea of projecting tag information from a resource-rich
language to a resource-poor one. Adopting the universal tagset means that we
do not need to care about matching between di�erent tagsets. In addition, we do
not have any o�cial tagset for many widely spoken languages such as Telugu or
Vietnamese. In this case, a universal tagset would be a good start.

Nevertheless, we acknowledge that we are loosing information using universal
tagset. For example, all VB, VBD, VBG, VBN, VBP, VBZ tags from Penn
treebank tagset are mapped to VERB of the Universal tagset. However, this is
the trade-o� we need to make for the consensus tagset. Petrov et al. (2012) also
provided the mapping from many other tagsets to Universal tagset. Table 3.1 lists
all the available mapping from each language speci�c tagset to Universal tagset.
In many languages the mapping is clear but in some languages it is not that
obvious. Petrov et al. (2012) shows an example of Korean where the adjective
are missing. They use stative verb to describe the property of objects, hence,
stative verb are mapped to ADJ in universal tagset. The other example is the
tagset used in French Treebank, there are no NUM tags. Numbers are tagged as
adjectives or nouns case by case.

Normally, the mapping is done manually by a linguistic expert. However,
Zhang et al. (2012) also suggested methods to automatically map from language
speci�c tagsets to the universal tagset.

3.3 Methodology

Here we describe our proposed tagger. The key idea is to maximize the amount
of information gleaned from the source language, while limiting the amount of
noise. Our approach contains 2 main steps: (1) Building seed model, and (2)
Apply self-training with revision. We describe the seed model and then explain
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Figure 3.2: Many-to-one mapping case between English(law) and French(les lois).

how it is successively re�ned through self-training and revision.

3.3.1 Seed Model

The �rst step is to construct a seed tagger from directly-projected tag labels.
Given a parallel corpus for a source and target language, Algorithm 6 provides a
method for building an unsupervised tagger for the target language. In typical
applications, the source language would be a resource-rich language having a
tagger, while the target language would be resource-poor, lacking a tagger and
large amounts of manually POS-labelled data.

Algorithm 6 Build seed model.
1: Tag source side.
2: Word align the corpus with Giza++ and remove the many-to-one mappings.

3: Project tags from source to target using the remaining one-to-one alignments.

4: Select the top n sentences based on sentence alignment score.
5: Estimate emission and transition probabilities.
6: Build seed tagger T.

Step 2 aligns words from source to target sentences. Words are aligned if
they are translation of each other. There are cases where one word from source
sentence is matched with exactly one word in the target sentence (one-to-one
mapping) or one word in source sentence is mapped with a phrase in target
sentence (many-to-one mapping). We eliminate many-to-one alignments (Step
2). Keeping these alignment would give more POS-tagged tokens for the target
side, but also introduce noise. For example, suppose English and French were
the source and target language, respectively. In this case, alignments such as
English laws (NNS) to French les (DT) lois (NNS) would be expected (Yarowsky
and Ngai, 2001) as shown in Figure 3.2. However, in step 3, where tags are
projected from the source to target language, If we just copy the tag information
from English side NNS (common noun) to French side, both � les" and � lois"
would be tagged as NNS. However, this is incorrect for � les" which must be DT
(determiner).

We build a French tagger based on the English�French parallel data from the
Europarl Corpus (Koehn, 2005). We want to know the accuracy and coverage
of the tags obtained through direct projection. We thus compare these tags
again the French Melt POS tagger (Denis and Sagot, 2009). This is a supervised
French tagger built on French treebank (FTB) (Abeillé et al., 2003). They report
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Model Coverage Accuracy
Many-to-one alignments 88% 68%
one-to-one alignments 68% 78%
one-to-one alignments: Top 60k sents 91% 80%

Table 3.4: Token coverage and accuracy of many-to-one and one-to-one align-
ments, as well as the top 60k sentences based on alignment score for one-to-one
alignments, using directly-projected tag labels only.

the per-token accuracy to be as high as 97.80% and thus, a good baseline for
our experiment. Table 3.4 con�rms that the one-to-one alignments indeed give
higher accuracy but lower coverage than the many-to-one alignments. One-to-
one alignment covers 68% of the token in French size (that is 32% is unaligned).
However, if we use both one-to-one and many-to-one mapping, we cover 20% more
of the tokens, but the accuracy is dropped by 10% (absolute). It's worth noting
that accuracy is only calculated from the aligned tokens. Therefore, assuming
that we have exactly 1000 tokens, if we used just one-to-one mapping, the number
of correctly tagged tokens is 1000 × 0.68 × 0.78 = 530 tokens. The number for
additionally use many-to-one mapping is 1000 × 0.88 × 0.68 = 598. That is
we have 598−530

1000
= 6.8% more accurately tagged tokens. However, many-to-one

introduces more noise (as mentioned in Figure 3.2), at this stage of the model we
hypothesize that high-con�dence tags are important, and hence we eliminate the
many-to-one alignments.

In Step 4, in an e�ort to again obtain higher quality target language tags
from direct projection, we eliminate all but the top n sentences based on their
alignment scores, as provided by the aligner via IBM model 3. We heuristically set
this cuto� to 60k to balance the accuracy and size of the seed model2. Returning
to our preliminary English�French experiments in Table 3.4, this process gives
improvements in both accuracy and coverage. In the top 60k sentence, we just
retain one-to-one alignment. The coverage is improved from 68% to 91% and the
accuracy is also improved from 78% to 80%. We also considered using both one-
to-one and many-to-one alignments for the top 60k sentences, but in preliminary
experiments this did not perform as well, possibly due to the previously-observed
problems with many-to-one alignments. Normally, the higher coverage, the lower
accuracy and vice-versa, by simply ranking sentences and choose the �rst 60k, we
have high coverage but in the same time, retain high accuracy. This is a crucial
step in our proposed methods.

The step 5 which is for estimating the transition and emission probabilities
are based on the following intuition. The number of parameters for the emission
probability p(w|t) is |V |×|T | where w is a word, t is a tag, V is the vocabulary
and T is the tag set. The transition probability p(ti|ti−1ti−2), on the other hand,
has only |T |3 parameters for the trigram model we use. We use the universal
tagset, thus, |T |= 12 but |V |≈ 120k for French in a preliminary English-French
experiment. Because of this huge di�erence in the number of parameters, in step
5, we employ di�erent strategies to estimate the emission and transition prob-
abilities. The emission probability is estimated from all 60k selected sentences.

2We considered values in the range 60�90k, but this choice had little impact on the accuracy
of the model. Alternatively, we can set the threshold for sentence alignment score is 10−7
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However, for the transition probability, which has less parameters, we again focus
on �better� sentences, by estimating this probability from only those sentences
that have

1. Token coverage > 90% (based on direct projection of from the source lan-
guage)

2. Length > 4 tokens

These 2 criteria aim to identify longer, mostly-tagged sentences, which we hy-
pothesize are particularly useful as training data. The underlying reason is that
we want to estimate transition probabilities with as small bias as possible. For
example, the �rst token of a sentence is likely to be subject and therefore a
Noun. If we allow short sentences (≤ 3 tokens) when calculating trigram tran-
sition probability, the model will favor the distribution which start with Noun.
This is undesirable for our model. In the same idea, a token missing inside a
sentence disrupts the normal tag trigram distribution, thus, we reduce this by
heuristically choosing only high coverage sentences (> 90%) where coverage is
measure by the percentage of tagged tokens.

In the case of our preliminary English�French experiments, roughly 62% of
the 60k selected sentences meet these two criteria and are used to estimate the
transition probabilities. For the unaligned words, we simply assign a random POS
and very low probability, which does not substantially a�ect transition probability
estimates.

In Step 6 we build a tagger by feeding the estimated emission and transition
probabilities into the TNT tagger (Brants, 2000), an implementation of a trigram
HMM tagger.

3.3.2 Self training and revision

Up to this point, we already have a tagger (seed model). In this section,
we are going to improve this seed model by applying self-training with special
revision. We exploit the large number of target language sentences available that
have been partially tagged through direct projection, in order to build a more
accurate tagger. Back to the preliminary English�French experiments, we just
used 60k �rst sentence for the seed model, however, there are 1.9 millions other
sentences. In this part, we are going to exploit the rest of data.

Algorithm 7 describes the process of self training and revision, and assumes
that the parallel source�target corpus has been word aligned, with many-to-one
alignments removed, and that the sentences are sorted by alignment score. In
contrast to Algorithm 6, all sentences are used, not just the 60k sentences with
the highest alignment scores.

We believe that sentence alignment score might correspond to the di�culty of
tagging. By sorting the sentences by alignment score, sentences which are more
di�cult to tag are tagged using a more mature model. Following Algorithm 6, we
divide sentences into blocks of 60k. As mentioned before, many-to-one mapping
introduce a noise, therefore, we just remove it here.

In step 3, the tagged block is revised by comparing the tags from the tagger
with those obtained through direct projection. Suppose source language word we

i
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Algorithm 7 Self training and revision.
1: Divide target language sentences into blocks of n sentences.
2: Tag the �rst block with the seed tagger.
3: Revise the tagged block.
4: Train a new tagger on the tagged block.
5: Add the previous tagger's lexicon to the new tagger.
6: Use the new tagger to tag the next block.
7: Goto 3 and repeat until all blocks are tagged.

Figure 3.3: Alignment between the source (English) and target (French) language.

is aligned with target language word wf
j with probability p(wf

j |we
i ), T

e
i is the tag

for we
i using the tagger available for the source language, and T f

j is the tag for

wf
j using the tagger learned for the target language as shown in Figure 3.3. If

p(wf
j |we

i ) > S, where S is a threshold which we heuristically set to 0.7, we replace

T f
j by T e

i . Self-training can su�er from over-�tting, in which errors in the original
model are repeated and ampli�ed in the new model (McClosky et al., 2006). To
avoid this, we remove the tag of any token that the model is uncertain of, i.e.,
if p(wf

j |we
i ) < S and T f

j 6= T e
i then T f

j = Null. So, on the target side, aligned
words have a tag from direct projection or no tag, and unaligned words have a
tag assigned by our model. By keeping the sentences in the order of di�culty
to tag, the more we iterate, the more tokens are tagged by maturer model. It
also means that, the more we iterate, we trust our model more and the direct
projection less as shown in Figure 3.4.

Step 4 estimates the emission and transition probabilities as in Algorithm 6. In
Step 5, emission probabilities for lexical items presented in the previous model,
but missing from the current model, are added to the current model. Later
models therefore take advantage of information from earlier models, and have
wider coverage.

Figure 3.4: Reliance of tagger and direct projection label.
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3.4 Experiment Detail

In this section, we are going to describe in detail our experiments. In the light
of comparing with the state-of-the-art (Das and Petrov, 2011), we experiment in
the way that result would be comparable.

3.4.1 Source data

Using parallel data from Europarl (Koehn, 2005) we apply our method to
build taggers for the same eight target languages as Das and Petrov (2011) �
Danish (da), Dutch (nl), German (de), Greek (el), Italian (it), Portuguese (pt),
Spanish (es) and Swedish (sv) � with English as the source language. Das and
Petrov (2011) choose these 8 languages simply because the amount of parallel
data for these languages is numerous. Europarl is the corpus collected from
European Parliament since 1996. At that time, o�cial languages for European
Union were only 11 languages. Aside from the 8 languages we chose, the 3 others
are English (en), Finnish (�) and French (fr). In 2004, European Union expand
to 25 members and more languages were added. Thus, due to the long history,
the amount of data for these 8 languages we chose are superior compare with
most of other languages.

Our training data (Europarl) is a subset of the training data of Das and Petrov
(2011), who also used the ODS United Nations dataset which we were unable to
obtain. Despite less data, as will be shown, our result are comparable and makes
this work stronger than the state-of-the-art. The overview of Europarl for all 8
languages is given in Table 3.5. Aside from Greek, which has approximately 1.2
million sentences, other language pairs have approximate 1.9 million sentences.

Parallel Corpus (L1-L2) Sentences L1 Words English Words
Danish-English 1,968,800 44,654,417 48,574,988
Dutch-English 1,997,775 50,602,994 49,469,373
German-English 1,920,209 44,548,491 47,818,827
Greek-English 1,235,976 32,031,068 31,929,703
Italian-English 1,909,115 47,402,927 49,666,692
Portuguese-English 1,960,407 49,147,826 49,216,896
Spanish-English 1,965,734 51,575,748 49,093,806
Swedish-English 1,862,234 41,508,712 45,703,795

Table 3.5: Overview of Europarl dataset for 8 languages.

3.4.2 Word alignment

After collecting parallel data for each language, we word-align the data using
the basic open source Giza++ (Och and Ney, 2003) to do the job. However
before aligning, we should pre-process the data and pre-compute �les needed for
alignment.
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Tokenization

This step aim at separating each token in a sentence by a space. It is not
as easy as it appear. The model should be able to handle the punctuation well.
For example, period �." which is used as sentence boundary should be separated
but not in �Mr. Paul" or �i.e.". We use an open source tokenizer.perl tool from
Moses (Koehn et al., 2007) package to tokenize both source and target language
�le.

True casing

True casing help to choose the most proper casing for each words. For example,
the word beginning sentence should be uppercase. However, de�ning sentence
boundary might be tricky. The usual heuristic �." separate sentences is not always
true. For example, �." in the composition cases such as �i.e." or �Mr." does not
mark sentence ending. We also used an open source tool from Moses (Koehn
et al., 2007) in two steps. (1) Training the model using train-truecaser.perl and
(2) True casing using truecase.perl. The �rst step will output the true casing
model which is used in the second step.

Cleaning

Too long sentences are unreliable and not particularly suitable for our task.
Therefore, we cut o� sentence that are longer than 80 words in both side of train-
ing data, using clean-corpus-n.perl also from from Moses (Koehn et al., 2007). In
the French�English parallel data from Europarl, described above, approximately
43k (2.2%) sentences are cuto�.

Getting vocabulary and bitext �le

Vocabulary �le is needed to run Giza++. It lists the vocabulary and frequency
of the words in the training data. We must obtain vocabulary �le for both source
and target language. We use the tool plain2snt.out from Giza++ (Och and Ney,
2003) package to build vocabulary for both source and target langauge at once.

plain2snt.out source target

The output will be source.vcb, target.vcb, source_target.snt, target_source.snt.
The �rst 2 �les are vocabulary �les for source and target language. The next 2
�les are bitext �les which represent parallel sentences as sequences of numbers.
Each number is an identi�cation in the vocabulary �le. The bitext �les are also
needed for word alignment.

Getting word classes

Word-class �les are used just for IBM-model 4/HMM. Syntactic and semantic
similar words are grouped into classes. We make use of mkcls tool. It's important
that the word class �le name must comply with vocabulary �le name.

mkcls -psource -Vsource.vcb.classes

mkcls -ptarget -Vtarget.vcb.classes
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Word Alignment

Everything needed to run word alignment is ready. There are many possible
parameters, however, we use the default setting for this experiment.

GIZA++ -S source.vcb -T target.vcb -C source_target.snt -o ALIGN

Sometime, a co-occurrence �le is also needed. This �le can easily be acquired
using snt2cooc.out tool from Giza++ package. The output would have the ALIGN
pre�x. This step produces many output �les. However, we are particularly in-
terested in (1) The lexical translation table �le i.e. ALIGN.t3.final. (2) The
alignment �le i.e. ALIGN.A3.final. From these 2 �les we will know the align-
ments and their con�dence. Alignment is the most time consuming step in our
whole process. To align each language pair in the Europarl corpus, it took us
approximately a day on a eight core Intel Xeon 3.16 GHz CPU with 32 GB Ram.
The disadvantage of Giza++ is that, we can not achieve many-to-many mapping.
That is, it always aligns from source to target, thus, just produce many-to-one
and one-to-one mapping. We can �x this one by running Giza++ from other
direction from target to source and merge two results. However, this step will
double the running time. We will leave it for future work.

3.4.3 Direct tag projection

We tag the source �le (English) with the English Stanford POS Tagger (Toutanova
et al., 2003). This available tagger employs Penn treebank tagset which contains
45 tags. Afterward, we use the mapping from (Petrov et al., 2012) to map into
Universal Tagset (12 tags). Then the tags are copied from source side (English)
to target side (foreign language) using just one-to-one alignment.

3.4.4 Seed model and �nal model

We get sentence score from IBM model 3 from ALIGN.A3.final. The sentence
score is used to rank sentences. The following is a sentence pair getting from
English-French Europarl parallel data. The English sentence �resumption of the
session" is aligned with the French sentence �reprise de la session" with the
sentence alignment score of 0.006578.
# Sentence pa i r (1 ) source l ength 4 ta r g e t l ength 4 al ignment s co r e : 0 .006578
r e p r i s e de l a s e s s i o n
NULL ({ }) resumption ({ 1 }) o f ({ 2 }) the ({ 3 }) s e s s i o n ({ 4 })

First 60k sentences are used to build the seed model which is described in section
(3.3.1). Then, we use the seed model to build �nal model by applying self-training
and revision (see section 3.3.2).

3.4.5 Evaluation

We used the same per-token accuracy evaluation metric as the state-of-the-
art (Das and Petrov, 2011). The test data for all 8 languages (Danish, Dutch,
German, Greek, Italian, Portuguese, Spanish, Swedish) are also the same. These
test data mainly comes from CoNLL-X and CoNLL-07 share tasks. Table 3.6
shows the source and size of test data for each language. We also use the mapping
from Petrov et al. (2012) to map each language into the Universal Tagset.
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Language Source Number of Words

da DDT/CoNLL06 94386
nl Alpino/CoNLL06 203568
pt Floresta/CoNLL06 206678
sv Talbanken/CoNLL06 191467
el GDT/CoNLL07 65419
it ISST/CoNLL07 76295
es Cast3LB/CoNLL06 89334
de Tiger/CoNLL06 712332

Table 3.6: Size and source of annotated data.

da nl de el it pt es sv Avg.
Seed model 83.7 81.1 83.6 77.8 78.6 84.9 81.4 78.9 81.3
Self training + revision 85.6 84.0 85.4 80.4 81.4 86.3 83.3 81.0 83.4
(Das and Petrov, 2011) 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4
Prop. of unknown words 10.9 10.7 10.6 6.0 12.8 9.6 8.0 7.3 9.5

Table 3.7: Token-level POS tagging accuracy for our seed model, self training
and revision, and the method of (Das and Petrov, 2011). The best results on
each language, and on average, are shown in bold.

3.5 Experimental Results

We experiment as described in the previous section (3.4). Using parallel data
from Europarl (Koehn, 2005) we apply our method to build taggers for the same
eight target languages as Das and Petrov (2011) with English as the source lan-
guage. Our training data (Europarl) is a subset of the training data of Das and
Petrov (2011). The evaluation metric and test data are the same as that used
by Das and Petrov. Our results are comparable to theirs, although our system is
penalized by having less training data.

Table 3.7 shows results for our seed model, self training and revision, and the
results reported by Das and Petrov. Self training and revision improves the accu-
racy for every language over the seed model, and gives an average improvement of
roughly two percentage points. The average accuracy of self training and revision
is on par with that reported by Das and Petrov. On individual languages, self
training and revision and the method of Das and Petrov are split � each performs
better on half of the cases. Interestingly, our method achieves higher accuracies
on Germanic languages � the family of our source language, English � while
Das and Petrov perform better on Romance languages. This might be because
our model relies on alignments, which might be more accurate for more-related
languages, whereas Das and Petrov additionally rely on tag label propagation.

The last row of Table 3.7 shows the percentage of unknown words for each
language on the test data. On average, approximately 10% of the test data tokens
are unknown. One way to improve the performance of our tagger might be to
reduce the proportion of unknown words by using a larger training corpus, as
Das and Petrov did. We should also consider corpus that cover wider topics.
Language used in Europarl is formal and domain speci�c such as news, politic,
economic etc. However, test data covers many more subjects such as �ction,
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Figure 3.5: Overall accuracy, accuracy on known tokens, accuracy on unknown
tokens, and proportion of known tokens for Italian.

sport etc. That might be the reason why despite Europarl is a very huge corpus,
unknown word (OOV) rate is still high.

Compared to Das and Petrov (2011), our model performs poorest on Italian,
in terms of percentage point di�erence in accuracy. Figure 3.5 shows accuracy,
accuracy on known words, accuracy on unknown words, and proportion of known
tokens for each iteration of our model for Italian. Iteration 0 is the seed model,
and iteration 31 is the �nal model. Our model performs poorly on unknown words
as indicated by the low accuracy on unknown words. The �overall accuracy" line
is always between �known accuracy" and �unknown accuracy" line weighted by
�proportion of known tokens" line. Thus, despite unknown words' accuracy drops
drastically from 62% to 47%, an overall accuracy still (slightly) increases thank
to increment on known accuracy words and proportion of known tokens.

The poor performance on unknown words is expected because we do not use
any language-speci�c rules to handle this case. Moreover, for the �nal model,
approximately 13% of the test data tokens are unknown. This is the highest
rate compare to other languages as in Table 3.7. This also partially explain why
performance is poor on Italian.

We examine the impact of self-training and revision over training iterations.
We �nd that for all languages, accuracy rises quickly in the �rst 5�6 iterations,
and then subsequently improves only slightly. We exemplify this in Figure 3.6 for
Dutch, �ndings are similar for other languages. Although accuracy does not in-
crease much in later iterations, they may still have some bene�t as the vocabulary
size continues to grow.
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Figure 3.6: Overall accuracy, accuracy on known tokens, accuracy on unknown
tokens, and proportion of known tokens for Dutch.

3.6 Summary of Contributions

We have proposed a method for unsupervised POS tagging (Universal tagger)
that performs on par with the current state-of-the-art (Das and Petrov, 2011), but
is substantially less-sophisticated (speci�cally not requiring convex optimization
or a feature-based HMM). The complexity for fully optimizing a convex function
is O(n3) where n is size of data. This complexity is impractical because n is
very big (n ≈ 2 millions). Das and Petrov (2011) avoid this by just optimize
for 10 iterations, instead of looping until converge. The complexity for each
iteration is O(n2). So the overall complexity is O(n2). The complexity of our
algorithm, on the other hand, is just O(nlogn). This complexity is derived from
sentence score sorting operation. The huge di�erence in complexity resulting in
substantial running speed variance. We re-implemented label propagation from
(Das and Petrov, 2011). It took over a day to complete this step on an eight core
Intel Xeon 3.16 GHz CPU with 32 Gb Ram, but only 15 minutes for our model.
Moreover, unlike Das and Petrov (2011) who can not publish their code due to
company license restriction, we made our code available for download3 which
hopefully will aid the development of multilingual natural language processing
(NLP).

In future work we intend to consider using a larger training corpus to reduce
the proportion of unknown tokens and improve accuracy. We can align source and
target language in both directions, i.e. from source to target and from target to
source language. Merging two alignment might yield a better one-to-one mapping
set.

Given the improvements of our model over that of Das and Petrov on lan-

3https://code.google.com/p/universal-tagger/
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guages from the same family as source language, and the observation of Snyder
et al. (2008) that a better tagger can be learned from a more-closely related lan-
guage, we also plan to consider strategies for selecting more appropriate source
language for a given target language.

Using our �nal model with unsupervised HMM inference methods might im-
prove the �nal performance too, i.e. use our �nal model as the initial state for
HMM, then experiment with di�erent inference algorithms such as Expectation
Maximization (EM), Variational Bayers (VB) or Gibbs sampling (GS). We in fact
have tried EM, but it did not help. The overall performance dropped slightly.
This might be because self-training with revision already found the local maximal
point. However, VB or GS might help. Gao and Johnson (2008) compare EM, VB
and GS for unsupervised English POS tagging. In many cases, GS outperformed
other methods, thus we would like to try GS �rst for our model.
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Chapter 4

Source Language Selection

Bilingual corpora o�er a promising bridge between resource-rich and resource-
poor languages, enabling the development of multilingual NLP technologies for a
far wider range of languages. In the previous chapter, we used bilingual corpora
to build a tagger for the target language. Its performance is on par with the
state-of-the-art (Das and Petrov, 2011). In this chapter we would like to further
improve our tagger by investigating source language factors. English is often
used as a source language, but it is not the only available resource-rich language,
and another choice may have a dramatic e�ect on performance. Where multiple
source languages are available, what should we do? How can we combine them?
The relationship of source language selection and the universal tagger will be
thoroughly considered in this chapter.

4.1 Introduction

Parallel texts are becoming increasingly available through sources such as
multilingual websites, multilingual documents and large archives of translation
memory from books, news. Not only the size but also the number of languages
covered by parallel data is increasing. The era of English dominating one side of
parallel texts is shifting to a far wider range of languages. Parallel data can be
exploited to bridge languages, and in particular, transfer annotated information
from a highly-resourced source language to a lesser-resourced target language, to
build unsupervised POS taggers as demonstrated in Chapter 3.

One issue in building such a tagger is choosing the source language. English is
commonly used, because parallel data which has English on one side is often most
readily available. However, the appropriate source language might depend on the
target language. Chapter 3 shows that taggers for languages which are in the same
language family tree (Germanic) with source language (English) perform better
than the state-of-the-art (Das and Petrov, 2011). Snyder et al. (2008) showed
that performance of Slovene tagger improves 7.69% (absolute) when paired with
Serbian, a very closely related language, but only 1.3% when paired with En-
glish. Reddy and Sharo� (2011) and Hana et al. (2004) show that for closely
related languages, the transition probabilities for an HMM tagger can be used
interchangeably. This experience demonstrates that the choice of source language
might have a drastic e�ect on target language tagger performance. Moreover, if
parallel data for a target language with more than one source language is avail-
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able, it might be possible to exploit this additional information; however, this
issue has not been explored to date. Thus, in this chapter we investigate the
problem of making a good choice of source language(s).

In this chapter we are going to build unsupervised POS taggers form language
pairs using the tagger from chapter 3. We identify features � derived from both
monolingual and parallel corpora � that we could use to predict the best source
language to build a tagger for a given target language. We show that choosing
an appropriate source language can improve the accuracy of our state-of-the-art
unsupervised POS tagging methodology, compared to using a single �xed source
language. This prediction can be done based on features of the source and target
language derived from monolingual corpora, although further improvements can
be obtained using the features based on parallel corpora. We then show that
even better accurate prediction can be obtained by incorporating information
from multiple source languages.

Formally speaking, assuming that we need to build tagger for target language
t, we have all possible source languages s1, s2...sn. In this chapter, we are going
to answer two questions: (1) What is the best source language si? (2) Can we do
better by combining multiple source languages? To answer these two questions,
we experiment as follows:

1. Pick n languages (Section 4.2)

2. Collect n× (n− 1) parallel data sets (Section 4.2)

3. De�ne features (Section 4.3)

4. Using parallel data from each language pair, build the tagger (Section 4.4)

5. Build a source language predicting model based on the features (Section
4.5)

6. Combine multiple source languages (Section 4.6)

4.2 Collect parallel data

We would like to conduct experiments on a resource-poor target language,
however, it would be much harder to evaluate. We instead experiment with
the same n = 9 languages (English, Danish, Dutch, Portuguese, Swedish, Greek,
Italian, German, Spanish). We use the JRC-Acquis corpus which provides parallel
data for every pair of 22 European languages (Steinberger et al., 2006). We thus
extract a subset of 72 language pairs. It's worth noting that we consider (x− y)
and (y − x) to be two di�erent language pairs.

JRC-Acquis contains of EU legislation, rights, agreements, declarations etc.
that must be translated to all participating EU countries (currently 22). Thus,
theoretically, each document would have a translation into 21 other languages.
However, many documents for some languages are unavailable. Only documents
that have translation into at least 10 other languages are included in the JRC-
Acquis corpus.

To the best of our knowledge, JRC-Acquis is the biggest corpus providing
parallel data for all of the language pairs we consider. Table 4.1 shows some
monolingual statistics about each language. Table 4.2 shows the size of parallel
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Language No. of Texts No. of Words (×106)
en 23545 55.5
da 23624 50.9
nl 23564 56.8
pt 23505 59.6
sv 20243 47.0
el 23184 55.9
it 23472 57.2
es 23573 62.1
de 23541 50.9

Table 4.1: The number of texts and words for each language considered in the
JRC-Acquis corpus.

data (number of sentences) for each language pair. It is clear that parallel data in
JRC-Acquis is balanced, that is, the size of each language pair is approximately
the same.

en da nl pt sv el it es de Avg
en - 1.00 1.13 1.12 1.06 0.79 1.12 1.12 1.14 1.06
da 1.00 - 1.16 1.14 1.10 0.83 1.14 1.14 1.16 1.10
nl 1.13 1.16 - 1.13 1.07 0.85 1.14 1.13 1.14 1.09
pt 1.12 1.14 1.13 - 1.05 0.84 1.13 1.13 1.12 1.08
sv 1.06 1.10 1.07 1.05 - 0.77 1.06 1.05 1.08 1.03
el 0.79 0.83 0.85 0.84 0.77 - 0.84 0.86 0.89 0.83
it 1.12 1.14 1.14 1.13 1.06 0.84 - 1.13 1.13 1.09
es 1.12 1.14 1.13 1.13 1.05 0.86 1.13 - 1.12 1.08
de 1.14 1.16 1.14 1.12 1.08 0.89 1.13 1.12 - 1.10

Table 4.2: JRC-Acquis corpus size (×106) for every language pair.

Intuitively, there is the question why we do not use the same Europarl parallel
corpus as in chapter 3. Europarl provides parallel data which has English on one
side. We can always create other language pairs by using English as a pivot
language. However, apart from the language pairs that involve English, all the
other language pairs have more substantial coverage in JRC-Acquis. This means
that Europarl is English-oriented and not particularly suitable for our experiment.
Table 4.3 shows the size of each language pair (number of sentences) obtained
from Europarl. The average data size for parallel data having English as the
source language is double or triple compared to the other languages.

4.3 Features

In this section, we consider factors that in�uence the choice of source language.
We divide the features into two categories: monolingual features which exploit
only monolingual data, and bilingual features which exploit parallel data.
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en da nl pt sv el it es de Avg
en - 1.97 2.00 1.96 1.86 1.24 1.91 1.97 1.92 1.85
da 1.97 - 0.34 0.38 0.43 0.98 0.54 0.35 0.40 0.68
nl 2.00 0.34 - 0.39 0.44 1.05 0.53 0.39 0.42 0.69
pt 1.96 0.38 0.39 - 0.45 1.03 0.54 0.38 0.44 0.70
sv 1.86 0.43 0.44 0.45 - 0.97 0.63 0.45 0.48 0.71
el 1.24 0.98 1.05 1.03 0.97 - 1.11 1.01 1.06 1.06
it 1.91 0.54 0.53 0.54 0.63 1.11 - 0.54 0.59 0.80
es 1.97 0.35 0.39 0.38 0.45 1.01 0.54 - 0.43 0.69
de 1.92 0.40 0.42 0.44 0.48 1.06 0.59 0.43 - 0.72

Table 4.3: Europarl corpus size (×106) for every language pair. Where suitable
bilingual data is not available, English is used as a pivot language to derived the
other language pair.

Language
Corpus Size

Voc. Size
Acquis Europarl

en - - 14810
da 1000785 1968800 29867
nl 1132352 1997775 21316
pt 1121460 1960407 19333
sv 1061156 1862234 29403
el 792732 1235976 34992
it 1122016 1909115 19310
es 1117322 1965734 18496
de 1136452 1920209 29860

Table 4.4: Corpus size (number of tokens) and vocabulary size, for each language,
with English as the source language.
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4.3.1 Monolingual features

Morphological complexity

Morphologically rich languages introduce complexity when aligning parallel
data because there is much greater ambiguity in alignment. Given the reliance of
our approach on high quality alignments, morphological complexity is an impor-
tant factor to consider. We can estimate morphological complexity by counting
the number of unique tokens, i.e. the vocabulary size. In table 4.4, Voc. Size
column displays vocabulary estimates for each language, assuming a corpus of a
million words. This estimate uses the source side of the Acquis Corpus, although
any monolingual corpus would su�ce.

Language relatedness

Our nine languages belong to three language families: Germanic (English,
Danish, Dutch, Swedish, German); Romance (Portuguese, Italian, Spanish), and
Baltic (Greek). Previously in chapter 3, our Universal Tagger performed better
than the state-of-the-art on four languages which are in the same language family
(Germanic) as the source language (English). Thus, language relatedness is an
important factor to consider.

We quantify language relatedness using lexicostatistics on the Swadesh 200
word list (Meyer, 1992). Table 4.5 shows examples of some meanings in En-
glish. This list was chosen by linguist Morris Swadesh by carefully taking into
consideration cultural independence and attestation in many languages. The
Swadesh word list is sometimes called a �universal" vocabulary because these
meanings appear in the largest number of languages. The Swadesh list is im-
portant in lexico-statistics for studying language relatedness using the method of
glottochronology.

I louse tooth
and blood know
all bone die

who egg give
father animal sun
one tail moon
two ear water
�sh eye salt
dog nose stone

Table 4.5: Some meanings from the Swadesh word list.

Lexicostatistics involves the judgment of linguist about whether a given pair of
words are cognates or not. Two words are cognate if they evolved from the same
ancestor. For example �night" (English), �nuit" (French) and �Nacht" (German)
are cognate because they all derived from Proto-Indo-European word �nokwts"1.

The relatedness of two languages is just the percentage of shared cognates in
the word list. For example, Table 4.6 measures the relatedness between German
and Spanish. Assume that for all 200 meanings, there are 90 �yes" in the Cognate

1http://en.wikipedia.org/wiki/Cognates
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column, the language relatedness of German and Spanish would be 90
200

= 0.45.
Note that this measurement is symmetric. Two languages are considered close to
each other if this value is high (close to 1). The postulation of language families
is also partially based on this measurement. Languages that are close to each
other are grouped into the same family.

No. Meaning German Spanish Cognate
1 all alle todo no
2 and und y no
3 father Vater padre yes
4 animal Tier animal no
.. .. .. .. ..
200 I Ich yo yes

Table 4.6: Language relatedness measure between German and Spanish.

Meyer (1992) provides a table showing the language relatedness measurements
for all 84 Indo-European languages. We thus extract a subset of 36 language pairs
from this list. The extracted data is shown in Table 4.72.

en da nl de el it pt es sv
en - 0.593 0.593 0.578 0.162 0.247 0.240 0.240 0.589
da 0.593 - 0.663 0.707 0.183 0.263 0.250 0.250 0.874
nl 0.593 0.663 - 0.838 0.188 0.260 0.253 0.258 0.692
de 0.578 0.707 0.838 - 0.188 0.265 0.247 0.253 0.695
el 0.162 0.183 0.188 0.188 - 0.178 0.167 0.167 0.184
it 0.247 0.263 0.260 0.265 0.178 - 0.773 0.788 0.259
pt 0.240 0.250 0.253 0.247 0.167 0.773 - 0.874 0.258
es 0.240 0.250 0.258 0.253 0.167 0.788 0.874 - 0.253
sv 0.589 0.874 0.692 0.695 0.184 0.259 0.258 0.253 -

Table 4.7: Language relatedness measure for 9 languages.

4.3.2 Bilingual features

Corpus size The most obvious feature is corpus size. The more data we have,
the better. We count the number of parallel sentences in the corpus. Table 4.4
shows the corpus size for each language pair with English as the source side.

One-to-One alignment proportion We believe that one-to-one mapping is
more meaningful for the task than many-to-one mapping. The intuition is that
if there is only one possible way to copy a tag from the source language to the
target language, we can be more con�dent about the mapping. The proportion
of one-to-one mappings is calculated using a �xed number of parallel sentences
(800k sentences) for all languages.

2for some language pairs, there are some meanings that do not present in these languages,
thus, the �nal number is only calculated on a subset of 200 meanings
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Sentence alignment score Sentence alignment scores are provided by the
aligner from IBM Model 3. We used these scores to rank sentences in building a
seed model as in chapter 3. This score has proven to be e�ective in choosing high
quality sentences. Higher alignment scores might therefore correspond to a more
accurate tagger. We use the average sentence alignment score for each language
pair as a feature.

Lexical translation entropy We adopt the idea of translation model entropy
from (Koehn et al., 2009). However, instead of scanning all possible sentence
segmentations and calculating the phrase-based entropy, we employ a simpler
method based on the lexical translation table. That is, the entropy for each
lexical entry is calculated as

H(s) = −
∑
t∈T

p(t|s)× log2p(t|s)

where T is a possible translation of word s. For each language, we pick a �xed
amount of text (1 million words) and calculate the average entropy for all words.

4.4 Build taggers

In this section we construct 72 taggers, using parallel data for 72 language
pairs, and then evaluate the performance of each pair. We use the Universal
tagger from chapter 3. Constructing a tagger for each language pair involves
word alignment which is computationally expensive. Thus, we distribute the
computation to four servers. Each server run multiple threads but it still took
over 3 days for the whole process.

Our Universal tagger employs the consensus 12 Universal Tagset (Petrov et al.,
2012),3 to avoid the problem of transliterating between di�erent tagsets for dif-
ferent languages. Using this consensus tagset is crucial for enabling comparison
across languages. The input for the Universal Tagger is a tagger for the source
language Tagger(s), along with parallel data (s − t). The source language s is
tagged using Tagger(s), and then the tagged labels are projected to the target
language side t. We rank and build a seed model T0 on just the high scoring
sentences. By applying self-training with revision, a series of new models is con-
structed T1, T2, . . . , Tm. The output tagger for the target language is the last
model Tagger(t) = Tm.

Tagger(s) is trained from manually annotated data Data(s) which is mainly
derived from the CoNLL 06 and CoNLL 07 Shared Tasks. (Table 4.8 shows the
source and size of annotated data for each language.) It is worth noticing that
we only train on labeled data for the source language not for the target language.
This means that training and testing data are always di�erent for all language
pairs. The annotated data was also used in the previous chapter 3 for evaluating
the target tagger. We believe that the size of manually tagged corpus for each
language is su�cient for building a reliable supervised POS tagger. Using the

3NOUN, VERB, ADJ, ADV, PRON (pronouns), DET (determiners and articles), ADP
(prepositions and postpositions), NUM (numerals), CONJ (conjunctions), PRT (particles), �.�
(punctuation), and X (all other categories, e.g., foreign words, abbreviations).
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Language Source Number of Words
en WSJ/PennTB 1,289k
da DDT/CoNLL06 94k
nl Alpino/CoNLL06 203k
pt Floresta/CoNLL06 206k
sv Talbanken/CoNLL06 191k
el GDT/CoNLL07 65k
it ISST/CoNLL07 76k
es Cast3LB/CoNLL06 89k
de Tiger/CoNLL06 712k

Table 4.8: Size and source of annotated data.

TARGET LANGUAGE
en da nl pt sv el it es de Avg.

S
O
U
R
C
E
L
A
N
G
U
A
G
E

en - 76.17 72.97 79.57 73.83 50.38 72.20 75.37 73.95 71.81
da 55.73 - 53.28 50.53 66.08 34.13 46.03 50.34 53.90 51.25
nl 75.70 76.31 - 78.92 70.24 54.22 70.49 76.90 79.47 72.78
pt 72.40 69.49 63.07 - 66.67 61.82 74.23 80.50 64.70 69.11
sv 66.56 75.82 61.20 65.51 - 52.74 58.93 63.88 64.48 63.64
el 47.67 49.50 49.75 57.11 46.64 - 47.33 62.29 55.16 51.93
it 74.50 71.60 68.19 84.50 67.92 47.33 - 81.80 68.28 70.52
es 68.76 68.83 66.34 80.72 68.83 62.29 74.07 - 70.36 70.03
de 72.24 74.48 76.54 70.87 66.56 55.16 56.98 70.84 - 67.96

Baseline 30.28 23.27 24.28 24.53 26.35 24.00 25.09 21.98 26.50

Table 4.9: Tagger accuracy for each source�target language pair. The best tagger
for each target language is shown in bold.

matching provided by Petrov et al. (2012), we map the individual tagsets to the
Universal Tagset. We train a supervised POS tagger Tagger(s) on the annotated
data using the TNT tagger (Brants, 2000). This data is also used for evaluating
the target language tagger Tagger(t).

We evaluate each Tagger(t) using Data(t), and report the results shown in
Table 4.9. The average tagger performance for each source language is also given.
It turns out that choosing Dutch (avg =72.78%) as the source language rather
than English (avg=71.81%) gives the best overall performance. The tagger per-
formance of each target language is much better than the baseline that always
picks the most frequent tag for each word.4

The Greek tagger performs poorly. From Table 4.4, Greek is the most mor-
phologicaly complex language in this set, and has the smallest corpus size, two
factors which partially explain why tagger performance for Greek is low regardless
of whether Greek occupies the source or target language role.

From Table 4.9, it seems that taggers perform better if the source and target
language are in the same language family. For example, the top four source
languages for Danish are English, Dutch, Swedish and German, and the top
two source languages for Portuguese are Italian and Spanish. This con�rms the
intuition in adding language relatedness features in section 4.3.

4For most of languages, the baseline is assigning �Noun" for all words.
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Language JRC-Acquis Europarl
da 76.2 85.6
nl 73.0 84.0
pt 79.6 86.3
sv 73.8 81.0
el 50.4 80.0
it 72.2 81.4
es 75.4 83.3
de 74.0 85.4

Average 71.8 83.4

Table 4.10: Accuracy on JRC-Acquis and Europarl using English as the source
language.

In chapter 3, we also used English as the source language to build taggers
for the same eight other languages. The only di�erence between these two ex-
periments is that in chapter 3 experiment, we used Europarl (Koehn, 2005) data
instead of JRC-Acquis. Table 4.10 compares the performance of each target
language using English as the source language, for the two datasets. As men-
tioned before, Europarl is English oriented and not relevant for our experiment.
Table 4.4 also compares the size of parallel data having English as the source
language, for both corpora. Given that Europarl is much larger, higher perfor-
mance is expected. However, Table 4.10 shows a strong correlation between the
two experiments (Pearson's r = 0.7).5

This suggests that, if we had as much data as Europarl for every language
pair (not just English), we would expect all numbers in Table 4.9 to improve
substantially (not only the �rst row where English is the source language).

4.5 Source language prediction

In this section, using features de�ned in section 4.3 and the tagger performance
shown in Table 4.9, we build a model that can predict the performance of the
target language tagger given a source language.

4.5.1 Individual feature correlation

Firstly, we want to determine the correlation of individual features with tagger
performance. Table 4.11 shows the Pearson's correlation (r) and coe�cient of
determination (r2) of each feature. The r2 value can show the explanatory power,
i.e., the extent to which the variance in tagger performance is "explained" by that
factor. Signi�cance shows the reliability of the calculation (∗ ∗ ∗ means p-value
< 0.001, ∗∗ means p-value < 0.01, ∗ means p-value< 0.05).

Surprisingly, the one-to-one mapping proportion is very strongly correlated
with tagger performance (r = 0.745). The value of r2 = 0.556 means that
55.6% of the variance in the tagger performance can be explained solely by this

5The common rule of thumb interpretation for Pearson-correlation is as follows: |r|> 0.7 :
very strong relationship, > 0.4 : strong relationship, > 0.3 : moderate relationship, > 0.2 : weak
relationship, > 0.01: no or negligible relationship. Negative r means a negative relationship.
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Features r r2 Signi�cance
Source Voc Size -0.613 0.376 ∗ ∗ ∗
Target Voc Size -0.202 0.041 ∗
Corpus Size 0.620 0.385 ∗ ∗ ∗
Language Relatedness 0.497 0.247 ∗ ∗ ∗
Sentence Alignment Score 0.492 0.242 ∗ ∗ ∗
One-to-one Mapping Proportion 0.745 0.556 ∗ ∗ ∗
Lexical Translation Entropy -0.590 0.348 ∗ ∗ ∗

Table 4.11: Individual feature Pearson-correlation.

TARGET LANGUAGE

S
O
U
R
C
E
L
A
N
G
U
A
G
E

en da nl pt sv el it es de
en - 72.99 77.76 80.35 76.42 60.40 74.90 71.18 75.91
da 61.07 - 63.65 61.69 71.00 50.85 57.08 48.97 62.18
nl 68.10 72.59 - 70.55 69.56 60.03 65.21 63.47 72.75
pt 71.57 68.96 70.42 - 69.12 64.77 79.27 79.77 69.55
sv 63.64 75.14 64.32 61.86 - 52.22 56.36 53.24 63.71
el 49.55 50.26 55.24 57.17 48.18 - 56.15 52.76 53.71
it 71.16 69.58 71.10 83.89 69.35 65.26 - 77.30 70.16
es 70.41 69.48 69.47 82.86 67.33 65.91 77.45 - 67.87
de 60.90 69.88 67.73 62.86 64.50 55.60 59.07 54.00 -

Table 4.12: Predicted Tagger Accuracy for each source-target language pair. The
best predicted tagger for each target language is in bold.

factor. The negative correlation for the lexical translation entropy model is easy
to understand because lower entropy is better. The source language vocabulary
size is highly negatively correlated, but that strong relationship is not found for
the target language. This suggests that the model is not a�ected much by the
target language, but prefers the source language to be morphologically simple.

The corpus size factor is highly positively correlated too. This con�rms the
intuition that more data is better. This strong relationship, together with the neg-
ative morphological complexity factor, consolidates the explanation above about
the poor performance of the tagger for Greek, where the availability of data is very
limited, and where Greek has the richest morphology of any language considered.

4.5.2 Building a predictive model

In this experiment we are interested in building a model that can predict
the performance of a target language tagger given a source language. We �t all
features into a multiple linear regression model. The r2 value improved drastically
to 0.74, meaning that 74% of variance in tagger performance is explained by the
factors we have identi�ed.

We evaluate our model in a leave-one-out cross validation experiment. To
build a predictive model for language t, we remove data in Table 4.9 associated
with t and train the multiple linear regression model model(t) on the remaining
data. So, given source language s and (s− t) parallel data sets, model(t) outputs
the predicted performance of the tagger trained on (s− t) parallel data sets. The

50



Target language All features Monolingual features Fixed Oracle
en pt (72.40) nl (75.70) nl (75.70) nl (75.70)
da sv (75.82) en (76.17) nl (76.31) nl (76.31)
nl en (72.97) en (72.97) - de (76.54)
pt it (84.50) es (80.72) nl (78.92 ) it (84.50)
sv en (73.83) en (73.83) nl (70.24) en (73.83)
el es (62.29) en (50.38) nl (54.22) es (62.29)
it pt (74.23) es (74.07) nl (70.49) pt (74.23)
es pt (80.50) pt (80.50) nl (76.90) it (81.80)
de en (73.95) en (73.95) nl (79.47) nl (79.47)

Average 74.50 73.14 72.78 76.07

Table 4.13: Best source language prediction (and corresponding tagger perfor-
mance) for models exploiting all features, only monolingual features, and a �xed
source language, as well as an oracle model that always picks the best language.
The best (non-oracle) source language and accuracy for each target language is
shown in bold.

predicted accuracy for each language pair is given in Table 4.12. However, the
correlation of the predicted value (Table 4.12) with the original value (Table 4.9)
is very high (r = 0.81).

We also build another predictive model based solely on monolingual features
(morphology complexity and language relatedness). The intuition here is that, if
we only have monolingual data and we are planning to build a tagger for target
language t, what parallel data would we want to collect �rst? This monolingual
model also shows a high correlation with the original table (r = 0.74). If we
only use language relatedness, the correlation is very weak (r = 0.13), showing
that language relatedness on its own is not e�ective at predicting the best source
language.

The predicted best source language for each target language t is the language
predicted to produce the highest accuracy tagger. For example, from Table 4.12,
if we want to build a tagger for Danish (da), we will choose Swedish (sv) as the
source language. Table 4.13 shows the source language prediction from models
exploiting all features, and only monolingual features. The Fixed model always
chooses Dutch (nl) as the source language, because Dutch gives the highest av-
erage accuracy (Table 4.9). The Oracle model always picks the best language,
and gives the upper bound for the predictive model as a point of comparison.
As expected, the model exploiting all features achieves a higher average accuracy
than the monolingual model, which nevertheless still outperforms Fixed. With
respect to the oracle upperbound, and Fixed baseline, the error rate reduction
for the monolingual and all features models is 10.9% and 52.3%, respectively,
showing the e�ectiveness of using a predictive model.

4.6 Multiple Source Languages

In this section we combine information from multiple source languages to
build a single target language tagger. We take a simple approach as shown in
Figure 4.1. Each si is a tagged corpus for source language i. POS tags are then
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Figure 4.1: Combining multiple source language to produce single �le.

Language 1 best 2 best 3 best 4 best 5 best 6 best 7 best
en 75.70 76.36 76.66 77.17 76.36 77.06 78.16
da 76.31 78.06 78.40 83.35 82.45 82.60 82.43
nl 76.54 76.82 76.17 76.03 80.00 81.60 81.45
pt 84.50 83.84 84.91 84.79 85.00 85.46 84.24
sv 73.83 74.33 74.65 74.49 74.10 74.51 76.66
el 62.29 66.90 70.23 67.93 67.22 67.03 67.69
it 74.23 77.28 78.71 78.47 78.47 78.03 76.05
es 81.80 81.89 82.53 82.76 82.13 82.21 82.64
de 79.47 79.35 79.28 78.79 77.92 77.88 77.35

Average 76.07 77.20 77.95 78.20 78.18 78.49 78.52
Run time(s) 352 444 741 1025 1648 2790 3297

Table 4.14: Tagger performance when combine multiple source language and
performance of Portuguese languages measured in seconds. The best system are
in bold.

projected to the target language side t for each corpus. We merge all of these
partially-tagged target language corpora (in which unaligned words are untagged)
to form T . Because the JRC-Acquis corpus consists of translations of documents
into multiple languages, in many cases the same target language sentence occurs
in the parallel corpus for multiple source languages. In this preliminary approach
to combining information from multiple source languages, we simply treat these
as di�erent target language sentences because the sentences are aligned with
di�erent source languages, they might contain di�erent partial tag information.

We build the target language tagger from T by adapting the method from
chapter 3 (Universal Tagger). The typical steps for this method are (1) tag the
source language, (2) project tag labels from the source to target language, (3)
build the seed model, and (4) apply self-training with revision to produce the
�nal model. Here we simply start from step (3) and build the seed model from
T .

In these experiments we assume that when building a tagger for a target lan-
guage we have access to all other source languages. Table 4.14 shows accuracy
when combining information from the 1-, 2-, 3-, to 7-best source languages (where
the best source language is determined by an oracle). As more source languages
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Figure 4.2: Instructions for building a tagger for a target language S.

are added, the average accuracy increases, although there is some variation for in-
dividual languages. Nevertheless, these �ndings show that the method described
in chapter 3 is robust and can be substantially improved by combining information
from multiple source languages. There is, however, a trade-o� between accuracy
and e�ciency, with taggers built from multiple source languages generally being
slower. The memory and running time is O(nlogn) with the amount of data n.
Table 4.14 also shows the running time for Portuguese on each combination. We
run our experiment on a 16 cores Intel Xeon 2.53 GHz server with 24GB RAM.

4.7 Summary of Contributions

In this chapter, we investigated the problem of choosing the best source lan-
guage(s) to use in unsupervised multilingual POS tagging based on tag projection
in parallel corpora. We have shown that our predictive model can select a source
language � based on only monolingual features of the source and target lan-
guages � that improves tagger accuracy compared to choosing the single best
(overall) source language. However, if parallel data is available, our predictive
model is able to leverage this to select a more appropriate source language and
obtain further improvements in accuracy. Finally, we showed that if multiple
source languages are available, even better accuracy can be obtained by com-
bining information from just those sources that are selected by our model. A
synopsis of the process for building a tagger for language S is described in Figure
4.2. That is, if we do not have any parallel data, we would use a monolingual
model to predict the best source language T and collect S − T parallel data sets.
If multiple parallel data sets are available and we have time, the best solution is
just to combine all source languages to produce the single best tagger. If we do
not have time, just combine n-best source languages in the order de�ned by all
features model gave the comparable accuracy but stay fast.
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In future work, we would like to apply the methods described in this paper for
identifying �good� source languages for other multilingual NLP tasks which ex-
ploit parallel data to transfer annotations between languages, including grammar
induction, parsing, and morphological analysis. We further intend to expand our
experiments to consider more source and target languages. We also would like to
investigate more methods for combining di�erent source languages. Currently, we
ignore cross-language sentences and concatenate them without any further pro-
cessing. This resource can be very valuable since we have the POS information
from all other languages for each individual sentence. Thus, we can combine and
produce more accurate tagged sentences which will serve as better training data
for the POS tagger.

54



Chapter 5

Conclusions

POS tagging is a simple but important task as it gives morphological infor-
mation about lexical item. There are three main challenges for POS tagging, (1)
lack of manually annotated data which makes supervised approach impossible
for resource-poor languages; (2) low performance on the traditional unsupervised
approach which looks at each language separately; and (3) lack of tagset con-
sensus among languages which is an obstacle for cross-language processing. In
this thesis we tackle these challenges. We have successfully built an unsupervised
multilingual POS tagger, but additionally, exploiting parallel data to copy tag
information from resource-rich to resource-poor languages. In our tagger, we also
employ the Universal Tagset of 12 tags across languages which will resolve the
third challenge.

Chapter 2 thoroughly reviewed approaches for POS tagging for both monolin-
gual and multilingual taggers. Chapter 3 proposed the initial method for building
Universal Tagger. That is, given a source language tagger and parallel data, we
successfully construct a target language tagger. This tagger performs on par with
the state-of-the-art system for the same 8 languages (Das and Petrov, 2011). How-
ever, we use less data, simper methods � i.e. a huge di�erence in running speed,
easier to replicate which actually makes our proposed method stronger. Unlike
Das and Petrov (2011), we are able to publish the implementation1 which might
aid other researchers not only in multilingual POS tagging but also on other
cross-languages NLP tasks such as parsing, grammar induction and so forth.

Out of the 8 languages, the Universal Tagger performs better than the state-of-
the-art on 4 Germanic languages which are in the same family as source language
(English). It appears that choice of source language might substantially a�ect the
target language tagger. This idea motivates our work in chapter 4. This chapter
is the e�ort to further improve unsupervised multilingual POS tagger (Universal
Tagger) accuracy by investigating the e�ect of choosing better source language(s).
We found out that English is usually not the best source language. Just based on
monolingual features, we are able to predict the best source language for a given
target language. On average, the source language prediction gave better tagger
performance than always �xing the source language. Even better accuracy can
be obtain if we have parallel data. When multiple source languages are available,
we shown that combining all of them even further improve tagging accuracy.

This thesis described a consensus works and thoroughly analysis of many

1https://code.google.com/p/universal-tagger/
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aspects of building unsupervised multilingual POS tagger. Nevertheless, there
are many points that could be improved. The program for future research is
divided into 3 categories: (1) immediate works, which require less e�ort and can
be done in few weeks; (2) near future works, which might require few months to
complete; and (3) longer future works, which require years to complete.

Immediate works

1. Use a larger and more diverse traning corpus.

The Universal Tagger we constructed in chapter 3 only uses the Europarl
parallel corpus (Koehn, 2005). Whereas the state-of-the-art (Das and Petrov,
2011) additionally uses the ODS United Nations data set. Thus, we would
like to acquire this corpus and add to the current Universal Tagger. This
way, our model and the state-of-the-art will become fully comparable. More-
over, the current high rate of unknown word (OOV) when evaluating Uni-
versal Tagger against 8 languages suggested that enlarging the corpus might
be the easiest and most promising way to improve performance.

2. Try bidirectional alignments

Alignment is the one of the core modules of our Universal Tagger. Cur-
rently, we only employ one directional alignment from the source to target
language. It is possible to align in the other direction from target to source
language and then merge the results from these two alignments. In this
way, we might have more and even better alignments. Actually, bidirec-
tional alignment is widely used in statistical machine translation systems
e.g. Moses (Koehn et al., 2007). We acknowledge this idea beforehand.
However, alignment is the most time-consuming step in our model, bidi-
rectional alignment doubles the running time, thus, we leave it for future
work.

3. Build predicting model for many more languages

This is a trivial extension of chapter 4. Currently, we are able to build a pre-
dicting model that predicts best source language given target language for 9
European languages, i.e. English, Dutch, Danish, German, Greek, Italian,
Portuguese, Spanish, Swedish. We distinguish between two predicting mod-
els, that is, a monolingual model which just exploits monolingual data and
an all features model which additionally exploits parallel data. We would
like to extend this to more languages, in a di�erent strategy. First, for
all 22 European languages in the JRC-Acquis Corpus (Steinberger et al.,
2006), we have parallel data for each language pair, thus, we will build all
feature model for better prediction. Second, we can further expand to more
languages by just exploiting a monolingual model which only needs mono-
lingual data. For example, we can easily build monolingual model for all
languages presented in Wikipedia.

Near future works

1. Investigate methods for handling unknown word (OOV) case.
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As mentioned above, OOV rate stays high (nearly 10%) when evaluating the
Universal Tagger on 8 languages. Currently, for unknown words (OOV), the
model just uses the tag sequence to predict. For example, the tag sequence
�DET ADJ NOUN " is commonly observed. So, if two previous words of
unknown word are tagged as DET and ADJ, model infers NOUN for this
word. The performance of this method on unknown words varies between
languages but stays quite low i.e. 50-60% for Italian (Figure 3.5, page 38).
Thus, given the high rate and currently low performance on OOV words, if
we can incorporate other evidences to have better prediction for unknown
words, we hope to improve the �nal performance.

2. Implement HMM inference algorithms

We can use the Universal Tagger to initialize the �rst state of a Hidden
Markov Model (HMM) and then use inference algorithms such as Expecta-
tion Maximization (EM), Variational Bayes (VB) or Gibbs Sampling (GS)
to estimate the new set of parameters (emission probability and transition
probability). Gao and Johnson (2008) compare EM, VB and GS for the
same task of POS tagging, it seems that GS outperforms EM and VB.
Thus, we would like to try GS �rst for our model.

3. Investigate more on combining multiple resources algorithms

Chapter 4 shows that combining multiple source languages improves the
overall accuracy. The current combining scheme is just concatenation, that
is, ignore the existence of sentences that are shared among all languages.
Thus, we would like to investigate methods that treat these sentences sep-
arately and propose a better combining scheme.

Longer future works

Our experience with parallel data, alignment, label projection, etc. will be the
advantage for investigating similar unsupervised cross-language NLP tasks such
as parsing, name entity recognition, noun phrase bracketing etc. The �rst task we
would like to investigate is sentence parsing which is built upon POS information.
However the ultimate goal for this thread of work is building a framework for
resource-poor languages, exploiting parallel data as the bridge between resource-
rich and resource-poor languages. After being able to build another cross-lingual
NLP applications, we would like to verify the source language predictive model
proposed in Chapter 4 against these other applications.
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POS Tag Description Example
CC coordinating conjunction and
CD cardinal number 1, third
DT determiner the
EX existential there there is
FW foreign word d'hoevre
IN preposition/subordinating conjunction in, of, like
JJ adjective green
JJR adjective, comparative greener
JJS adjective, superlative greenest
LS list marker 1)
MD modal could, will
NN noun, singular or mass table
NNS noun plural tables
NNP proper noun, singular John
NNPS proper noun, plural Vikings
PDT predeterminer both the boys
POS possessive ending friend's
PRP personal pronoun I, he, it
PRP$ possessive pronoun my, his
RB adverb however, usually
RBR adverb, comparative better
RBS adverb, superlative best
RP particle give up
TO to to go, to him
UH interjection uhhuhhuhh
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing. present, non-3d take
VBZ verb, 3rd person sing. present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ possessive wh-pronoun whose
WRB wh-abverb where, when

Table A.1: Penn Treebank Tagset Marcus et al. (1993)
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