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Abstract

Question  Answering  (QA)  Systems  allow  the  user  to  ask  questions  in  a  natural 

language and obtain an exact answer. Through this thesis work, we tried to learn the  

important issues in the field of Question Answering (QA) systems. We peeked into the  

internals of  many established QA systems. We explored the capabilities of  each of  

them and the reasons that make them good at their task. Then we looked into the  

details of cross-language QA task. We learned that most of such systems employ some  

form of machine translation engines. We aimed to have a complete cross-language QA 

system for Bangla. The language Bangla is among one of the most widely spoken 

languages of the world but is still in its early stages of research regarding language  

processing resources and tools. Thus for the cross-language QA task we did not have  

access to translation engine which was very essential. So we narrowed down our aim  

and finally proposed an innovative concept of translation based on transliteration and  

a table look-up approach as an interface for a cross-language QA task where one of  

the languages involved is at a disadvantage in terms of digital language resources  

and tools. The proposed concept is implemented in a form of a prototype framework  

for a very controlled cross-language QA scenario. We do not claim that our proposed  

approach is a complete approach for a Bangla QA task but we did achieve promising  

results that  can help in Bangla QA task until  mature Bangla language processing  

tools become available. 
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1 Introduction

Question Answering (QA) systems go beyond the usual Information Retrieval (IR) systems which 

underly  popular  Internet  search  engines.  QA systems  have  the  aim  of  responding  to  natural 

language questions whereas IR systems take up keywords from users and deploy some intelligent 

search mechanisms on a document collection to get back to the user with a ranked list of documents 

rather than an exact answer. However, the user still has to go through the documents to find out the 

exact answer of his or her query. This process of going through the documents to find an answer is 

undesirable and QA systems, by contrast, are expected to eliminate this process by giving an exact 

answer to a question. Thus the aim of a QA system is to localize the exact answer to a question from 

a structured or a non-structured collection of texts. 

Asking questions in natural language and obtaining exact answers make QA systems of paramount 

importance to Information Retrieval [Laurent et al. 2006]. Previously, given an information need of 

a user, systems retrieved information from a text collection by retrieving full-length documents; 

however,  in recent times the focus of these systems has moved to giving the specific information 

rather than a bibliographic-like information. 

The design of a standard QA system assumes that the language in which the question is asked and 

the text collection available to be processed are all in the same language. However, there might be a 

need for cross-lingual QA system which take in questions in one language and searches through a 

document collection in a different language to get to the answer.

In this thesis work, we discuss the issues to look at to build a cross-language QA system and finally 

present  a  model framework for such a  cross-language QA system, where one of the languages 

(Bangla) has very limited computational resources to have a complete QA system of its own. We 

start by giving an introduction to general QA systems and their associated components and slowly 

build the discussion towards a cross-language QA task. Then we introduce our research aim and 

finally present what we have achieved through this work.
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1.1 Generic Question Answering (QA) Systems

The basic architecture of a QA system is dependent mostly upon the anticipated user of the system, 

the type of questions to be handled by the system, the type of expected answers and the format in 

which the available information is stored [Monz 2003]. The possibility of the information to be 

available in different formats makes the entire design of a QA system a bit more complex, not to 

mention the final performance of the system. It is possible that the QA system tries to answer a 

question  by  accessing  a  structured  information  source  such  as  a  database  or  an  unstructured 

information source such as plain text documents. It is also possible to have a hybrid system that can 

handle both structured and unstructured data. 

Those systems that have a structured knowledge-base mostly exploit that structure to produce a 

match between the question and an answer [Monz 2003]. This type of system is relatively easy to 

build compared to the ones having an unstructured knowledge-base. Unstructured information is 

usually  in  plain-text  format  such  as  articles  from newspaper,  manuals,  encyclopedias  etc.  QA 

systems having an unstructured knowledge-base try to find a match between the text units in the 

collection and the question itself to get to an answer. Thus the text units in the collection need to be 

descriptive enough about their own structure as well as the content itself for the system to make 

some intelligent use of them to reach to an answer. 

[Pasca  2003]  states  that  a  QA task  can  be  decomposed  into  three  main  subproblems.  The 

subproblems are:

1. Question Processing

2. Document Processing

3. Answer Processing

The  question  processing stage  is  responsible  for  taking  a  question  in  a  natural  language  and 

producing some kind of intelligent representation of the raw question string so that it becomes more 

useful for finding answers. The document processing stage is used to reduce the search space of the 

document collection where the answer to the question can be expected. This stage is basically a 

complete Information Retrieval system where the idea is to take in some keywords and produce a 

ranked list of documents related to those keywords. The final stage of a QA system is the answer 

processing stage where the system does some intelligent matching with the output of the previous 
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two stages to produce an answer to the given question. Any QA system should have these three 

basic components and may have a number of other components to make the system more useful and 

robust. The general architecture of a QA system can be modeled like the diagram shown below.

There are many other components such as a parser, part-of-speech tagger, stemmer, named entity 

recognizer and automatic machine translation engine which can be included in the skeleton system 

to improve the performance and solve other complex issues in QA. All these additional components 

may be merged between the 3 main components or may stay as individual black boxes to assist in 

the overall  task of question answering.  Some of these important additional components will  be 

discussed in detail after some detailed discussions on the 3 major components of a QA system.  

1.1.1 Question Processing

The main function of this component is to analyze the question taken from the user. Questions can 

be of different types and classifications thus this component is responsible to identify in which class 

the question falls. The question type derived here can be used for answer extraction and answer 

filtering to improve the accuracy of the overall QA task. The question processing component also 

needs to determine the expected answer type (EAT). A QA system can be made to work with only a 

certain class of questions or it may be built in such a way as to entertain a wide variety of classes. 

Further the system could entertain questions from a certain topic, making the entire system closed to 

a single domain, or it could entertain varieties of topic, making the system respond to an open-

3
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domain. Some of the possible question classifications are shown in Table 1.

Question Type Description

Agent Name or description of an animate entity causing an action
Who won the Oscar for best actor in 1970?

AKA Alternative name for some entity
What is the fear of lightning called?

Capital Capital of a state or country
What is the capital of Kentucky?

Date Date of an event
When did the story of Romeo and Juliet take place?

Date-birth Date of birth of some person
When was King Louis XIV born?

Date-death Date of death of some person
When did Einstein die?

Expand-abbr The full meaning of an abbreviation
What does NASDAQ stand for?

Location Location of some entity or event
Where did Golda Meir grow up?

Table 1: Possible question types      [Monz 2003]

Question classification can be done in roughly two major ways, namely, a rule-based approach or a 

statistical approach [Day et al. 2005]. There are many ways to identify in which class a question 

belongs as stated in Monz [2003]. The most common and simple way is to look for patterns in the 

incoming question which fall under the rule-based approach category. The task of pattern matching 

can be achieved by handcrafting different regular expressions as can be seen in Table 2. 

 

For a statistical approach towards question classification, expert knowledge is used to prepare a 

sufficiently large collection of data which in this case would be a collection of question and answer 

pairs. A model is trained to automatically capture all the useful patterns for question classification. 

The statistical approach to question classification can be further enhanced with different machine 

4
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learning models to improve the performance of the question processing component as well as the 

overall QA task. Zaanen et al. [2005] proposed a combination of the machine learning and pattern 

matching approach to question classification. They use an Alignment-Based Learning classifier to 

learn structure from plain text sentences.  They train the model with pairs consisting of regular 

expressions found and the corresponding expected answer type (EAT). Several questions can match 

a single regular expression and thus have more than one EATs. During the classification task all the 

regular expressions are tried and the EAT with the highest frequency is chosen. They also propose 

an approach with a Trie1 classifier to determine the type of question. Their system learns from 

questions inserted in a trie structure that contains the token, the EAT and the frequency information 

(the number of questions that use that single path in the trie). During the classification task the trie 

is traversed and if a new question is a prefix of a training question then the node at the end of the 

traversal path indicates the EAT of the question, otherwise a lookahead approach is used on the sub-

tries until all the tokens are consumed and a path with the highest frequency is reached. Day et al. 

[2005] uses INFOMAP2 and Support Vector Machines (SVM)3 to classify Chinese questions. They 

develop a hierarchical two-layer taxonomy comprising of the question type or the EAT by analyzing 

the  TREC4 question corpus.  Then they use INFOMAP to  identify  the  category  of  the  Chinese 

questions. If the knowledge-based approach fails to identify a category for the question then an 

SVM model is used as a fallback. The SVM model uses syntactic features like part-of-speech (POS) 

and other models like bag-of-words5 to classify the question. It further uses semantic features from 

another  ontology  database  called  HowNet  20006 to  classify  the  question.  Tomas  et  al.  [2009] 

proposed a semi-supervised approach called the semantic kernels for question classification. In their 

approach they put the input data, which is the question, in a suitable feature space and then use a 

1 Tries or digital trees are both an abstract structure and a data structure that can be superimposed on a set of strings 
over some fixed alphabet. As an abstract structure they are based on splitting according to letters encountered in 
strings: if S is a set of strings and A = {aj}r

j=1 is the alphabet, then the trie associated to S is defined recursively by the 
rule: trie (S) = {trie(S/a1)...trie(S/ar)}, where S/a means the subset of S consisting of strings that start with ai stripped 
of their initial letter a, recursion is halted as soon as S contains less than 2 elements. The advantage of the trie is that 
it only maintains the minimal prefix set of characters that is necessary to distinguish all the elements of S. The 
trie(S) supports the search for any string w in the set S by following an access path dictated by the successive letters 
of w. [Clement at al. 1997]

2 A knowledge representation and inference engine. It is used to facilitate knowledge sharing by different application 
systems. When a QA system receives a query, it extracts the corresponding events or scripts based on the ontology in 
INFOMAP. [Hsu et al. 2001]

3 SVM is a supervised learning algorithm to classify elements.
4 The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards and Technology 

(NIST) and U.S. Department of Defense, was started in 1992 to support research within the information retrieval 
community by providing the infrastructure necessary for large-scale evaluation of text retrieval methodologies. 
Since TREC-8 (1999) TREC introduced a question answering track.

5 Bag-of-words model represents a piece of text as an unordered collection of words without taking into consideration 
the grammar and word ordering of the piece of text.

6 HowNet is an online common-sense knowledge base unveiling inter-conceptual relations and inter-attribute relations 
of concepts as connoting in lexicons of the Chinese and their English equivalent. [Dong et al. 1999]
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kernel function to discover any nonlinear pattern in the input space. The kernel function gives a 

similarity measure between the input data that depends exclusively on the specific data type and 

domain. Bouma et al. [2006a] uses dependency relations of the given question to determine the 

question type. That approach is discussed in detail in chapter 2. 

As can be seen that whatever the approach is to analyze the question (rule-based or statistical), 

some kind of morpho-syntactic analysis and processing is required on the question itself such as 

finding out the part-of-speech, the root form (stemming) and the cardinality. Once these are found, 

it is the time to formulate a query that is to be used by the next component, which is the document 

processing unit. Formulating a query is dependent upon the structure of the  document processing 

unit.  

The  way  queries  are  formulated  has  a  strong  impact  on  retrieval  effectiveness  even  if  query 

formulation is just based on term selection without expanding the queries with semantically related 

terms [Monz 2007]. The most common and simple way is to identify keyword(s) from the question, 

finding the morphological root forms of the keyword(s), using some boolean operators with them 

and producing a query. 

e.g Q: What is the abbreviation for United Nations?

A system can exclude the question terms (like What, When, Who) and just include the other terms as 

a boolean query.

e.g abbreviation AND United AND Nations.

However, this simple approach can steer the retrieval process in a wrong direction because most 

documents that contain an answer to the question asked might contain sentences like “...United 

Nations (UN)...”, thus not using all the query terms. Both simple boolean conjunction of Bag-of-

Words  as  well  as  Vector-space  retrieval7 will  prefer  documents  containing  all  the  terms  over 

documents that do not contain a term. Stemming a query term can help in overcoming vocabulary 

mismatches. In case there are quotes in the question, then the entire quotation is treated as a phrase 

and constituent words are not used as query terms. Once a question is POS tagged, a phrase level 

7 Vector space model is used to represent text documents as an algebraic model. The model creates a space in which 
both documents and queries are represented by vectors. For a fixed collection of documents, an m dimensional 
vector is generated for each document and each query form sets of terms with associated weights, where m is the 
number of unique terms in the documents collection. A vector similarity function (like inner product) can be used to 
compute the similarity between a document and a query. [http://www2002.org/CDROM/refereed/643/node5.html]
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analysis can be done to identify query terms. Terra et al. [2005] looks for some patterns to identify 

noun phrases such as: 1) adjective followed by noun; 2) a non-proper noun followed by any noun; 

3) foreign word followed by any noun; 4) any noun followed by a foreign word; 5) proper-noun 

followed by proper noun; and 5) numeral followed by any noun. The intuition behind is that the 

entire noun phrase conveys more information rather than the individual terms. The noun phrase can 

be put inside quotations for better results. More details about document retrieval can be found in the 

document processing section.

 

Monz [2007]  proposed  a  machine  learning  approach for  query  term weighting  to  improve  the 

retrieval engine. He analyzed TREC (TREC 9,10,11) datasets to compute the optimal term selection 

for  each  question.  For  a  given  question  q having  T terms,  all  the  possible  subsets  of  T are 

considered and evaluated. That is, the set of term selection variants  (tsv) is defined as  tsv(q) = 

POW(T) – {0}. Monz [2007] determined the query variant with the highest average precision for 

each question in the 3 datasets. He suggests that if a term occurs in query variants that have a high 

average precision it should have a high weight and a term that occurs in query variants that have a 

low average precision then it should receive low weight. Thus, the weight of a query term depends 

on two factors: its presence weight w+(t) and its absence weight w-(t). Those weights are normalized 

and combined into a single weight by subtracting the absence weight from the presence weight 

which is called the gain of term t (gain(t)=w+(t)-w-(t)). If a term t has a positive gain, then it should 

be included, otherwise not. This approach to computing the term weights is solely based on the 

distribution of the terms over the query variants. This leads to problems such as terms having a high 

gain for one query and low gain for another. Also, this computation is not possible for terms missing 

in  the  training  data.  Thus,  Monz  [2007]  introduces  a  list  of  features  to  further  enhance  the 

computation of the term weights. An extract of the features is shown Table 3.
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Monz [2007] used the M5'8 algorithm to assign weights to query terms, where the input to the 

learning algorithm is the set of feature vectors and the term gain is calculated from the training data. 

They incorporated the learned weights in to an IR engine and observed modest improvements, with 

some significant improvements in some cases. 

Some query terms might need to be expanded to increase the probability of finding documents 

containing an answer. A semantic knowledge base like WordNet9 can help to identify synonyms. 

e.g Q: Where is  Big Ben located?

The term “located” might not be enough (because of the system design) to search the text collection 

as there might be sentences like “You can find Big Ben in London.” or “Big Ben is situated in 

London.” Both the sentences are possible answers to the question but if the system is not aware that 

“locate” is semantically equivalent to “find” or “situate” those sentences might be discarded though 

8 M5' is a reconstruction of the Quinlan's M5 algorithm. The M5 algorithm builds model trees combining 
conventional decision tree learning with the possibility of linear regression models at the leaves of the tree. M5 is 
suited for learning query term weights as it allows to consider dependencies between features [Monz 2007].

9 WordNet is a large lexical database of English available freely and publicly. Nouns, verbs, adjectives and adverbs 
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by 
means of conceptual-semantic and lexical relations. WordNet's structure makes it a useful tool for computational 
linguistics and natural language processing. [http://wordnet.princeton.edu/]
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being favorable candidates as an answer.  

1.1.2 Document Processing

The document processing unit is just a regular IR engine which takes in a query and identifies some 

documents from its collection that are likely to contain an answer. Choosing the most appropriate 

query terms are very essential to get the most relevant documents. This unit is not responsible for 

finding an actual answer to the question. However, the performance of this component is critical to 

the overall performance of the entire QA system. The collection of text and its format is also an 

important factor. The text collection could be a closed corpus with a limited amount of text or it can 

be a dynamic corpus which changes over time such as the Internet. A limited document set is much 

easier to handle as many things can be hard-coded to get a better performance. Bouma et al. [2006a] 

talk  about  Linguistically  Informed  Information  Retrieval.  Bouma  et  al.  [2006a]  perform a  full 

syntactic analysis of their text collection over different linguistic dimensions such as POS tags, NE 

tags and dependency relations. Using these linguistic features they index their data so as to improve 

the  performance  of  their  retrieval  task.  A more  detailed  description  of Linguistically  Informed 

Information Retrieval approaches can be found in the chapter 2.

In case the text collection is open and dynamic, the IR engine should be aware of that fact and index  

the new information in a timely fashion so that the new information is searchable. In such cases it is 

more likely that more relevant information can be obtained but this comes with some unavoidable 

and additional overheads. Documents over the Internet can be structured in many different ways 

and thus the system has to take care of such issues. And as these documents/text collection can 

change frequently, it is not possible to do some kind of preprocessing from earlier as suggested by 

Bouma et al. [2006a], instead everything needs to be done at runtime.  

The IR engine can retrieve documents with only one of the keywords being present in the document 

or it  can retrieve documents with all  of  the keywords being present  in each of the documents. 

ZPRISE10 IR is one such engine which does not retrieve documents having all the keywords. It uses 

a  cosine  vector  space  model  where  extraction  of  documents  is  based  on  a  similarity  measure 

between the document and the query. This allows extraction of documents when only one of the 

keywords  is  present.  Furthermore  all  retrieved  documents  may  not  need  to  contain  the  same 

10 ZPRISE is a public domain IR engine based on the NIST PRISE system that treats documents and queries as lists of 
words and responds to a query with a list of documents ranked in order of their statistical similarity to the query. 
[http://www-nlpir.nist.gov/works/papers/zp2/intro.html]
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keywords. Moldovan et al. [2000]'s LASSO system is based on the principle that documents are 

retrieved  only  when all  of  the keywords  are  present  in  the  document.  It  is  implemented  using 

Boolean  indexing11 as  they  claim that  Boolean  indexing increases  the  recall at  the  expense  of 

precision. 

This unit can be tailored further to behave like an intelligent IR engine that produces passages that 

may contain  an answer rather  than listing  an entire  document  that  may contain  the  answer.  In 

passage-based retrieval, documents are divided into several passages and the size of the passages 

could vary depending upon the implementation. Monz [2003] states passage-based retrieval proves 

to be very useful in the QA task as information sought in a QA system tend to be found in a 

sentence or two. Thus for a document D there would be several passages like P1, P2, P3 ... Pn. And 

for the query Q the relevant passage is P2. So instead of calculating some kind of similarity measure 

between  D and  Q, similarity measures between  Pi and  Q are checked for  i between  1  to n. The 

passage having a greater similarity value with the query is more likely to contain the answer or help 

in  generating  the  answer.  Moldovan et  al.  [2000]  uses  a  PARAGRAPH n operator  to  filter  out 

paragraphs. The PARAGRAPH n operator searches like an AND operator for the words in the query 

with the constraint that the words belong only to some  n consecutive paragraphs, where  n is a 

controllable positive integer. The parameter n selects the number of paragraphs, thus controlling the 

size of the text retrieved from a document considered relevant. 

Moldovan et  al.  [2000],  after  obtaining a  list  of  paragraphs in  the LASSO system, performs a 

paragraph ordering based on radix12 sort. It takes into account paragraph-windows13 based on three 

different scores that are 1) the largest Same_word_sequence-score, 2) the largest Distance-score and 

11 In Boolean indexing, documents are represented as words with their position information. Queries are expressions 
composed of words and connectives such as “and”, “or”, “not” and proximity operators such as “within k words of”. 
The answer to the query is the set of all the documents that satisfy a query. [Harabagiu et al. 1999]

12 Radix sort is a linear sorting algorithm that functions by sorting the input numbers/words by each digit/character for 
each digit/character in the number/word.

13 Paragraph-windows are determined by the need to consider separately each match of the same keyword in the same 
paragraph. For a set of keywords {k1, k2, k3, k4} suppose k1 and k2 are each matched twice in a paragraph, k3 is 
matched only once and k4 is not matched, then there will be 4 windows defined as [k1-match1, k2-match1, k3], [k1-
match2, k2-match1, k3], [k1-match1, k2-match2, k3], and [k1-match2, k2-match2, k3]. Each of these windows consist of 
all the text between the lowest positioned keyword in the window and the highest position keyword in the window. 
For each such windows 3 scores are calculated [Moldovan et al. 2000].

1. Same_word_sequence-score – which is the number of words from the question that are recognized in 
the same sequence in the current paragraph-window.

2. Distance-score – which is the number of words that separate the most distant key-words in the 
window.

3. Missing_keywords-score – which is the number of unmatched keywords.
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3) the smallest Missing_keyword-score. Finally, a radix sorting is done across all the window scores 

for all paragraphs.

1.1.3 Answer Processing

The  final  component  is  responsible  for  analyzing  the  documents  or  passages  returned  by  the 

previous unit and finally identify possibly a single answer (could be a ranked list of answers, too) 

to the question. The passages or documents retrieved are based on the query terms used in the first 

component (IR engine) and those query terms are identified while processing the question itself in 

the Question Processing stage. Moldovan et al. [2000] states that recognition of the answer type is 

crucial to the identification of the answer. Thus we have already noticed that during the Question 

Processing stage an expected answer type (EAT)  is also formulated by most of the systems. From 

Table 1 we have seen that each question is classified using possible question types. Those question 

types give a hint of the possible answer that is expected for that question.

e.g. What is the capital of Bangladesh?

The  above  question  can  be  classified  as  a  location  type  question  with  an  additional 

constraint/information that the location must be a capital. Thus let the question type for the above 

question be LOC-CAPITAL. Now if the system manages to identify a sentence like 

e.g. The capital of Bangladesh is Dhaka. 

having a term “Dhaka” labelled as LOC-CAPITAL and the sentence happens to contain the word 

“Bangladesh” then that sentence can be considered a strong candidate for an answer. So we notice 

that  identifying the question type directly or indirectly  helps in answer processing. The answer 

extraction and processing part can employ many creative ways to improve the overall performance. 

Jijkoun et al. [2007] implements 3 different approaches to answer extraction in their Quartz QA 

system. In the first approach a table look-up method is searched for answers. The table is built 

offline using predefined rules to extract specialized knowledge. The rules basically take advantage 

of EATs such as location, dates etc. that are easily identifiable to build the offline table. At runtime a  

match is looked for between the question and the entries in the table. Bouma et al. [2006a] also 

implement  such  a  table  look-up  method,  which  is  discussed  in  the  next  chapter.  The  second 

approach in Jijkoun et al. [2007] looks for answers by searching for the most frequent word n-grams 

in the list of passages retrieved from the document processing stage. The third approach is similar to  

the second approach but instead of searching for answers from the passages obtained from the 

corpus, it tries to retrieve answers from the text snippets returned by the online web search engine 
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Google14. Monz [2003] talks about syntactic structure matching, pattern matching, lexical chaining 

or linear proximity methods to find a possible link between the given question, the possible answer 

pattern and the retrieved passages from the previous components to identify the likely answer to the 

question. This unit is highly dependent on the creativity of the system designer to find the precise 

answer to the question. The document collection may have an exact answer to the question or might 

contain facts from which the exact answer is to be inferred. The performance of the overall system 

is also dependent on the fact that how closely the question is matched with a passage that may 

contain the answer and finally how that answer is extracted or generated. Bouma et al. [2006a] 

states different ranking methods to rank the answers when there is more than one answer. 

1.1.4 Additional Important Components

Here we introduce some special components that may work as add-ons to the skeleton architecture 

of a QA system. Not all these components need to be present in a basic QA system; however, 

several research works have shown how such add-ons influence in the overall performance of a QA 

task. This section give general detail of such add-ons. Their respective uses are discussed in detail 

in relevant sections of this thesis.

A parser is  a program which in its  simplest  form checks for the grammatical  consistency of a 

sentence and builds a hierarchical data structure by following a set of rules. In natural language 

processing, parsing is a method to perform some form of syntactic analysis of a sentence. The end 

result of parsing is one or more parse trees giving detailed structural information about the syntax of  

a sentence. This structural information comes in useful for many natural language processing tasks 

such as information extraction (IE), sentence generation and especially question answering. We will 

discuss here how and which parsing technologies are useful in a QA task.

A syntactic parser will produce a syntactic parse tree (Fig. 2) which gives information about the 

syntax of  a sentence.  The tree  structure will  help in  identifying the constituents,  such  as noun 

phrases  and verb  phrases,  but  does  not  give  further  internal  information  such as  dependencies 

between the tokens/constituents etc.

14 Google is a popular search engine owned by Google Inc.. It scans web pages to find instances of the keywords 
entered as query terms. 
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A dependency parser on the other hand produces a dependency tree (Fig. 3) which looks into the 

concept of a word-to-word link to identify any semantic relations between words. Thus whenever 

two words are connected by a dependency relation, one of them is the head playing the larger role 

in determining the behavior of the pair and the other is its dependent, which acts as a modifier, 

object or complement to the head. The dependent presupposes the presence of the head and the head  

requires the presence of the dependent too [Covington 2000]. 
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Fig 2: Syntactic parse tree (Constituency tree)  
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Fig 3: Dependency parse tree        [Covington 2000]



A dependency  parse  tree  may  not  preserve  the  word  ordering  of  sentences  but  gives  more 

information about which word is dependent on which one. A dependent that precedes its head is 

called a pre-dependent, and post-dependent follows the head. Additional structural information from 

the parse trees can be utilized in many ways within a QA task. A shallow parsing15 of the question 

can help in identifying a clause or a phrase and thus could ultimately help in choosing the query 

terms for the retrieval component. A dependency relation can further help in identifying the head 

and thus helping in matching a question with an answer. 

A POS tagger marks up the words in a sentence to a particular part-of-speech based on its definition 

as well as the context. This helps the parser to produce the structural information.

A Named Entity (NE) tagger is similar to a POS tagger but only identifies and tags some predefined 

categories such as names of persons, organizations, locations etc. An NE tagger is very important 

tool for a QA task. Sometimes some adjectives maybe part of a proper/common noun and thus if the 

adjective is considered literally then it might lead to something unexpected.

e.g. Which city is known as the Big Apple?

For the above question, though “big” itself is an adjective, in the example it is actually part of the 

named entity “Big Apple”. Thus the QA system needs a mechanism to tag “Big Apple” as a named 

entity and search for “Big Apple” as a single term rather than considering them as individual terms 

and omitting one or the other while formulating the query. Further, when an expected answer type 

(EAT) is formulated before an actual answer is obtained the EAT can point to a specific NE class 

making the answer extraction task easier.

e.g. Where is the river Nile?

For  this  question  a  possible  EAT is  a  location.  Thus  the  retrieved  passages/documents  should 

contain some entities marked as locations. 

A stemmer extracts the morphological root form of a word, e.g. “Dietary”, “dietician” are reduced 

to its root form “diet”. Stemming helps in formulating the query term for the document retrieval 

component. Monz [2003] states that some QA systems do not use stemming to avoid compromising 

15 Shallow parsing (chunking or light parsing) is an analysis of a sentence which identifies its constituents without 
giving much information about the sentence's internal structure.
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with early precision; however, some hybrid approaches consider both the root and actual one to 

improve the document similarity during the document retrieval task.  

A machine translation engine takes in a text in one language (source) and translates it to another 

language (target). There are mainly two different approaches to machine translation, 1) rule-based 

approach and 2) data-driven approach. In a rule-based approach the source language is analyzed 

thoroughly to identify some properties between the source and the target language. These properties 

when implemented as a set of rules help in translating the source language to the target language. 

The  identified rules  are  responsible  for  transferring the  grammatical  structure between the  two 

languages involved (source and target).  Various tools such as morphological  analyzers,  parsers, 

taggers etc. are used to generate these rules. These rules can be identified one at a time by human 

experts or they can be identified by some kind of machine learning model. The second approach to 

machine  translation is  the  data-driven approach,  which makes  use of  large monolingual  and/or 

parallel corpora16 to translate the source language to the target language. The pre-requisite for this 

approach is a decent sized corpora as a source of knowledge. A statistical approach can be utilized 

to build a model out of the corpora to help in the translation. 

A transliteration  engine  takes  in  letters  of  one  language  and maps  it  to  the  letters  of  another 

language.  It  attempts  to  produce  a one-to-one  correspondence  between the  languages  involved 

(source  and  target).  The  mapping  can  be  formulated  based  on  any  established  ease  of  use 

methodology or based on matching sounds (phonetic approach) between the languages involved. 

The phonetic approach is widely used. Transliteration is used in cases where the target language 

script is not available, instead the source language script is used to represent the target language. 

This work uses phonetic transliteration as an approach to translation for cross-language question  

answering task. 

1.1.5 General Evaluation Mechanism For QA Systems

From the previous sections it is evident that QA systems are not just made up of a single component 

but a series of components working together to achieve the final goal. Though the final goal of a 

QA system is to obtain a correct answer to the question asked, each of the individual components 

within the system has their own goals which eventually lead to the final goal. Thus the performance 

16 A parallel corpus involves more than one corpora in  different languages where each corpora is an exact translation 
of the others.
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of the individual components are likely to influence the entire QA task. Ferrandez et al. [2006] says 

the overall  accuracy of a  QA system is  directly  affected by its  ability  to  correctly  analyze the 

question it receives. Moldovan et al. [2000] states that question analysis phase is responsible for 

36.4% of the total number of errors in open-domain QA systems. QA systems may be evaluated in 

two different approaches. They are:

1. Black-box evaluation approach – Here the performance of the entire system is considered a 

whole without caring much about the performances of the individual components. Thus the 

final  answer  from the  system is  compared  with  the  question  asked to  evaluate  the  QA 

system. A correct answer is what is expected from a QA system but there could be more than  

one correct answer for a given question. Thus the QA system needs to find all the possible 

final answers. Then there could be situations where the system needs to infer an answer 

from related facts. Further, for questions requiring a descriptive type answer it is hard to tell 

which answer is the best choice. Thus automatic evaluation methods and measures are not 

very suitable at  all  times to check the performance of a QA system. TREC is  one such 

community involved in the research and evaluation of different tracks under the umbrella of 

information retrieval and extraction. TREC has some automated evaluation measures for QA 

systems but as TREC QA track is based on closed domains thus human judges play a major 

role in identifying the best answer for a question from the closed corpus and then allowing 

the researchers to compare their QA systems performance against those answers. Precision 

and Recall values are one way to evaluate QA systems performance and would fall under the 

black-box evaluation approach but the value itself might not make much sense in certain 

implementations. 

2. Glass-box evaluation approach – Here each of the individual components of the QA systems 

are evaluated with appropriate methods particular to that component. The goal is to have 

optimal performances for each individual component which will ultimately lead to a better 

overall  performance  of  the  QA  system.  Examining  and  evaluating  the  components 

individually helps in identifying errors and problems particular to that component. Thus they 

can be fixed otherwise an error in one component leading to a poor performance in that 

particular  component  will  be forwarded to  the next  component  and so even if  the next 

component was error-free due to some wrong input it might perform erratically and give bad 

results.  This  chain  could  follow resulting  into  an  overall  poor  performance  of  the  QA 

system. Thus glass-box evaluation approaches makes much sense to evaluate a QA system 

and fine tune individual areas. 
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Further details about these approach can be found with their  implementation details  at  relevant 

sections of this document.

1.2 Cross-Language QA System

In a cross-language QA (CL-QA) system, the question are asked in language A and the system will 

look for the answers from a document collection which is in language B. After the system finds a 

relevant answer in language B from the document collection, the system will  translate back that 

answer to language A (ideally) to finally present it to the user. In some implementations, the answer 

found in the intermediate language may not be translated back to the language in which the question  

was asked but rather left that way. The framework suggested in this work has a similar approach 

where the answer found in the intermediate language is not translated back to the language in which 

the question was asked and the reason behind such a stance is explained briefly in the next section 

as well as in further details in subsequent chapters. Thus the general architecture remains the same 

but with one or more additional translation components as shown in Fig 4. 

The translation component at the top takes in a question in language A and translates it to language 

B. The document collection is in language B. The actual QA system works only with one language 

that is language B. Once an answer (in language B) is found it is translated back to language A 

which is the actual output of the system. In the case of CL-QA system, the precision of the system 

depends on the correct  translation and analysis  of  the questions that  are  received as  input.  An 
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imperfect translation of the question causes a negative impact on the overall accuracy of the system. 

Currently, there are four approaches in CL-QA systems to solve the bilingual task in which the 

question and the documents are in different languages [Ferrandez et al . 2006]. They are:

1. Using an automatic Machine Translation System to translate the question and the 

answer

2. Translating terms using a bilingual dictionary

3. Ranking results from different MT systems and choosing the best one

4. Using a set of pre-processed transformation rules in order to improve the translation 

outputs.

Examples of each of the approaches with their associated implementations are discussed in the 

relevant sections of the document.

1.3 The Bangla Language

The language Bangla or Bengali17 is one of the Indo-Aryan18 languages of South Asia with over 200 

million  native  speakers.  Bangladesh with  a  population  of  about  150  million  is  the  largest 

concentration of Bangla native speakers. Bangla is also spoken in the western part of India. 

Bangla is written in the Brahmi-derived Bangla script19.  Bangla underwent a period of vigorous 

Sanskritization20 that  started  in  the  12th century  and  continued  throughout  the  middle  ages 

[UzZaman  2005].  The  Bangla lexicon  consists  of  tatsama (Sanskrit  words  that  have  changed 

pronunciation, but have retained the original spelling), tadbhava (Sanskrit words that have changed 

at least twice in the process of becoming Bangla), and a fairly large number of “loan-words” from 

Persian,  Arabic,  Portuguese,  English and  other  languages.  Also  a  large  number  of  words  are 

considered to be of unknown etymology. 

The Bangla script is a segmental writing system where the vowel graphemes21 are mostly attached 

17 Interchangeably used with Bangla. From this point onwards only Bangla is used to refer to the Bangla Language.
18 The Indo-Aryans are the ethno-linguistic descendants of the Indic branch of the Indo-Iranians. As of today, there are 

over one billion native speakers of Indo-Aryan languages, most of them native to South Asia.
19 The Brahmi script, which appeared in the 5th century, represents the earliest post-Indus corpus of texts and some of 

the earliest historical inscriptions found in India. It is one of the most important writing systems in the world by 
virtue of its time depth and influence and is the ancestor to hundreds of scripts found in South, Southeast and East 
Asia. http://www.ancientscripts.com/brahmi.html

20 A particular form of social change found in India.
21 A fundamental unit in a writing language.
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to  the  consonant  graphemes  as  an  ancillary  glyph22.  The  Bangla  script  has  a  finite  number  of 

graphemes divided into vowels, consonants (including consonant clusters23), modifier graphemes, 

digits and punctuation marks. In the script 11 of the graphemes are vowels and 39 are individual 

consonants. 

The Bangla script has an irregular phonetic nature, so apart from those 50 standalone graphemes, it 

can accommodate  a  large  set  of  consonant  clusters  which  ultimately  create  a  gap  between the 

phonetic  and  orthographic  rules  for  a  given  Bangla word  [UzZaman  et  al.  2006].  All  these 

contribute to the complexity of the  Bangla spelling rules with the Sanskritization process as the 

largest contributor [UzZaman 2005]. Despite all these complexities Bangla is the first language of 

choice for any sort of communication (written or spoken) among the native speakers. Numerous 

publications can be found in Bangla including text books, newspapers and official documents. The 

22 A glyph is an element of writing. A grapheme is made up of one or more glyphs.
23 In Bangla consonant clusters are called juktakkhors.
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use of Bangla was not very popular earlier in digital terms in the South Asian regions when personal 

computers  were  first  introduced.  The  reason behind  not  using  Bangla in  daily  computing  was 

because of the complexity in spelling rules. Earlier there were no standardized keyboard layout for 

Bangla and thus  proprietary fonts were only evolving with their own layouts. Each of such font 

developers mapped the Bangla letters to the English keyboard according to their wishes. This led to 

the problem of sharing a Bangla digital document more complex as both parties needed the same 

font installed to read a document. But, as time passed by,  Bangla was included in Unicode24 and 

further a standard keyboard layout was introduced to be followed for digital Bangla writings. With 

these introductions came  Bangla Unicode fonts which made things much easier.  Also localized 

versions of the popular softwares started to become available among computer users making Bangla 

the second language of choice in daily computing. Bangla fonts started to be available in handheld 

devices  and  mobile  phones  too.  But  the  script  having  those  50  standalone  graphemes  and 

furthermore clusters and a complex set of spelling rules fails to attract more users to type using the 

Bangla script. Unless a user is very familiar with the standard Bangla keyboard, the Bangla typing 

process ends up to be very time consuming and error prone. But these situations did not hold native 

users from using Bangla for digital communications. Rather transliterated Bangla turned out to be 

much more popular in unofficial communications. 

Transliteration is a way of mapping letters of one script to the letters of another script. Using a 

transliteration scheme, all those 50 standalone graphemes of the Bangla script can be mapped easily 

by the 26 letters of the Latin alphabet (English). Transliteration can be implemented by a letter to 

letter mapping  (one  to  many correspondence  possible  too)  between  the  English script  and  the 

Bangla script (both ways) and also based on the phonology of the letters of the target script. Users 

may key in their messages in Bangla using the English character set based on the original Bangla 

sounds. Such transliterated  Bangla is exchanged over unofficial emails and text messages mostly. 

With the popularity of the use of Bangla in a transliterated form led to many digital applications in 

Bangla to evolve over this concept. Rather than asking users to type in Bangla, many application 

interfaces ask the user to key in their Bangla text in a transliterated form and the application maps 

the transliterated Bangla to an equivalent Bangla text using the Bangla script. And as English script 

is more accessible digitally,  Bangla speakers tend to use such a transliteration scheme to express 

Bangla information more frequently. 

24 Unicode is a computing industry standard for the consistent representation and manipulation of text expressed in 
most of the world's writing systems. The latest version of Unicode consists of a repertoire of more that 100,000 
characters covering 90 scripts. http://en.wikipedia.org/wiki/Unicode
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Despite the wide usage and rich diversity of  the Bangla language, it lacks most of the language 

processing tools and resources specific to Bangla. The language is still in its infant stage as far as 

research in the area of computational linguistics is concerned. The  Bangla language lacks a basic 

general purpose corpus as well as any computational grammars to parse Bangla sentences. There is 

some ongoing research to build some language specific tools for  Bangla such as a news corpus 

[Arafat et  al. 2006, Pavel et al. 2006], POS Tagger [Hasan et al. 2006], Text to Speech system 

[Alam et  al.  2007],  Bangla OCR [Hasnat  et  al.  2007],  text  summarization  and  categorization, 

machine  translation  system  for  Bangla,  Bangla information  retrieval  systems  and  Head-driven 

phrase structure grammar for Bangla [Mahmud et al. 2007]. 

1.4 Aim Of This Thesis 

This thesis discusses some of the cross-language question answering systems that are available 

mainstream. It highlights most of the important design and implementation issues of such cross-

language question answering systems. Finally, with the gathered knowledge, a prototype framework 

is proposed for  Bangla.  Bangla has a huge speaker base but even then it lacks many of the basic 

computational resources and tools that are already available to other languages. The main research 

issue of this work was to explore the possibility of a QA system without  having access to the 

mainstream components that are common to regular QA systems.

While designing the prototype framework for a language with very limited computational resources,  

many workarounds and limitations had to be accommodated because of the obvious reason of lack 

of proper resources specific to the language involved. However, based on the knowledge gathered 

from other systems a very limited capability interface for a Bangla QA system is built. The system 

is in no way a complete QA system, however, it gives a basis to implement a complete QA system 

for  Bangla.  The  implementation  involves questions  from the medical  domain  only.  The  reason 

behind the choice of the domain is because the Bangla lexicon consists of a good number of loan-

words from other languages. These loan-words sound almost the same as it  would sound in its 

original language. And almost all the medical terms available in  English have been imported to 

Bangla. Though some terms do have a proper translated version in Bangla, but the loan versions are 

used widely in daily basis. In this work a translation based on transliteration and a table look-up 

method is proposed as an interface to the actual QA task. The implementation part of this thesis thus 

involves transliterating a  Bangla question as an equivalent Latin alphabet (English) version that 

could be used in an actual QA task.
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The proposed framework discusses in detail how such an interface can help in a cross-language QA 

task. As stated already, the aim of this thesis is to give a detailed information on QA systems and 

mostly cross-language QA systems with an introduction to a new concept of translation based on 

transliteration and a table look-up method as an interface to the actual QA task where a proper 

machine  translation  engine  is  unavailable.  Thus, the  work  mainly  explore  the  possibility  of  

translation based on transliteration and table look-up as an interface for a limited domain QA task.  

The performance of the proposed interface is evaluated and further details are given accordingly on 

how such an interface can help in developing a complete QA system for Bangla.

1.5 Chapter Summary

While this introductory chapter has presented some general details on Question Answering (QA) 

systems, the Bangla Language itself and the aim of this thesis, the following chapters will attempt to 

convey further details and approaches to the QA task. It will highlight the mainstream systems and 

concepts in details that are leading in the QA task and specially in cross-language QA task. This 

document further discusses the related works in Bangla language computing and how they have 

helped in bringing together the new idea of translation based on transliteration and table look-up 

as an interface for cross-language QA system. 

The next chapter  Literature Review highlights some of such recent important research related to 

cross-language QA systems and the hypothesis of this work.

The chapter Design and Experimental Framework discusses the proposal in further details with the 

design issues and arguments behind such approaches. 

The chapter  Analyses, Evaluation and Discussion discusses the overall system behavior after the 

prototype has been implemented. 

Finally,  the  last  chapter  Future  Work  and  Conclusion summarizes  what  we  have  learned  and 

achieved through this work.  It  also gives directions to improvements,  enhancements and future 

research.
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2 Literature Review

There is much ongoing researches on QA systems and mainly on cross-language QA systems. This 

chapter is a restricted literature review of some systems (covered topic by topic) that somehow 

directly or indirectly influences in the main aim and the design decisions of the project.

From Pasca [2003] we have already learned that QA systems are basically made up of 3 main units 

which are the:

1. Question Processing Unit

2. Document Processing Unit

3. Answer Processing Unit

All these units may be produced individually by different groups for completely different purposes 

and later modified and merged to form the actual QA system. Thus each of the units may not have 

similar  working  patterns  and  internal  design  but  still  could  achieve  the  final  goal  of  question 

answering. The units could only be dependent on the outputs of their preceding units in the system 

flowchart, however, to achieve an overall optimal performance the units should work as closely and 

similarly as possible. There are certain overlaps between the units and thus if the units are designed 

as closely as possible then apart from the outputs of the unit other intermediate workings of the unit 

could help their neighboring units eliminating some redundant tasks.

2.1 Question Processing

By now we have already learned that though QA systems are somewhat similar to IR systems, they 

have different emphasis. Laurent et al. [2006] states 3 key features that identify a QA or an IR 

system. They are 

1. The query mode is a natural language question for QA systems and keywords with some 

boolean operators for an IR system.

2. The output from the systems which can be an exact answer from the QA systems and a list 

of documents from the IR system.

3. The corpora which can be a closed and static set of documents or an open and dynamic 

document collection for any of the systems.
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The input to a QA system is thus always a complete question.  Bouma et al. [2006a] in their Joost 

system takes in a natural language question in  Dutch. [Bouma et al. 2008], [Bouma et al. 2007], 

[Bouma et al. 2006a], [Bouma et al. 2006b] are actually a series of papers on the same Joost system 

that were published over several  years highlighting the new things that have been added to the 

actual skeleton system. The system architecture of Joost is shown below.

Joost actually started as a monolingual QA system for  Dutch. Once the question is given to the 

system the question is then parsed for syntactic information by a parser called Alpino25 [Bouma et 

al. 2001].  Once the question is parsed by Alpino, the syntactic information is used to determine the 

subsequent  steps  of  the  entire  QA task.  The  actual  goal  of  this  question  processing  unit  is  to 

25 Alpino is a wide-coverage, linguistically-motivated grammar and parser for Dutch based on the HPSG formalism. It 
consists of 500+ grammar rules (defined using inheritance) and a large and detailed lexicon containing 100,000+ 
lexemes.  Certain heuristics are implemented to deal with unknown words and ungrammatical or out-of-coverage 
sentences. The grammar provides a 'deep' level of syntactic analysis, in which WH-movement, raising and control, 
and the Dutch verb cluster (which may give rise to 'crossing dependencies') are given a principled treatment. The 
output of the system is a dependency graph [Bouma et al. 2005].   

24

Fig 6: System architecture of Joost   [Bouma et al.  
2007]



determine the question type and identify the keywords in the question [Bouma et al. 2006a]. Thus, 

on the basis of the dependency relations returned by the parser the question class is determined 

[Bouma et al. 2006b].  Joost works on a lot of pre-processed knowledge.  This is a very common 

approach in QA systems where designers try to gather knowledge from the corpus beforehand to 

improve the actual QA task. Before actual questions are known, the text collection is exhaustively 

searched for potential answers to specific types of questions such as capital, abbreviation, dates etc. 

Such answers  are  extracted from the  corpus  off-line and stored  in  a  structured table  for  quick 

reference during the actual QA task [Bouma et al. 2005]. Such off-line methods have proven to be 

very effective in QA [Fleischman et al. 2003]. The Joost system works on the CLEF26 corpus. The 

entire CLEF data was thus parsed beforehand by the  Alpino parser.  Joost is able to determine 29 

different question classes. 18 of those classes were determined by the off-line method. On the basis 

of the dependency relations returned by the parser the question class is determined in  Joost. For 

each of the question class, one or more syntactic patterns were defined. Depending on the question 

classes, additional arguments can be identified. 

The  extract  above  (Fig  7)  is  a  dependency  parse  from  the  Alpino.  Here  it  is  seen  that  the 

dependency relations assigned to the question “What is the capital of Togo?” (Wat is de hoofdstad 

van Togo?) match with the pattern in the figure and thus instantiate  Country as “Togo”. So the 

question class Capital is also assigned with “Togo” as an additional argument. Similarly, “Who is 

the king of Jordan?” would be classified as  function(king,  Jordan) and  “In which year did the 

liberation war in Bangladesh take place?” would be classified as  date(liberation). Some question 

classes  require  access  to  lexical  semantic  knowledge  which  is  obtained  from  the  Dutch 

EuroWordNet like  “In  which  American  state  is  Iron  Mountain?” asks  for  a  location.  Thus the 

system should be aware that 'state' refers to a location too. Further, “Who is the advisor of Yasser 

Arafat?” should be classified as  function(advisor, Yasser Arafat), so the system should know that 

advisor is a type of function [Bouma et al. 2006b].  Once the question type is determined the next 

stage of the Joost system is determined. 

26 The Cross-Language Evaluation Forum (CLEF) promotes R&D in multilingual information access by (i) developing 
an  infrastructure  for  the  testing,  tuning  and  evaluation  of  information  retrieval  systems  operating  on  European 
languages in both mono-lingual and cross-language contexts, and (ii) creating test-suites of reusable data which can be 
employed by system developers for benchmarking purposes. http://www.clef-campaign.org/
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As Joost works with a closed set of text such as the CLEF dataset, pre-processing is possible. But 

for systems working on open data set such pre-processing might not be possible at all.  

Zhang [2004] is one such system where the questions are answered not from a saved collection of 

text but from the Internet in real-time. The system is called LAMP27 which is based on the claim 

that the Internet is an ideal source of answers to a large variety of questions due to the fact that 

tremendous amount of information is available online these days. The system as others take in a 

natural language question, transforms it to an appropriate query and submits the formulated query to  

the  popular  search  engine  Google.  The  system is  based  on  factoid  questions  only.  It  uses  the 

Support Vector Machine (SVM) to classify the question given to the LAMP system. The system 

follows  a  two-layered  question  taxonomy having  6  coarse  grained  categories  and  also  50  fine 

grained categories [Li et al. 2002] like Table 4.

The system assumes that questions are classified to a single category regardless of their ambiguity. 

They  tried  several  other  machine  learning  algorithms  apart  from  SVM  such  as  the  Nearest 

Neighbors (NN), Naive Bayes (NB), Decision Tree (DT), and Sparse Network of Winnows (SnoW) 

to classify the questions to any one of those categories. They used two surface text features bag-of-

words  and bag-of-n-grams (all  continuous word sequences  in  the  question)  in  their  SVM. The 

results show that SVM with the bag-of-n-grams feature had the most accuracy among all the other 

learning algorithms. Once it classifies the question it moves to formulate a query to be used. The 

process is discussed in the next section.

27 Learning and Answering Program (LAMP)

26

Table 4: The coarse and fine grained question categories [Zhang et al. 2003]



2.2 Document Processing

Once the question has been processed, the document processing unit becomes responsible to find 

relevant documents or passages related to the question given to the system at the beginning.  The 

document  processing  unit  is  mostly  a  retrieval  engine  that  takes  in  keywords  and  gives  back 

passages or documents relevant to the keywords.  

In  Joost the question type determines the two possible ways of document processing. The  Joost 

system has an off-line method called the  Qatar component. This  Qatar component answers those 

questions that match with one of the table categories. These tables are created off-line for facts that 

frequently occur in fixed patterns. These facts are stored, together with the IDs of the paragraphs in 

which they were found, as potential answers. 

For those questions that cannot be answered by the Qatar component, a traditional keyword-based 

information retrieval is used to narrow down the search space for the linguistically informed part of 

the QA system which identifies the answer [Bouma et al. 2006b]. Agichtein et al. [2001] states that 

using search engine specific queries instead of the raw question might significantly improve the 

effect  of  question answering.  Thus keywords  are  identified from the question using its  content 

words.  Irrelevant  and  function  words  are  eliminated  using  a  static  stop-word  list.  The  authors 

experimented with  many publicly  available  IR engines  and finally  chose  Zattair [Bouma et  al. 

2006b] as their IR engine because of the speed and recall performances. Using the keywords from 

the question, the IR system retrieves relevant passages from the corpus. The authors found through 

experimentation that segmentation of the documents into paragraphs is the most efficient for IR 

performance in a QA task [Bouma et  al.  2006b].  They used existing markups in the corpus to 

determine the paragraph boundaries. Named entities found by Alpino were used as additional token 

to identify a paragraph and making the overall IR task easier. 

In Zhang [2004] two ways are used to formulate the query. 

• Interrogative Word Deletion: As question elements like “who”, “what”, “when” are usually 

not  found in the answer thus  they are  dropped which increases  the recall  of  the search 

without  affecting  precision.  Regular  expressions  are  used  in  the  LAMP  system  to 

automatically remove such words.
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• Verb Form Conversion:  For instances like “When did Obama visit Afghanistan?” it is more 

likely that texts would be found as “... Obama visited Afghanistan ...” rather than as “... did 

Obama visit Afghanistan ...”. Thus LAMP converts the main verb from its original form to 

the third person singular form. The MEI28 parser is  used to locate  the main verb in the 

question and PC-KIMMO29 is used to find the different verb forms.

Once the query is formulated it is submitted to the search engine Google to obtain the answer. The 

top 100 search results  are  considered in the system to find the answer to the natural  language 

question. In Google or any other Internet search engines, a search result is usually an URL30, a title 

and  some  further  string-segments  of  the  related  web  document.  Usually  the  title  and  the  text 

segments are called “snippets”.  The LAMP system uses only those snippets of text to find the 

answer which is described in the next section.

2.3 Answer Processing

At this stage any QA system would have some text snippets, passages or complete documents as 

candidates from where the actual answer is to be obtained. Systems may just present an exact text 

extract from a candidate as an answer or they may generate a proper answer from those candidate 

text segments. Some may give possibly a ranked list of answer candidates and leave it up to the user 

to  make a  pick or  in  ideal  situations it  would give  a  single  well-formed correct  answer to  the 

question asked.

In the answer processing stage of Joost it has this far obtained a set of paragraph IDs either provided 

by Qatar or the IR system that was used. For questions that are answered by means of table look-up, 

the relation table provides an exact answer string. For other questions,  answer strings are to be 

extracted from the set of paragraphs returned by the passage retrieval component. The paragraph 

IDs are used to retrieve the dependency relations of the sentences in those paragraphs. Bouma et al. 

[2006b] states that various syntactic patterns are defined to find the exact answer. For questions 

asking for a named entity the component should find a constituent headed by a word with the 

appropriate named entity. The authors claim that as all these occur frequently in the corpus, so more 

than one potential answer is identified from the text collection. Thus comes the need of ranking the 

potential answers. The authors also used the following features to determine a score for the answers:

28 A Maximum-Entropy-Inspired (MEI) Parser by Eugene Charniak
29 PC-KIMMO is a two-level processor for morphological analysis. It is designed to generate and/or recognize words 

using a two-level model of word structure in which a word is represented as a correspondence between its lexical  
level form and its surface level form. Available at http://www.sil.org/pckimmo/about_pc-kimmo.html

30 Uniform Resource Locator (URL)
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• Syntactic similarity – the proportion of dependency relation matching with the question and 

the possible answers.

• Answer Context – a score is given for the syntactic context of the paragraph containing an 

answer.

• Names – the proportion of named entities found in the answer string.

• Frequency – the frequency of the answer in all the paragraphs returned by the IR engine.

• IR – the score assigned to the paragraph from which the answer was extracted.

Earlier the authors did not consider ranking the answers for table look-up method but later they 

implemented the entire ranking features to determine a score for all the possible answers.

Zhang [2004] is based on real-time data as whatever the search engine returns is new for the system. 

It uses a HMM-based named entity recognizer and some other heuristics to extract information from 

the snippets which would be the possible answer candidates. For the question “Who was the first 

American in space?” Google returns the following result.

Thus the snippets extracted from Google after eliminating the other markups and URLs end up to 

be like the following.
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Zhang [2004] describes a snippet as S containing a plausible answer A. Using bag-of-words feature 

vector s=(s1,s2, ... sn), where n is the number of all words and si is the occurring frequency of the i-

th word in snippet S. The question Q is also represented as a vector where q=(q1,q2, ... qn). Each of 

the snippet S in the search result is assessed individually by the similarity between S and Q and the 

plausible answers contained in the top few snippets are selected. Zhang [2004] proposes an answer 

selection method based on aggregation. Thus for each plausible answer A the system aggregates all 

the snippets containing A into a cluster CA. Also the snippet clusters of different answers referring to 

the same entity are merged into a single cluster as can been seen in the following example where 

“Sally Kristen Ride” and “Sally Ride” are merged to a single cluster as they are two variants of the 

same person name. 

The snippet cluster  CA of a plausible answer  A summarizes  A's occurring context. It can also be 
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Fig 9: The snippets from Google   [Zhang 2004]

Fig 10: The snippet clusters constructed from the  
example  [Zhang 2004]



represented as a vector a=(a1,a2, ... an) where n is the number of all words and ai  is the occurring 

frequency of the i-th word in CA which is equivalent to a=ΣAεSksk. A score function is used to rank 

the plausible answers which is,

where  q is the feature vector of the question  Q,  a is the feature vector of  CA and  Q is the angle 

between them. The function incorporates both similarity and redundancy information for answer 

selection and the value of score(Q,A) is the length of the “projection” of a on q. All the plausible 

answers are ranked and the top ones are returned as an output from LAMP.

2.4 Evaluation Methods of QA systems

Laurent et al. [2006] talks about evaluation methods to compare performances and user-friendliness 

of both QA systems and Information Retrieval (IR) systems. They apply their methods of evaluation 

to  Qristal (a  French acronym meaning “Question  Answering  System using  NLP”)  and  Google 

Desktop Search engine. Qristal is based on the Cordial syntactic analyzer31 and makes heavy use of 

all the usual constituents of natural language processing and sometimes manages to cover anaphora 

resolution and metaphor detection [Amaral et  al. 2004]. The system evolved from a single-user 

program to a multi-lingual multi-user system [Laurent et al. 2006]. The latest marketed version of 

Qristal was evaluated in CLEF2005 and it ranked first in the evaluation for French as well as for all 

cross-language systems considering all the pairs [Laurent et al. 2005].

31 Cordial Analyser – Performs a morphological, syntactic and grammatical analysis of French texts. 
http://www.synapse-fr.com/Cordial_Analyseur/Presention_Cordial_Analyseur.htm
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Fig 11: The LAMP system    [Zhang 2004]
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Laurent et al. [2006] evaluated the two systems on 3 different “user effort” criteria. They are:

1. the time needed to key in the question

2. the delay before the results are displayed

3. the reading time of the snippets or sentences to reach a correct answer.

The authors concluded that though IR systems have advantages in some “user effort” situations 

such as keying in the question, it is the the QA system that has an overall better performance over 

both the systems. 

In the basic Joost system that the authors implemented, they claim that the scores were satisfactory 

for factoid and definition type questions. An extract of the scores are shown in Table 5.

Bouma et al. [2005] found that out of the 140 factoid questions they had, 46 were assigned a type 

corresponding to a relation table. For 35 of those 46, an answer was located in one of the relation 

tables. The remaining 11 went through the IR component which was the fall-back strategy for the 

Qatar component.  Parsing errors were the main cause of some wrong and incomplete  answers. 

Bouma et al. [2006b] concluded from their implementation that the dependency parsing of both 

questions and the full document collection turns out to be very useful for developing an adequate 

QA system. 

Zhang [2004] ran several experiments using the test questions and the answer patterns of the dataset 

from TREC-QA. They found that  most  of  the  TREC-QA questions  can be  answered from the 

snippets obtained from Google's top 100 search results. 
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Zhang [2004] claim that the abundance and the variation of texts on the Internet allows the system 

to find correct answers with high probability, because the factual knowledge is usually replicated 

across the Internet in different expressing manners. The “Mean Reciprocal Rank (MRR)” and the 

“Confidence Weighted Score (CWS)” were used to rank their answers. 

For calculating MRR, n is the number of test questions and ri is the rank of the first correct answer 

for the i-th test question. 

For calculating CWS, n is the number of the test questions and pi is the precision of the answers at 

positions from 1 to i in the ordered list. The performance of the LAMP system on TREC11 dataset 

is shown in Table 7.

The Mean Reciprocal Rank (MRR) score of LAMP was not close to the best QA systems in TREC 

and the author claims that this was due to the fact that the answer patterns (regular expressions) 

provided by TREC were very limited as many correct answers were judged wrong since they do not 

occur in the TREC specified document collection. Another factor they noticed was questions related 

to a period of time such as “Who is the U.S. president?” would be changing over time and can be 
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noticed over the Internet, however, in a closed document set the fact might not change at all over 

time.  So,  Zhang [2004] state that  the text  found over  the Internet  are  messier  than any closed 

document set such as the TREC document collection. Overall the LAMP system performed well on 

PERSON, LOCATION and DATE related questions. Zhang [2004] concludes by saying that a high 

performance QA based on Web search results is feasible.

2.5 Cross-Language/Multilingual QA systems

Multilingual support is a crucial aspect when the language of the search and the language of the text 

collection are different [Magnini et al. 2001]. Most QA systems work with a single language as it is 

much easier to implement. However, multilingual or cross-language QA systems can be useful in 

many scenarios.  One such case would be where one of the language of interest  does not have 

enough digital  resources  of  its  own to produce  an answer to  a question.  In  such scenarios the 

question could be given in language A, the question would be translated to language B as language 

B has more digital resources and finally the results obtained using language B would be translated 

back to language A. In some cases the answer obtained in language B may not be translated back to 

language A as will be the case of this prototype system proposed in this work. The actual scenario 

and the arguments behind the approach are discussed ahead. There are four different approaches to 

solve the bilingual task [Ferrandez et al. 2006] in any multilingual scenario. They are:

• Using a fully automated Machine Translation (MT) system to translate the question into the 

language in which the text collection is.

• Using a bilingual dictionary to translate word by word.

• Having a hybrid of automatic MT systems to translate questions/answers.

• Using a set of pre-processed transformation rules to translate questions or help in correcting 

translations of automated MT systems.  

For the Joost system multilingual support was implemented too using an automatic MT system. The 

system took an  English question,  translated  it  into  Dutch using  the  freely  available  translation 

engine Systran. There were some obvious drawbacks of using machine translation such as 

• translations often resulted in grammatically incorrect sentences

• even if a translation could be analyzed syntactically, it contained words or phrases that were 

not anticipated by the question analysis module

• named entities and multiword terms were not identified or wrongly translated
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Bouma et al. [2007] says that automatically generated translations are usually of poor grammatical 

quality.  As  their  Joost system  is  based  on  parsing  the  question  they  found  that  due  to  poor 

grammatical  form of  the  translated  question  there  were  unexpected  parse  results  and  thus  the 

question classification is done incorrectly. To avoid such a situation they used an English question 

classifier based on the question classes of Li et al. [2002], the same classes used in LAMP by Zhang 

[2004]. For the monolingual part  Joost only used the 40 question classes that they obtained from 

their  Dutch dataset. They constructed a mapping from the question types used for  English to the 

question types used in Joost. Both the mapped English question type and the Joost type assigned to 

the translations are used to find an answer to the question. Some mismatches were noticed in the 

mapping process as Bouma et al. [2007] claims that Joost expects a more fine-grained class than the 

class produced using Li et al. [2002]. For instance “What is the capital of Bangladesh?” would be 

classified as  loc:city using Li  et  al.  [2002] but as  Joost has the class  capital,  it  would thus be 

classified as capital. Bouma et al. [2007] further says that question classes assigned by Joost are not 

just labels but also includes some phrases from the question that eventually helps in answering the 

question. For instance a question like “What does UNICEF stand for?” would be assigned the label 

abbreviation(UNICEF) by Joost unlike other systems that classify the question as abbr:exp. In most 

cases the question classes assigned by Joost ended up to be more helpful than the classes assigned 

after mapping the  English question class. However, exceptions were noticed for questions where 

Joost couldn't assign a class due to bad parsing because of grammatically incorrect translation. In 

such cases the use of mapped question class was more preferable over using no class at all. Later 

the authors used Wikipedia to improve the performance of their system. Wikipedia has a complex 

structure to hold the information. Here the authors removed some irrelevant materials from the 

original XML version of the  Dutch Wikipedia and finally used a highly simplified XML version 

that contained only the information that were enough to identify the segmentation of the text into 

titles, sections and lists [Bouma et al. 2007]. Further as  Wikipedia keeps on expanding and new 

things come into being, the authors started using the templates to identify the basic information for 

a given entity using the list of attribute-value pairs [Bouma et al. 2006a]. They used XQuery to 

extract all the attribute-value pairs from all the templates present in the Dutch Wikipedia. About 1.3 

million tuples of the form <object, attribute, value, template_name> were found i.e.  <AFC Ajax,  

stadion, Amsterdam, ArenA, Voetbal_club_infobox>. The authors claim that the information in the 

template tuples were potentially very useful for the QA task. 

Further  the authors considered expanding the query for a  better  IR performance.  They tried to 
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extract and add various lexico-semantic information to the query such as:

• nearest neighbors from proximity-based distributional similarity

• nearest neighbors from syntax-based distributional similarity

• nearest neighbors from alignment-based distributional similarity

Bouma et al. [2007] concludes by claiming that the inclusion of Wikipedia made the QA task more 

realistic and attractive. They are considering on using the structure of  Wikipedia more seriously 

which would enable answer extraction that combines NLP with XML-based extraction. 

2.5.1 Components That Are Used To Give Multilingual support

To implement full or partial cross-language or multilingual support to any systems including QA 

many  approaches  could  be  undertaken.  An  automatic  machine  translation  engine  between  the 

languages involved would be an ideal choice for that. A simple dictionary lookup method can also 

be employed to translate texts between languages. Other heuristics could be used too such as Jiang 

et  al.  [2007]  suggest  a  transliteration  approach with  web mining  to  improve  the  named entity 

translation. Such an approach could be very useful in QA systems as most questions include some 

form of named entities within them. Jiang et al. [2007] suggest a 3-level transliteration model, 1) 

English surface string to  Chinese Pinyin32 string,  2)  Chinese Pinyin string to  Chinese character 

string and 3)  Chinese character language model. For a given English named entity, denoted as  E, 

Jiang et al. [2007] syllabify it into a syllable sequence SE = {e1, e2 ... en} with some linguistic rules 

stated in the paper. For example, “Clinton” is split into “C / lin / ton”. Then a generative model is 

used to transliterate the syllabified English name into Chinese character string based on Knight et 

al. [1998]'s Machine Transliteration System. For the generated “syllable” sequence SE = {e1, e2 ...  

en} a  Chinese character sequence  C = {c1, c2 ... cm} is looked for with the criteria  C* = argmax 

p(SE|PC) p(PC|C) p(C) where  PC is a  Chinese Pinyin sequence,  p(SE|PC) is the probability of 

translating  PC into  SE,  p(PC|C) is  the  probability  of  translating  C into  PC and  p(C) is  the 

generative probability of a character-based  Chinese language model. The transliteration model is 

evaluated  by  the  Edit  Distance measure  between  the  character  sequence  of  the  “correct” 

transliteration  and the  character  sequence  output  by the  system.  [Jiang  et  al.  2007]  claims the 

addition of a transliteration model in NE translation improved the precision and recall of the NE 

translation by a large margin. In their sample of 50 NEs, 48% were correctly translated.

32 Pinyin is the most commonly used romanization system for Standard Mandarin. http://en.wikipedia.org/wiki/Pinyin
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Finch et al. [2008] presents a technique for transliteration based directly on techniques developed 

for  phrase-based  statistical  machine  translation.  They  obtained  correct  or  phonetically  correct 

results 80% of the time where the focus was to use transliteration to translate unknown words in a 

speech-to-speech machine translation system.

UzZaman et al. [2006] propose a comprehensive English to Bangla transliteration scheme to handle 

the full complexity of the  Bangla Script. A phonetic encoding scheme is proposed to produce an 

intermediate code-string that facilitates matching pronunciations of input strings and the desired 

outputs. The proposed system has two approaches, a direct phonetic mapping and a lexicon enabled 

mapping.

All these transliteration approaches can be used in cross-language QA system scenarios. This thesis 

work proposes such a  transliteration based approach to translation along with a table look-up 

method as an interface in a cross-language QA system scenario. The language under consideration 

in this thesis work is Bangla. Thus some Bangla machine translation related literature are discussed 

too.

In Dasgupta et  al.  [2004],  a 5-stage transfer  based architecture is  proposed to  obtain a  Bangla 

syntactic tree from an  English syntactic tree with an optimal time complexity for an  English to 

Bangla machine translation system. 
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The  5  stages  are  1)  Tagging,  2)  Parsing,  3)  Changing  the  CNF33 parses  to  normal  ones,  4) 

Transferring English trees to equivalent Bangla trees and 5) Generating morphological analysis. The 

authors used the CYK34 algorithm and claimed that the parsing steps were minimized to polynomial 

order from exponential order. The CNF parses were converted to a normal parse tree using some 

transformation rules and finally the transformed parses were converted to Bangla parse trees using a 

bilingual dictionary.

Hossain [2008] developed an open-source  English to  Bangla machine translation system called 

Anubadok35. It is written in Perl and uses the Penn Treebank annotation system for natural language 

processing. It uses four major steps in translating from  English to  Bangla: 1) Pre-processing of 

English documents, 2) POS tagging of documents from step 1, 3) English to Bangla translation of 

POS-tagged documents and 4) Post-processing of translated documents. The POS tagged  English 

words are translated using a bilingual dictionary and then the translated words are organized in the 

usual  Bangla syntactic  order  (SOV36)  to  produce  the  final  translation.  The  system  writes  out 

translated documents as Unicode encoded Bangla texts.

2.5.2 Finite State Methods

Apart from automatic machine translation engines many other approaches could be used to obtain a 

translation. These approaches could be used alongside the automatic machine translation engines to 

improve their performance or they could be used completely on their own to translate text between 

languages. Though an automatic machine translation engine is more preferable to translate texts 

between languages,  however,  for some language pairs  an automatic  machine translation engine 

might not be available.  Bangla is such a language which has limitations in its digital  language 

processing tools. A complete  Bangla to English machine translation system is yet to be available 

though there are some ongoing initiatives. This thesis work deals with the language  Bangla and 

proposes  an  approach  to  translation  based  on  transliteration in  a  cross-language  QA system 

scenario.  The  translation  based  on  transliteration  is  achieved  using  the  popular  finite  state 

technology.  Thus  some  important  and  related  literature  regarding  finite  state  methods  and 

technologies are highlighted here.     

33 Chomsky Normal Form
34 Cocke-Younger-Kasami
35 Anubadok is a Bangla word which literally means the one who translates.
36 Subject-Object-Verb. Though Bangla has a relatively free word-order SOV is the most common form.
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An automaton,  a  mechanistic  device,  can be designed to  embed certain  properties of  a  formal 

language. A formal language is a set of strings made by concatenating together symbols taken from 

a finite vocabulary. The language may comprise a finite or an infinite number of sentences. For a 

finite number a complete list of the sentences can be written down. But if the language generates 

infinite number of sentences then it is not possible to list all the possible sentences, however, a 

grammar can be defined which can characterize the sentences in some form of recursive or iterative 

manner. Such grammatical rules can be applied to either produce further sentences or to recognize 

certain sentences. Regular expressions are the most handy way to express such regular languages. 

Regular expression is basically a formula that embeds the rules in which the symbols can be used 

within a string. Regular expressions can be easily converted to a particular kind of automaton called 

the finite-state machine which can be used to generate or check for the consistency of an input 

string based on the actual grammatical rules formulated earlier. A finite-state machine consists of a 

finite number of states and a function that determines transitions from one state to the others. The 

machine somewhat  represents the process of reading a sequential  tape.  The machine starts at  a 

distinguished initial state with the tape positioned at the first symbol of a particular string. The 

machine transitions from state to state as it keeps reading the tape and eventually exhausting the 

input tape. At the end of the tape if the machine is found to be in one of the states designated as the 

final state then the machine has accepted the string read from the tape otherwise not. A finite state 

machine is represented as a state-transition diagram where circles are the different states and arcs 

between the circles are the transitions. The start state consists of an arrow pointed towards the state 

and the final states are enclosed with double circles (Fig 13). 

Transducers are a special type of automata which ultimately generates an output string. Each of the 

transitions in the automata are labeled with two symbols. One of the symbol represents input and 

the other represents the corresponding output. The transducer translates the input string to an output 

string (Fig 14).
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Though the syntax of a natural language cannot be completely described using finite-state machines 

and  regular  expressions,  however,  the  mathematical  and  computational  simplicity  of  regular 

expressions and finite-state machines can be used in different contexts to describe certain properties 

of a natural language in a simple manner. Regular expressions have a clean, declarative semantics 

but at the same time they constitute a high-level programming language for manipulating strings, 

languages and relations [Kartunnen 2000]. For this reason they have turned out to be very useful for 

linguistic applications. Descriptions consisting of regular expressions can be efficiently compiled 

into  finite-state  machines  which  can  eventually  be  determinized,  minimized,  sequentialized, 

compressed and optimized to reduce use of computational resources as well as time.

2.5.3 Popular Finite State Manipulation Tools

This project makes use of finite-state machines specially transducers to the fullest to achieve its 

primary goal of translation based on transliteration. The actual design of the finite-state transducer 

is  described  in  the  next  chapter.  Here  all  the  popular  tools  to  handle finite-state  machines  are 

described. 

The Finite State Compiler (FSC) is an interactive interface for finite state calculus developed by 

[Tapanainen 1995]. Apart from converting simpler regular expressions into finite state automata it is 

also able to handle extended regular expressions, allows sophisticated features like lexical lookup 

and analysis, parsing, writing scripts etc. It can further handle alternative regular expressions for 

writing idioms. FSC was built primarily to handle multiword expressions (MWE) which could take 

different forms while it  is being identified from within a text.  Those multiword expressions are 

encoded as regular expressions according to a developed notation. Each idiom is compiled into a 

finite-state  network  [Segond  et  al.  1995].  Whenever  an  idiom is  matched  their  corresponding 

meanings can be obtained from the transducer.  

Xerox Finite-State Tool (XFST) [Beesley et al. 2003] is a utility tool to handle finite-state networks. 
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It is developed by the Xerox Corporation37. Simple automata and transducers can be easily created 

using XFST. It is a successor of two similar earlier implementations IFSM and FSC. XFST is able 

to read finite-state networks from binary files, regular expressions and other networks by a variety 

of operations. It uses virtual networks to avoid excess computation which is a primary drawback in 

traditional finite-state operations which produce huge networks. Users apply a network to determine 

whether the string is accepted by the network or transform it to another string if the network is built 

as a transducer. The tool allows different ways to get information about the virtual network and 

finally to inspect and make modifications in that virtual structure. 

FSA  Utilities  toolbox  [Van  Noord  1997]  is  a  collection  of  utilities  to  manipulate  regular 

expressions, finite-state automata and finite-state transducers. Using the toolbox it is possible to 

construct  automata  from  regular  expressions,  performing  minimization,  composition, 

complementation, intersection, Kleene closure, determinization (both for finite-state acceptors and 

finite-state transducers) etc. The toolbox is available under the GNU General Public  license and 

allows  various  visualization  tools  to  browse  finite-state  automata.  FSA supports  four  types  of 

automata:

• recognizers

• weighted recognizers

• transducers

• weighted transducers

It  can  also  handle  macros  and  other  user-defined  regular  expression  operators.  One  further 

advantage with FSA toolbox is that it can produce C and Prolog code of a finite-state automata or 

finite-state transducer to be used in other implementations.

Except for FSA toolbox all the other tools named above are proprietary and not freely available.

2.6 Summary And Proposal

All the researches highlighted this far implement many different technologies related to QA systems 

and specifically Cross-Language QA (CLQA) systems. None of the systems mentioned this far can 

be considered a complete solution to Question Answering; however, each one of them has addressed 

37 http://www.xerox.com/  
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some particular issues in QA that make them perform better in particular situations. Compared to 

IR, QA systems are still in the early stages of research and thus only a handful of QA systems have 

emerged this far. The already available QA systems are maturing day by day and implementing 

more features to address a wider variety of issues in question answering. Most of the QA systems 

available these days are usually for languages with a large amount of digital resources and having a 

good number of matured language processing tools. Thus with the availability of such language 

processing tools and resources, the process of building a QA system becomes much easier as a QA 

system  is  made  up  of  several  components  utilizing such  varied  tools  and  resources.  But  for 

languages with limited digital resources and processing tools the entire process of designing and 

implementing  an  all  purpose  Question  Answering  system turns  out  to  be  very  difficult.  Some 

assumptions and considerations have to be made in an attempt to design just a basic QA system for 

languages with limited resources. 

Bangla, though being being one of the top 10 most widely spoken languages with over 200 million 

speaker, is one such language with very limited digital resources and language processing tools. The 

language is still  in its infant  stage as far  as research in the area of computational linguistics is 

concerned. The language lacks the very essential general purpose corpus to be used for different 

Bangla language  processing  tasks.  There  are  some ongoing initiatives  to  build  a  large  general 

purpose  corpus  and already a  97  million  word electronic  corpus  of  South Asian  Languages  is 

available from the EMILLE38 project which includes Bangla. Further there is also a News corpus of 

Bangla developed  from  the  articles  of  the  online  version  of  a  popular  Bangla newspaper  of 

Bangladesh.  Also there are ongoing researches on many different language processing tools for 

Bangla; however, no notable research on  Bangla Question Answering systems can be found till 

date. 

Building a complete open-domain QA system for Bangla is not yet feasible as there are not many 

digital texts available in Bangla on varied topics. Large collection of Bangla texts are available in 

non-digital format but that doesn't help much in a digital QA system. At this point a cross-language 

QA system can be very effective for  the Bangla language. There are significant amount of digital 

texts available in other languages, specially in English on varied topics which can be used to answer 

Bangla questions. A system can be designed to take a  Bangla question, look for the answer in an 

English text collection and later the answer can be translated back to Bangla to present to the user. 

38 Enabling Minority Language Engineering (EMILLE). Available at http://www.emille.lancs.ac.uk/
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The proposal sounds reasonable but as the language Bangla lacks many language processing tools, 

the  proposal  comes  with  a  bottleneck  of  translating  the  text  between  Bangla  and  any  other  

languages. Bangla is yet to have a complete machine translation system. From earlier texts we have 

learned that there has been some work on Bangla MT systems but none of them are complete on its 

own to be used as a component to aid in cross-language QA systems. 

This thesis has studied and reviewed many of the challenges to be met in building mono-lingual as 

well as multi-lingual QA systems. With the knowledge gathered from reviewing those available 

systems an attempt is taken to design a small scale QA system for  Bangla which depends upon 

English text and is limited to a particular domain. As already mentioned, Bangla lacks many forms 

of digital  resources,  and thus a  complete general  purpose QA system for  Bangla would not  be 

possible unless many other tools and resources become available.  And it is definitely beyond the 

scope of this dissertation to present an all-purpose Bangla QA system. However, a prototype Bangla 

QA system is designed and partially implemented, based on the Joost and LAMP systems discussed 

earlier. The proposed system uses a type of transformation rules, one of the four types of approach 

to translation, to partially translate Bangla questions to its equivalent English and then searches over  

the Internet to look for potential answers. The partial translations  are achieved using transliteration 

based on finite state technology. The concept of transliteration in QA systems is relatively under-

explored, let alone translation based on transliteration. Along with the transliteration module a table 

look-up approach is  also employed to  obtain  an English  question from a transliterated  Bangla 

version. The next chapter discusses in detail the design of such a cross-language QA system which 

takes ideas from already existing QA systems and uses some Bangla language specific phenomenon 

to solve a very limited scale Bangla QA task. 
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3 Design Of The Experimental Framework

The  previous  chapters  have  given  a  detailed  overview of  the  technologies  related  to  Question 

Answering (QA) systems as well as Cross-Language question answering (CLQA) systems. This 

chapter introduces a framework for such a cross-language QA system where one of the languages 

involved has limited digital resources. The proposed design uses concepts from existing state-of-

the-art systems but, due to limited language resources and overall time allocated for the project, a 

limited scenario of the question answering task is addressed. 

3.1 Background

Transliteration  is  a  way  of  mapping  letters  of  one  script  to  letters  of  another  script.  Using  a 

transliteration scheme all the 50 standalone graphemes of the Bangla script can be mapped easily by 

the 26 letters of the Latin alphabet (English). It can be implemented by a direct  letter to letter 

mapping (one to many correspondence too) between the English script and the Bangla script (both 

ways) and also  based on the phonology of  the letters of  the  target  script.  The  second form of 

transliteration (transliteration based on the phonology of the letters) is easier to formulate and thus 

is more popular. Users key in their messages in Bangla using the English character set based on the 

original  Bangla sounds. Such transliterated  Bangla is exchanged over unofficial  emails and text 

messages mostly. The popularity of the use of  Bangla in a transliterated form led to many digital 

applications in Bangla to evolve over this concept. Many application interfaces ask the user to type 

in their Bangla text in a transliterated form and the application maps the transliterated Bangla to an 

equivalent  Bangla text using the  Bangla script. And as  English script is more accessible digitally, 

Bangla speakers  use  such  a  transliteration  scheme widely to  express  Bangla information  more 

frequently.

e.g.

Message in English My name is Nafid Haque.

Message in Bangla Script

Transliterated Bangla 

  a|ma|ra  na|ma na|fi|da   ha|ka 

Gloss my name nafid haque

Table 8: Bangla Transliteration Example
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The concept of transliteration has been exploited in many ways to make use of  Bangla digitally. 

There  are  interfaces  available  for  the  web  and  mobile  devices  that  take  in  Bangla text  in  a 

transliterated form and produce the same text in the original Bangla script. The concept of the use of 

Bangla in a transliterated form is exploited further in this thesis work to  translate some Bangla 

words to  equivalent English versions.

3.2 Proposal

As stated  earlier,  the  Bangla lexicon consists  of  a  good number of  “loan-words” from  Arabic, 

Persian,  English and other languages. And most of them are pronounced almost the same way as 

would be pronounced in the original language.

Following are some English words that are pronounced almost the same way in Bangla.

Police, Telephone, Television, Computer, Table, Chair, Bottle, Bus, Truck, Train, Ulcer, Cancer

The following table gives a detailed comparison:

45



English Word Actual Bangla Spelling Transliterated Bangla

Police

Telephone

Television

Computer

Table

Chair

Bottle

Bus

Truck

˔

Train

Ulcer

Cancer

˕

Table 9: Bangla Transliteration Example

From Table 9  we notice that  the  transliterated  Bangla is  very  similar  to  its  equivalent  English 

˔ '\' is used to produce a consonant cluster between 't' and 'r'.
˕ '\z' is used to produce a phonetic emphasis on the previous consonant.
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versions but not exactly the same. As Bangla has more characters and supports more phonemes39 

than  English,  to  accommodate  the  actual  pronunciation  of  such  loan-words in  Bangla,  the 

transliterated Bangla version of those loan-words are not exactly spelled the same way as they are in 

English. However, the transliterated Bangla version, which we may call as pseudo-English version, 

can be intelligently processed to get back the original  English spellings.  This thesis explores that  

possibility.

As stated earlier most of these loan-words in the Bangla lexicon sound almost similar to the ones in 

their original languages but that does not necessarily mean that those  loan-words do not have an 

exact  Bangla translation. The words “television” and “telephone” both have  Bangla versions like 

“duro-dorshon” and “dur-alaponi” respectively but “Telivishn” and “Telifon” are more commonly 

used in every day official and unofficial communications. There is no single specific genre to which 

these  loan-words can be categorized like only electronic names or  auto-motives but it is noticed 

that, in the Bangla lexicon, almost all the medical terms are such loan-words and sound exactly or 

similar to the imported form.  Thus, in this thesis we limit our experiment to only those medical 

terms and test the hypothesis of  translation based on transliteration as an interface for a limited 

domain cross-language question answering system scenario. The entire work can be divided into 

two  components,  the  translation  based  on  transliteration  with  table  look-up  and  the  question 

answering part. 

In this thesis the first component is exploited in detail and a small prototype system is developed. 

The second component has been explored mostly theoretically and thus the findings of the research 

will be stated. 

3.3 Design

The basic idea of the system is to 1) take in a question in Bangla written in a transliterated form, 2) 

translate that Bangla question to its equivalent English version, then 3) search over the Internet for 

39 A phoneme is the smallest contrastive unit in the sound system of a language.
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the answer to the question, 4) translate the English answer to Bangla and present it to the user. As 

the goal of this project is not to develop a complete Machine Translation system for  Bangla, the 

answer/result obtained in English for the given question will not be translated to Bangla. The work 

concentrates mostly on getting the English version of the question from its Bangla equivalent using  

translation based on transliteration and table look-up.

These days a wide variety of information is available on the Internet and a good amount of it are in 

English. With the introduction of web blogs and forums, any individual  can post a view or an 

article,  thus  contributing  to  this  huge  information  pool.  Initiatives  are  taken  to  make  all  the 

published books available over the Internet. These days electronic articles, magazines and books are 

more popular than their printed versions. The electronic versions are easily accessible, cheaper than 

printed ones, takes less or no physical space at all and most importantly can be digitally searched 

and  processed.  Thus,  while  looking  for  specific  information,  rather  than  buying  a  book  or  a 

magazine from a shop, the trend has become to search for the topic over the Internet and obtain all 

the related information at one place without even going through unnecessary content. An individual 

looking for legal information can avoid going through a huge pile of books on law but just search 

over the Internet to obtain some information about his or her query. The same is the case for an 

individual wanting to know more about a disease or a medical term. The person can have some 

basic idea about the disease from all the medical texts available over the Internet without consulting 

the medical books. These uses of the technology are not meant to eliminate a medical doctor or a  

legal advisor from the society but the access of information through these technologies is meant to  

make individuals better informed rather than keep them totally ignorant of the basic information. 

People having access to basic information on a variety of topics over the Internet can make a small 

research of their query and have a basic background before they move to seek professional advice. 

Information retrieval systems in the form of Internet Search Engines have already made it possible 

for people to have access to basic information. These search engines take in query terms and point 

to  documents  having  information  about  those  terms.  However,  this  trend  has  moved  towards 

complete question answering, where a user asks a complete question and expects a complete and 

correct answer in return.  

The design of this framework is highly motivated by the LAMP and the Joost systems discussed in 

the earlier chapters. The LAMP system by Zhang [2004] claims that the Internet is an ideal source 

of answers to a large variety of questions due to the fact that a tremendous amount of information is 

available online these days. The information available online is written in many different languages 
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and a huge share of this information is in English. There are texts available in Bangla too over the 

Internet but the volume is still not comparable to many of the other most spoken languages of the 

world. Also, the Bangla texts available online are mostly limited to the news genre as online Bangla 

newspapers are very popular. So these limited Bangla texts are not enough for Zhang [2004]'s claim 

that online resources are an ideal source of answers to a large variety of questions for a Bangla QA 

system scenario. But if the English content available online is considered as the search space to 

answer Bangla questions, then a large variety of questions could be answered. Having such a cross-

language solution could benefit many native speakers of Bangla as they could ask a question in 

Bangla and obtain their desired information. The proposition sounds feasible but comes with the 

bottleneck  of  translating  a  Bangla  question  to  the  equivalent  English.  This  is  achievable  if  a 

complete automatic machine translation system is available between Bangla and English in both 

directions. Then a Bangla question can be easily fed to a translation engine to obtain an English 

equivalent question, and that obtained English question can be processed like the Zhang [2004]'s 

LAMP system or Bouma et al. [2006]'s Joost system to obtain the answer. Lastly that answer can be 

translated back to  Bangla for  the user.  But  as stated earlier  Bangla is  still  to  have  a  complete 

Bangla/English machine translation system, making the proposal of a QA system for Bangla to be 

hard.  Thus,  to  create  such a  cross-language  QA system for  Bangla,  the first  step  is  to  build  a 

complete Bangla/English MT system, which is another research area of its own. But until such a 

complete translation system becomes available, the cross-language QA task for Bangla maybe be 

solved using a slightly different approach, limiting some features and options of a full-fledged QA 

system.

From earlier  discussions  we have noticed that  Bangla words have some complex phonetic  and 

spelling structures. These complexities of the language can be utilized to translate specific Bangla 

words to equivalent English forms. If this property of the Bangla language can be generalized and 

automated, then a very limited scale translation system can be produced which may ultimately help 

in a limited scenario QA task. We have mentioned already that the Bangla lexicon consists of a 

good number of loan-words from other languages that are pronounced somewhat similarly to the 

sound of  their  original  languages.  Though these loan-words are  spread around among different 

genres, the medical terms take a big share in the list of these loan-words. Table 10 highlights some 

such medical terms. 
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Medical terms in English Transliterated Bangla

cancer kansar

heart attack hart etak

fracture phrakchar

stroke estrok

liver leevar

lung cancer laang kansar

blood blad

conjunctivitis konjunktivitis

fever fivar

cyst sist

flu flu

Table 10: Medical Terms

From Table 10, if we try to speak out the transliterated Bangla versions of these medical terms, we 

will be more or less able to guess the actual English versions. This is due to the fact that these terms 

have been imported into the Bangla lexicon but due to many language specific properties especially 

phonetics, the pronunciation has changed slightly. The original versions are broken into smaller 

syllables and then converted to the phonemes available in Bangla to pronounce. Table 11 gives an 

overview of that property.

English Bangla

can + cer kan +sar

heart ha +r + t 

a + tack e + tak

frac + ture phrak + char

stroke es + t +ro + k

li + ver lee + var

Table 11: Terms broken to syllables

From  the  above  comparisons,  a  technique  can  be  devised  to  transform  the  syllables  of  the 

transliterated Bangla to the syllables of the original  English version. If that transformation can be 

performed as closely and correctly  as possible,  then we are  able to obtain the original  English 

spellings from the transliterated Bangla forms. The approach is similar to Jiang et al. [2007], who 
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suggest  a  transliteration approach to  improve the  named entity  translations.  Jiang et  al.  [2007] 

syllabify an English named entity into a syllable sequence like the word “Obama” to “O / ba / ma” 

and  then  use  a  generative  model  to  transliterate  the  syllabified  English name  into  a  Chinese 

character  string.  They used  this  approach in  their  QA task  with  the  claim that  most  questions 

include some form of named entities within them and implementing such a transliteration model 

improved their named entity translation. For a  Bangla QA scenario for the medical domain, the 

medical  terms are the named entities which can be translated to  English using a  transliteration 

model like Jiang et al. [2007]. In our case a syllabified transliterated Bangla (pseudo-English) term 

is transformed into a correct English term to be used for further processing. 

This transliteration approach to translation is very similar to the morphological analysis of a word. 

A word is typically a stem together with a set of affixes. The smallest meaning-bearing units are 

called morphemes.  During the analysis,  morphemes are  identified.  Finite-State technologies  are 

widely used for morphological parsing.

Input Morphological Parsed Output

cat cat + N + SG

cats cat + N + PL

books book + N + PL

Table 12: Morphological Analysis   [Jurafsky et al. 1999]

The morphological parser has knowledge about the 

• lexicon – the list of stems and affixes

• morphotactics – the model of morpheme ordering that explains which classes of morphemes 

can follow other classes of morphemes inside a word

• orthographic rules – the spelling rules of the words

The finite-state automaton above accepts regular, orthographic singular and plural  English nouns. 

Further, a two-level morphology model as finite-state transducers.
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The finite-state transducer is able to map between the lexical and the surface level of the words. 

A similar two-level approach could be used in the translation based on transliteration approach for 

the translation of the medical terms of  Bangla. Individual syllables are dealt with instead of the 

morphemes.

Terms Individual Syllables

Transliterated Bangla kansar kan + sar

English cancer can + cer

Table 13: Two-level approach to transliteration

A finite-state transducer maps the syllables of the transliterated Bangla form to the English ones. 

Once all the English syllables have been obtained correctly and merged together it is possible to get 

the correct English word. This approach should work for most of the medical terms if designed very 

carefully. But a QA scenario involves not just  a single  term but a complete question.  Now the 

question is whether such a two-level transliteration approach works for an entire question given in a 

transliterated Bangla form. Unfortunately the answer is negative. As we have mentioned earlier, the 

Bangla lexicon has a good number of loan-words that sound similar to their original versions but 

the rest of the words in the lexicon are not such loan-words. And these Bangla words have no 

phonetic similarity with their English counterparts.

English Transliterated Bangla

book boi

car gari

where kothay

why keno

here ekhane

how kibhabe

Table 14: Literal translations
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Table 14 includes some question elements too which would occur in a typical question scenario.

e.g 

English: What is Cancer?

Translation in transliterated Bangla: Kansar ki? 

The two-level transliteration approach that we were suggesting earlier only works for the named 

entity in the question but does not work for the other terms in the question. And if we only work 

with the named entities, then the actual purpose of question answering is not achieved; rather the 

system would end up as a cross-lingual information retrieval (IR) system.

e.g 

English: How do you treat Cancer?

Translation in transliterated Bangla: Kansar kivabe chikitsha korte hoi?

In the previous two example questions, if the medical term “Cancer” was only considered then for 

both the cases the IR engine will produce identical results. But “What is Cancer?” and “How do you 

treat  Cancer?” are  two  completely  different  questions  with  different  set  of  answers.  What 

differentiates between the two questions is not the named entity or the medical term but the other 

terms in the question. Thus, to attempt a QA task the entire question needs to be considered. So, 

now the  issue  is  to  map the  transliterated  Bangla  word  “ki” to  English “What  is” or  “Kivabe 

chikitsha korte hoi” to “How do we treat”. This would be easily possible if a bilingual dictionary 

was available. Hossain [2008]'s Anubadok system is an English to Bangla MT system which uses a 

bilingual dictionary to translate POS tagged English words to Bangla. But for our QA task, we need 

a Bangla to English MT system or at least a Bangla to English bilingual dictionary. Though some 

digital English to Bangla dictionaries are available, Bangla to English digital versions are yet to be 

made available. Moreover, as we are dealing with transliterated Bangla texts, we need a bilingual 

dictionary that is able to handle the transliterated  Bangla (pseudo-English). As none of these are 

available  yet,  a  cheap  mechanism  is  required  for  our  limited  domain  (medical)  QA system 

prototype. 

A table  look-up approach can be implemented to  translate  the rest  of the  transliterated  Bangla 

question. The table look-up approach is similar to the  QATAR component of the  Joost system of 

Bouma et al. [2005] but, instead of mapping a question to an answer, our system would map parts of 

the  transliterated  Bangla question  to  its  equivalent  English version.  Once  such  a  mapping  is 

obtained for the  rest  of  the  question,  and the named entities are  translated using the two-level 

transliteration approach, it is possible to obtain a complete English question for further processing.
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So, our system would take in  “kansar ki?” as input and produce its equivalent  English translation 

which  is  “What  is  Cancer?” using  a  table  look-up  method  as  well  as  translation  based  on 

transliteration. Then it will use that English question to do the Question Answering (QA) part.

In the sections ahead we discuss each of the proposed approaches in further detail.

3.3.1 Analysis of Bangla Question Structure 

One of the reasons behind choosing the medical domain was to make medical information available 

to the native speakers of Bangla. There are many medical articles and books available in  Bangla, 

too,  but  only  a  handful  can  be  found  in  digital  form.  But  a  significant  amount  of  medical 

information in  English is accessible digitally over the Internet. There are many printed medical 

FAQs available in Bangla but to date no digital versions are publicly available. Some such Bangla 

printed FAQ's are  obtained to  study the structure of  the questions.  Some of  the most  probable 

questions are of the following types.

Bangla Question (Transliterated form) English Question

kansar ki? 

(gloss: Cancer what)

What is Cancer?

kansar hole ki korte hobe? 

(gloss: Cancer have what to do)

What do you do when you have  

Cancer?

kanser ki protirod kora jai? 

(gloss: Cancer can prevented be)

Can Cancer be prevented?

kansar kivabe choray? 

(gloss: Cancer how spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi? 

(gloss: Cancer how treatment to do)

How do you to treat Cancer?

kansar kivabe protirod kora jai? 

(gloss: Cancer how prevent do)

How can Cancer be prevented?

bard phlu kivabe chinnito kora jai? 

(gloss: Bird Flu how recognize)

How do you recognize Bird Flu?

komon warts kothay hoy? 

(gloss: Common warts where occur)

Where do common warts occur?

pregnansi kokhon hoy? 

(gloss: Pregnancy when does occur)

When does pregnancy occur?

Table 15: Bangla English Question comparison
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In Table 15 some of the simplest common questions in the medical domain are presented. The table 

gives a complete Bangla question in a transliterated form and its equivalent English versions. Here 

we notice that for a Bangla question, the disease name (the named entity) is always the first item of 

the question usually followed by the question element and then any additional verbs. This structure 

can be found not only for medical questions but for most questions in Bangla.

e.g 

Bangla: kompiuTar ki?

English: What is Computer?

Bangla: bangladesh'er rajdhi ki?

English: What is the capital of Bangladesh? 

Studying the structure of the questions listed earlier, if a Bangla question is tokenized, then the first 

token or the first few tokens will be a named entity or more specifically the subject matter of the 

question. This phenomenon is widely noticeable, specially in the medical domain. 

Thus, an approach to translate the Bangla question could be 

• tokenizing the transliterated version of the Bangla question, 

• using translation based on transliteration to translate the named entities (medical terms)

• translating the rest of the question by a simple table look-up method (This is definitely not a  

very  ideal  approach  for  a  large-scale  implementation  and  we  will  discuss  the  issues,  

however, the prototype system is built upon this simple approach).

3.3.2 Tokenizing the Question

This is a very trivial issue. As we have already noticed from previous examples in Bangla that each 

word is separated by a space, same as in English. Thus, a word or a token is

• a set of characters between the start of the question string and the first space

• a set of characters between spaces on either side

• a set of characters with a preceding space and a question mark

• a set of characters with a preceding space and a punctuation mark 

Once a transliterated Bangla question has been tokenized, according to our analysis the first or the 

first few tokens are the named entity or the medical term. Thus the first few tokens are individually 

processed until a question term is obtained. Once we identify a question term, the tokens before the 
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first question term are considered the named entity and are translated using transliteration. The rest 

of the question is translated using the table look-up method for a longest possible match.

3.3.3 Named Entity Translation

We have  learned  this  far  that  if  a  named  entity  is  present  in  a  question  then  it  is  of  utmost 

importance  and  describes  the  subject  matter  of  the  entire  question.  For  our  medical  domain 

scenario, the disease names or any medical terms are the named entities.  And we have already 

shown that almost all of such medical terms used in  Bangla are phonetically similar to  English. 

Thus,  it  is  just  a matter  of transforming the transliterated  Bangla terms into equivalent  English 

version. This can be achieved by a comprehensive rewrite transducer.

We have  obtained  a  list  of  commonly  used  medical  terms,  specifically  disease  names,  from a 

medical book to further analyze our hypothesis and design the transducer. The list contained 348 

disease  names in  English that  commonly occur  in  humans.  Not  all  of  these names/terms were 

limited to a single word but a good number of these diseases had multiple words like “Dengue 

Fever”,  “Yeast Infection” or “Angular  Cheilitis”.  Thus,  these multiple word terms were broken 

down into single words. That resulted in 851 medical terms from those 348 disease names. We 

organized the terms alphabetically and found that there were multiple entires for a single term at 

several  instances.  These  duplicate  terms  resulted  from  the  disease  names  such  as  “Atopic 

Dermatitis” and “Contact Dermatitis”. Here we notice that the word “Dermatitis” occurs for both 

the disease names and when they were broken to single  terms, 4 medical  terms were obtained 

“Atopic”, “Dermatitis”, “Contact” and “Dermatitis” with the term “Dermatitis” occurring twice in 

the list. There is no use of this second instance of the word “Dermatitis” and thus it can be filtered 

out. Such duplicate terms were noticeable many times in the 851 single-word list. After filtering out 

duplicate terms there were about 430 different medical terms from the original list of 348 multiple-

word disease names. 

Those  430 terms were provided to 4 native speakers of Bangla (including 2 medical doctors) to get 

the  transliterated form of  the  terms roughly  following the mapping scheme of  UzZaman et  al. 

[2006]. The volunteers were briefed with the phonetic mapping scheme to give an idea in case they 

were unaware of transliterated  Bangla. Then they were asked to provide a transliterated  Bangla 

version of the English medical terms. They were allowed to provide multiple transliterated versions 

for a single English term but they were not allowed to skip any single English term.  
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Thus a list like Table 16 was obtained from each of the native speakers of Bangla.

Transliterated Bangla Actual English

kansar cancer

blad blood

konjunktivitis conjunctivitis

fivar fever

sist cyst 

flu flu

Table 16: Transliteration Example

When each of those individual transliteration tables from the native speakers were merged to have a 

single table, the results showed that there were many transliterated forms for a single English term. 

This was obvious because Bangla has 50 individual graphemes, each having a different sound, and 

when these 50 graphemes are mapped to the 26 letters of English, multiple Bangla graphemes are 

mapped to a single English letter considering the closest pronunciation. Thus when a native speaker 

tries to transliterate a Bangla term, he or she takes note of the pronunciation as well as the subtle 

mapping of the letters between the languages and also the actual spelling in the original script. This 

thinking leads to multiple transliterated versions of a single English term. 

Thus, after merging the different versions obtained from the volunteers of this project, there were 

796 transliterated  Bangla terms against  the 430  English terms provided. The final table  looked 

somewhat like Table 17.
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Transliterated Bangla Actual English

kansar

kensar

kanser

cancer

blad

blud

blood

konjunktivitis

konjancteevytis

conjunctivitis

fivar

feebhar

phivar

fever

sist

seest

cyst 

flu

flue

phlu

flu

akni

akny

ekny

acne

dybatis

dybatees

dibatis

diabetes

Table 17: Transliteration Example

The original list of 430 English terms were randomly separated into two groups of 215 terms each. 

One group was chosen as the training set  and the other for further testing and evaluation. The 

training set had 215 English terms and their corresponding 279 transliterated Bangla terms. The test 

set had 215 English terms and their corresponding 517 transliterated  Bangla terms. In total, there 

were 430  English terms and their corresponding 796 transliterated  Bangla terms involved in the 

project.

The training set of 215 English terms and their corresponding 279 transliterated Bangla terms were 

carefully analyzed and studied. Each of the English terms were broken into individual syllables and 

so were their corresponding Bangla transliterated versions.
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English Transliterated Bangla

cancer:
          can + cer 

kansar:
        kan + sar
kensar:
        ken + sar
kanser:
        kan + ser

fever:
          fe + ver

fivar:
        fi + var
feebhar:
        fee + bhar
phivar:
        phi + var 
fiver:
        fi + ver

ulcer:
         ul + cer 

alsar:
        al + sar
alser:
        al + ser
aalcer:
        aal + cer
aalser:
        aal + ser
aalsar:
        aal + sar

Table 18: Syllabified terms

The syllabified versions of all the terms were obtained by hand, using careful inspection. Then a 

table  was  prepared  to  compare  the  syllabified  English with  the  corresponding  syllabified 

transliterated Bangla versions.
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English Transliterated Bangla

can kan
ken
kan

cer sar
cer
ser

fe fi
fee
phi
fi

ver ver
bhar
var

ul al
aal

Table 19: Mapped syllables

 

After obtaining a mapping of the syllables, each of those syllables is further broken to analyze the 

smallest possible character correspondence between English and the transliterated Bangla.

English Transliterated Bangla

c + a +n k + a +n
k + e + n
k + a + n

c + e + r s + a + r
c + e + r
s + e + r

f + e f +i
f + ee
ph + i
f +i

v + e + r v + e + r
bh + a + r
v + a +r

u + l a + l
aa + l

Table 20: Character-level mapping

After analyzing those character-level correspondence between the syllables of the English and the 

pseudo-English (transliterated Bangla) we managed to obtain a pattern. The pattern is very similar 
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to the phonetic mapping scheme of UzZaman et al. [2006] for  English and transliterated  Bangla. 

Thus, from those 215 English terms concerned, about 100 mapping rules were initially obtained. An 

extract of the mapping rules is shown in Table 21.

Bangla English

aab ab

ak ec

ak ac

al ul

al wal

ba bi

bag bug

char ture

kri cry

poks pox

Table 21: Mapping Rules

These rules are responsible for replacing the longest possible character sequence of the  pseudo-

English version to the corresponding English version. These mapping rules, they were implemented 

as a rewrite transducer. A run was conducted after implementing the transducer with all the obtained 

rules.  We  noticed  in  our  first  run  that  each  pseudo-English input  (transliterated  Bangla term) 

produced an average of 1.7 outputs (actual English name). Of all the produced outputs, only 12% 

were found to be correct English spellings. 

Then by analyzing  the  produced outputs,  a  few more  mapping rules  were  identified  that  were 

missing  in  the  first  run.  Also,  by  accommodating  some  further  longest  matches  of  the  letter 

sequences and slightly modifying the existing rules, an improvement in performance was noticed. 

With these new modifications and addition of new mapping rules, the transducer produced about 

37%  correct  English spellings;  however,  this  lead  to  more  outputs  generated  per  input.  The 

modification led to generating an average of about 5.7 outputs per input, with the worst case of a 

single input generating over 23 outputs. The process of obtaining the rules is not done using any 

standard machine learning setup. The rules are all handcrafted with the aim that, with a limited 

generic mapping rules, a good number of correct transducer outputs will be generated. With that 

aim in mind the dataset was purposefully chosen the way was mentioned.
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Though the modifications helped in the improvement of the performance it led to another problem 

of identifying the correct  English spelling or the closest  one of all  the produced outputs.  So a 

ranking mechanism was essential to rank the most correct  English disease name or the medical 

term. For this implementation, a simple edit-distance count was used to rank the generated outputs. 

This was achieved by a rather naive implementation as the domain of words involved was very 

small. For a large-scale implementation, this ranking mechanism would not be at all efficient. As 

there were only 430 English medical terms involved, they were sorted alphabetically and stored on 

individual files according to the starting alphabet of the term itself. Each of the generated outputs 

was  compared  in  one  of  those  files  and  the  edit-distance measure  was noted.  The  output  that 

matched with one of the terms in the files had an edit-distance of zero and was most likely the term 

we were looking for. If none of the outputs had an edit-distance count of zero then the output with 

the minimum count was taken for further processing. In case two or more terms ended up with the 

same count, the one on top, after sorting alphabetically, was taken. An example is shown below.

Actual Medical Term: excoriee

Transliterated Bangla Input: ekshori

Bangla Input Outputs Generated

ekshori

acschore

acschoriee

acscore

acscoriee

ecschore

ecschoriee

ecscore

ecscoriee

exchore

exchoriee

excore

excoriee

Table 22: Transducer Outputs

Here we notice that the input generated 12 outputs, and one of the output form is the term we were 
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looking for. From the outputs generated, the system realizes that the outputs either start with an 'a' 

or an 'e'. So it looks in those two respective files and runs the edit-distance algorithm for each of the 

outputs. The files involved are shown in Table 23.

Terms starting with 'a' Terms starting with 'e'

abrasion

abscess

acanthosis

acne

acrochordon

actinic

acuminata

acuminatum

aid

alba

allergic

allergies

alopecia

anesthesia

angioma

angular

animal

annulare

anthrax

aphthous

areata

arthropod

athlete's

atopic

atypical

avian

eczema

electrodesiccation

epidermoid

erosion

eruption

erythema

erythematosus

erythrasma

ethnic

examination

exanthem

excoriee

exhaustion

eye

Table 23: Medical Terms list

As can be seen for this case, only one output will exactly match one of the terms in the two files and  
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that is the term we are looking for. As already said this is not a very good implementation to rank 

the  outputs  because  of  the  number  of  comparisons  involved.  A few hard-coded rules  are  also 

implemented to eliminate the most obvious wrong outputs. For example,

Bangla Input Outputs Generated

fut

foot

phoot

ffoote

phoote

Table 24: Outputs Generated

  

For the input “fut” the correct output is  “foot”. The other outputs were generated because of the 

mapping  rules  such  as  “f->ph”,  “f->ff” and  “t->te”.  All  these  mapping  rules  were  needed  to 

accommodate other terms, for example, for the input “dandraf” the output should be “dandruff” and 

so the mapping rule “f->ff” is needed. But in English no word starts with “ff” so for the input “fut” 

the output “ffoote” can easily be discarded as it violates a basic language model rule. Having such 

rules help to eliminate some obvious wrong outputs.

3.3.4 Table Look-Up Translation

Once the medical terms are translated it is the turn to translate the other words within the Bangla 

question. As this study involves a very limited/closed domain, the most common medical questions 

were analyzed from different medical FAQs available both for English and Bangla. A list of those 

simplest medical questions in Bangla was prepared and an equivalent English translation was also 

prepared. Thus a final list of just about 20 question variations were prepared to be considered in this 

prototype. The current implementation searches for the longest match of words (the Bangla question 

terms) in a file which also contains their equivalent English versions.  
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Rest of the Question 

(Bangla:Transliterated form)

Equivalent English

ki? (gloss: what) What is -?

hole ki korte hobe? (gloss: have what to do) What to do when you have -?

ki protirod kora jai? (gloss: can prevented be) Can - be prevented?

kivabe choray? (gloss: how spread) How does - spread?

kivabe chikitsha korte hoi? (gloss: how 

treatment to do)

How do you treat -?

kivabe protirod kora jai? (gloss: how prevent  

do)

How can - be prevented?

kivabe chinnito kora jai? (gloss: how recognize) How do you recognize -?

kothay hoy? (gloss: where occur) Where does - occur?

kokhon hoi? (gloss: when does occur) When does - occur?

Table 25: Rest of the Question Translation

The equivalent  English version is the rest of the question that is required along with the medical 

term to generate  the  English question.  Further  discussion and results  can be found in the next 

chapter.

3.3.5 English Question Generation

To generate  a correct  natural  language sentence computationally,  a  POS tagger  and a  syntactic 

parser plays a major role. In this case no such tools are yet freely available for  Bangla. Thus, a 

quick and simple workaround has been implemented for this limited domain framework design. 

For almost all the medical questions in  Bangla, the question starts with the disease name itself 

followed by the question elements and any other verbs. Table 26 illustrates the phenomenon.
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Bangla Question (Transliterated form) Equivalent English Question

kansar ki? (gloss: Cancer what) What is Cancer?

kansar hole ki korte hobe? (gloss: Cancer have  

what to do)

What do you do when you have  

Cancer?

kanser ki protirod kora jai? (gloss: Cancer can  

prevented be)

Can Cancer be prevented?

kansar kivabe choray? (gloss: Cancer how 

spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi? (gloss:  

Cancer how treatment to do)

How do you treat Cancer?

Table 26: Bangla English Question comparison

Thus, the named entity Translation part considers the first or the first few tokens of the input string 

and uses the transducer to translate the disease name to its correct English version. The rest of the 

input string is searched for a longest match through the table look-up translation method. Once a 

match is found from the table look-up translation, the blank space reserved for the named entity (in 

this case the disease name or the medical term) is  replaced with the output  produced from the 

named  entity  Translation  part.  Again,  this  is  not  a  very  elegant  solution  but  in  this  limited 

experimental scenario, where the performance in terms of speed is not taken into consideration, 

these naive approaches are enough to prove the hypothesis of the overall project. 

3.4 Implementation Decisions

We list here the tools used to implement the prototype.

3.4.1 FSA Utilities Toolbox

The highlight of the prototype framework is the translation based on transliteration part which is 

used to translate the named entities (the medical terms) of a transliterated Bangla question (pseudo-

English) to its actual English versions. The syllabified mapping rules obtained in the Design section 

can  be  implemented  in  many  ways.  Each  of  the  mapping  rules  can  be  hard-coded  with  a 

programming language of choice and used in the implementation. The other way to implement the 

mapping rules is to build a rewrite transducer using the rules. The transducer is responsible to read a 

character sequence which in this case is a medical term written in pseudo-English. The transducer 

compares each character or a sequence of characters within the input term with the available rewrite 

rules. If a rewrite rule is available for a character or a character sequence then the corresponding 

output of the rule is written in that particular position of the input term. If no rewrite rule is present 
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for a character then it is copied as it is to the output. The rewrite transducer for the Named Entity 

Translation part has been prepared using the FSA Utilities Toolbox. FSA6.240 is available under the 

GNU general public licence. It is a collection of utilities to manipulate regular expressions, finite-

state automata and finite state transducers.

3.4.2 Python

Python is a very powerful dynamic programming language which is used in a variety of application 

domains.  Python's  vast  standard library  and flexible  coding style  makes  it  a  very  popular  and 

efficient  programming  language  to  be  used  in  Natural  Language  Processing  applications.  The 

ranking  of  the  outputs  from  the  Named  Entity  Translation,  Table  look-up  Translation  and  the 

English Question Generation part is prepared using Python 2.5.2. 

3.4.3 JavaServer Pages

The web-interface of the prototype framework has been prepared using JavaServer Pages (JSP). JSP 

is platform-independent technology that allows rapid development and easily maintainable dynamic 

webpages. 

3.4.4 Apache Tomcat Server

The open source Apache Tomcat server was used to handle the JSP technologies involved. Apache 

Tomcat  is  developed  by  the  Apache  Software  Foundation  (ASF)  and  provides  a  HTTP server 

environment for Java code to run. 

3.5 Program Flow

The web-interface takes in a  Bangla question in a transliterated form, calls in a Python script to 

tokenize the question, then FSA is called to translate only the named entity within the question. The 

output from the transducer is saved in a file. A Python script uses the transducer output and the 

result of the table look-up process to generate the English version of the Bangla Question. Once the 

English question is ready,  Google is passed with the exact question to obtain the answers. In this 

implementation the results from Google are just studied but not further processed for actual answer 

generation.

40 Available at http://www.let.rug.nl/~vannoord/Fsa/fsa.html
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3.6 Summary

This far we have introduced our aims of the project and have given the detailed steps in designing 

the  prototype framework.  We have repeatedly  mentioned at  several  places  that  the  aim of  this 

project is not to build a complete Bangla question answering system but to propose an approach to 

solve a subset of a complete  Bangla question answering task, thus the prototype deals with very 

limited cases to  prove the hypothesis  of  translation based on transliteration and table look-up  

method.  Some of  the proposed ways such as the table  look-up and the ranking method of  the 

medical terms would not be a good approach in large-scale implementations as in such large-scale 

implementations the number of question types and the total  number of medical  terms involved 

would  be  much  larger.  And  with  the  increase  in  number  of  types  and  terms,  the  number  of 

comparisons in the table look-up approach would increase exponentially leading to the overall poor 

performance of the system in terms of speed. The  Future Work section presents those issues and 

their possible solutions. In Chapter 4 we evaluate our system and discuss the results.
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4 Analyses, Evaluation and Discussion 

In this chapter we describe the overall performance and the limitations of the implemented system. 

We present some results for the individual components involved in the system. Then we evaluate 

the  entire  implementation  as  a  whole.  We  also  present  some  comparisons  with  similar  other 

implementations at appropriate sections of this chapter as well as the next chapter.

4.1 Translation task

In a cross-language QA scenario there are two main tasks. The translation task and then the QA 

task. The QA task's performance is highly dependent on the translation task as the translated output 

will be used for the actual question answering. If the quality of the translation is not good then no 

matter how good the QA component is, it is bound to give bad results. The quality of a machine 

translated text are mostly evaluated using the  BLEU41, NIST42 and METEOR43 scores. All these 

metrics are very suitable for larger datasets but the translation component of this project deals with 

a  limited set  of text that  requires translation so the conventional  metrics measures available to 

evaluate translations is not applicable here. We have formulated our own evaluation mechanism to 

evaluate individual components of our implementation. As a simple implementation strategy has 

been  employed in  the  overall  design,  each  of  the  components  are  tested  empirically  with  our 

controlled dataset.

4.1.1 Transducer Outputs

We have used rewrite transducers to obtain the translation of the medical terms. We had access to 

348 disease names in English and our implementation is based on these terms. Of the 348 disease 

names there were 430 different single-word terms in  English. We randomly separated these 430 

single-word terms into two equal groups (215 terms on each group). One group was used to build 

the mapping rules and the other group was used later to evaluate the transducer output for unknown 

inputs.

41 Bilingual  Evaluation Understudy  –  It  is  a  measure to  evaluate the quality  of  a  machine  translated text  while 
comparing with a version translated by human judges. The score accounts for adequacy by looking at word precision 
and  accounts for fluency by calculating n-gram precisions. Also a brevity penalty is there to compensate for recall. 
The final score is calculated by a weighted geometric average of the n-gram scores over a large set of test data 
[Papineni et al 2001].

42  It is another metric to evaluate the quality of a machine translated text and is based on the BLEU metric, however, it  
takes the arithmetic mean of the n-gram counts unlike the geometric mean in BLEU metric [Doddington 2002].

43 Metric  for  Evaluation of Translation with Explicit  Ordering – It  gives a score based on explicit  word to word 
matches between the translation and a given reference [Agarwal et al. 2008].

69



We used the 215  English terms of the training set to build the initial 100 mapping rules for the 

transducer. Those 215 English terms had 279 corresponding pseudo-English (transliterated Bangla) 

terms. Once these 100 mapping rules were implemented, the same 279 pseudo-English terms of the 

training set were used to check the performance of the transducer. 

Test Set Size # of mapping 
rules

Total # of 
outputs

Average 
output per 

input

# of correct 
terms

% of correct 
outputs

215 English 
terms, 279 

pseudo-English 
terms

(training set)

100 475 1.7 33 11.8

Table 27: Test Run 1 

   

After our initial run on the same training set the percentage of correct output was just about 12%. 

We evaluated each of the 475 outputs against the 215 terms and found many mapping rules to be 

missing.  We added  17  more  rules  and  modified  some  of  the  existing  ones.  We  have  already 

mentioned earlier that this implementation does not employ any machine learning techniques. The 

rules are all handcrafted and we expect to translate as many correct terms possible with a generic set  

of rules. Thus the smaller dataset (215  English and 279  pseudo-English terms) was deliberately 

chosen to design the mapping rules so that they can be tested on the larger dataset (215 English and 

517 pseudo-English terms).

Test Set Size # of mapping 
rules

Total # of 
outputs

Average 
output per 

input

# of correct 
terms

% of correct 
outputs

215 English 
terms, 279 

pseudo-English 
terms

(training set)

117 642 2.3 41 14.6

Table 28: Test Run 2

After the modification and addition of few rules we noticed that the percentage of correct outputs 

improved by  about  3% but  with  that  the  total  number  of  outputs  generated  by  the  transducer 

increased significantly producing about 2.3 outputs per input.
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Test Set Size # of mapping 
rules

Total # of 
outputs

Average 
output per 

input

# of correct 
terms

% of correct 
outputs

215 English 
terms, 279 

pseudo-English 
terms

(training set)

124 1004 3.6 61 21.8

Table 29: Test Run 3

As with some modifications and addition of rules an improvement was noticed, so the output was 

further comprehensively analyzed to identify any missing rules.  Our initial mapping rules were 

mostly limited to one or two character sequences such as “a->e”, “k->c” or “aa->a”. These smaller 

sequences  were  contributing  mostly  in  generating  more  outputs  without  improving  the  overall 

performance. Thus some of the longest character sequences were obtained like “char->ture”, “shori-

>coriee” etc.  With  about  6  such  new  rules  and  other  additions  the  performance  was  further 

evaluated (Test Run 3). And this time we noticed a significant improvement over our previous runs 

but with that the average number of outputs also increased. This means that the recall of the system 

was going down. After further adjustments to the rules we ended up with a final 129 mapping rules. 

We used  the  test  set  to  evaluate  the  transducer.  The  test  set  had 215  English terms with  their 

corresponding 517 pseudo-English terms.

 

Test Set Size # of mapping 
rules

Total # of 
outputs

Average 
output per 

input

# of correct 
terms

% of correct 
outputs

215 English 
terms, 517 

pseudo-English 
terms

(test set)

129 2430 4.7 212 41

Table 30: Test Run 4

With the test set of 517 pseudo-English terms the transducer strangely produced about 41% correct 

outputs. We analyzed our data further to find a reason behind such improvement and we noticed that 

the test set had more terms where the smaller mapping rules (“i->i”, “i->e”, “e->e”, “e->a” etc.) 

were used. This lead to the generation of more outputs but overall it was producing correct outputs 

most of the time. With these results we made another final run with all the 796  pseudo-English 
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terms to evaluate the transducer. 

Test Set Size # of mapping 
rules

Total # of 
outputs

Average 
output per 

input

# of correct 
terms

% of correct 
outputs

215 English 
terms, 796 

pseudo-English 
terms

(test set)

129 4139 5.2 295 37

Table 31: Test Run 5

With all the 796  pseudo-English terms the transducer produced about 37% correct outputs. The 

transducer also generated an average of about 5.2 outputs per input term. We also noticed that in the 

worst case scenario the transducer produced 39 outputs for a single input term. 

4.1.2 Table look-up Approach

For the translation of the rest of the question a cheap table look-up mechanism was employed. The 

implementation looks for the longest possible word sequence from the input string. This is not a 

very ideal and elegant solution because in a larger implementation scenario there will be hundreds 

of question variations. Thus the number of comparisons will multiply with the number of question 

types addressed.  This will  lead to a slower performance of the overall  QA task. In our limited 

implementation we dealt with 20 different questions types only that were obtained from the medical 

FAQs and the medical resources used in the project  and were verified by the volunteers of the 

project.  
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Bangla Question (Transliterated form) English Question

kansar ki? 

(gloss: Cancer what)

What is Cancer?

kansar hole ki korte hobe? 

(gloss: Cancer have what to do)

What do you do when you have  

Cancer?

kanser ki protirod kora jai? 

(gloss: Cancer can prevented be)

Can Cancer be prevented?

kansar kivabe choray? 

(gloss: Cancer how spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi? 

(gloss: Cancer how treatment to do)

How do you treat Cancer?

Table 32: Bangla Questions

In  Table  32  we  see  some  typical  questions  asked  in  Bangla and  their  corresponding  English 

versions. From such a list of our 20 question variations we excluded the medical term itself and 

produced a table. An extract shown in Table 33.  

Rest of the Bangla Question 

(Transliterated form)

English Question

- ki? 

(gloss: - what)

What is -?

- hole ki korte hobe? 

(gloss: - have what to do)

What do you do when you have -?

- ki protirod kora jai? 

(gloss: - can prevented be)

Can - be prevented?

- kivabe choray? 

(gloss: - how spread)

How does - spread?

- kivabe chikitsha korte hoi? 

(gloss: - how treatment to do)

How do you treat -?

Table 33: Rest of the Question

From Table 33 we generated a list of stop words which will help the system to identify the end of a 

medical term in the question and the start of the rest of the question. So for Table 33 the list of stop 

words would be 
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“ki” , “hole” and “kivabe” 

The implementation looks for one of these terms from the beginning of the entered question (in 

pseudo-English), and as soon as it finds one, the word or words before that stop word is the medical 

term to be translated using the transliteration mechanism and the rest of the words in the question 

starting and including the stop word itself is searched in a file implemented like Table 33. The 

implementation looks for an exact string match entry for the rest of the question words that were 

entered. Once an entry in the table matches, the corresponding  English version of the rest of the 

question is taken for processing. The obtained English version has a marker within the question (in 

our  case  we  had  a  hyphen)  which  is  replaced  by  the  term  or  the  terms  obtained  from  the 

transliteration mechanism. Following are the results of some test runs.
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Input Output Result Observation

kansar ki

(gloss: kansar 

what)

what is cancer Correct The medical term was translated 

correctly and there was a correct table 

look-up entry. The generated question 

is a correct generation.

ekny hole ki korte 

hobe? 

(gloss: ekny have 

what to do)

what to do when 

you have acne

Correct The medical term was translated 

correctly and there was a correct table 

look-up entry. The generated question 

is a correct generation.

folikulytees ki

(gloss: folikulytees 

what)

what is 

faleeacaleiaetic

table look-up is 

correct but 

transliteration 

mechanism gave 

wrong output

Here the medical term was one of those 

that didn't produce a correct term. The 

top ranked term is not very close to the 

actual term “Folliculitis” 

melanositik nevas 

kokhon hoi? 

(gloss: melanositik 

nevas when 

occurs)

when does 

maleanuciaetic 

nevus occur

table look-up is 

correct but 

transliteration 

mechanism gave 

one correct and 

one wrong 

output

Here there were two medical terms 

involved. One was translated correctly 

but the other one was somewhat close 

enough but not the correct one.  

komon and klasikal 

migrane kivabe 

chikitsha korte 

hoi? 

(gloss: komon and 

klasikal how 

treatment to do)

how to treat 

common and 

classical 

migreyn

table look-up is 

correct but 

transliteration 

mechanism gave 

partially correct 

output.

This is an interesting case. Here the 

medical term involves more than one 

word and one of them is actually a 

conjunction. The conjunction “and” 

has a literal translation but this 

phenomenon was tested the volunteers 

and all of them kept the original one. 

Now the system expects pseudo-

English term to be translated but “and” 

was a correct English term and because 

of some mapping rules the “and” was 

translated correctly to “and” itself.

Table 34: Question Generation

Table  34  shows  how  the  transliteration  mechanism  and  the  table  look-up  method  together 

75



performed to generate the English question. The quality of the generated question is very hard to 

evaluate in our implementation scenario because a major portion of the generated question is done 

by looking it up in a table containing correct translations. So the question part without the medical 

terms should always turn out to be a correct translation for our implementation. However, in our 

tests, in only 72% of the cases the rest of the question part was found using our table look-up 

approach.  Though  we  had  a  very  limited  question  variation  set  (20  only)  and we  limited  our 

evaluation to only those variations, those variations could be spelled in more than one way just like 

the medical terms in  pseudo-English (transliterated  Bangla) so if the entered question in  pseudo-

English was not an exact match in our table look-up, the system behaved erratically or did not 

produce  a  question  at  all.  This  phenomenon  of  the  system  is  explained  in  the  next  section. 

Whenever the translation mechanism produces a correct medical term along with a correct table 

look-up entry, the generated question is definitely a well-formed question. In our testing 53% turned 

out to be a well-formed question without any spelling mistakes. We further evaluated those well-

formed questions and found that 83% of those had only a single word medical term. We tried to 

analyze  a  bit  further  and  noticed  that  most  of  those  medical  terms  accommodated  the  longest 

character  sequence  mapping  rules.  We  tested  our  well-formed  as  well  as  not  so  well-formed 

questions using Google and the observations are stated in section 4.2 of this chapter.  

4.1.3 Exceptions, Assumptions and Limitations

The  entire  prototype  has  been  designed  and  implemented  considering  some  assumptions  and 

exceptions. The main reason behind most of the assumptions and exceptions is due to the lack of 

language specific resources and tools. And it was beyond the scope of this thesis to properly address 

those exceptions before, and then design and build the proposed framework. However, the main 

objective of this study was to propose something effective within such limitations. Setting aside the 

greater  limitation such as  the  lack of  resources  and the time to  build  them,  we had  to  further 

accommodate some limitations in our design. They are listed below:

1. Not  all  the  medical  terms  in  Bangla are  imported  words.  There  are  native  Bangla 

translations available for some medical terms such as “Heart” and “Stomach” are “hridoy” 

and  “pakostholi”  in  Bangla but  their  imported  versions  are  equally  used.  So  if  a  user 

preferred to use the actual  Bangla word instead of their imported forms the system would 

behave erratically as the system is in no way capable of identifying whether the entered text 

was  Bangla, transliterated  Bangla or  English.  And as this implementation does not make 

use of a Bangla to English dictionary, only the imported versions have been considered.

2. There  could  be  many  transliterated  Bangla versions  for  a  single  term  if  the  phonetic 
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mapping  rules  of  UzZaman  et  al.  [2006]  are  comprehensively  used.  However,  in  this 

implementation  only  the  most  common forms  have  been considered  that  are  enough to 

phonetically represent the English terms. The term “stomach” can be written as “estomak”, 

“stomak”,  “estomach”,  “estomuk”,  “stomuk”  etc.  Though  we  have  considered  many 

transliterated versions of an  English term, we surely have not considered all the possible 

transliterated versions of the medical terms. We considered only those that were obtained by 

consulting native speakers of Bangla and the volunteers of this project.

3. Only  the  simplest  type  of  medical  questions  are  being  handled  in  this  prototype 

implementation. Questions like “How can babies be infected by Chicken Pox?” in Bangla is 

“bacchara ki chiken poks-e akranto hote pare” or “Can Avian influenza affect both adults 

and children?” in  Bangla is “bacchara ebong boro-ra, duijon-i ki ebhian inphluenza dara 

akranto hote pare” have a far more complex structure in Bangla than the ones handled in this 

implementation. These types of questions may not be generalized by the structure “disease 

name followed by the rest of the question”. A good syntactic as well as dependency parser is 

essential to generate such questions. We have already learned how different types of parsing 

can help in the overall QA task in many ways. As our implementation scenario is proposed 

for an open text collection such as the Internet, the parsing technologies cannot be used 

exhaustively to parse all the text available over the Internet but it could definitely be used to 

parse a pseudo-English version of a question and then generate the actual English question. 

Further, in Bangla the medical terms may include case markings in complex question cases 

like the ones just stated above. Thus a morphological analysis is also essential to obtain the 

correct medical term out of the entire question. Generating a good quality question without a 

table look-up method that we proposed is a major research area of its own. 

4. Only one transliterated form of the rest of the question is considered for our implementation; 

however,  each  word  used  in  the  table  look-up  translation  can  have  more  than  one 

transliterated form. 

e.g.

English Word Bangla Transliteration Used Other Possible Transliteration

what ki kee

how kivabe kibhabe, keevabe

prevent protirod protirodh, proteerodh

treat chikitsha chikitsa, cheekitsa, cheekeetsha

Table 35: Other Possible Transliterations
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In our implementation we had only one version of these words (the words occurring in the 

rest of the question). We considered only those versions that were the most probable and 

easier to spell, keeping in mind the mapping scheme of UzZaman [2005]. We verified our 

version with our volunteers, too. 

4.2 Question Answering Task

The QA part of this thesis was of secondary importance in the entire project and thus most of the 

analyses presented here are empirically tested.  We proposed a method where a  user types in  a 

question in a transliterated form and gets answers from a system which does not necessarily work 

with the user's native language. So we basically proposed a translation mechanism as an interface  

for question answering. 

From our implementation we managed to obtain 53% well-formed translated questions. We tested 

these well-formed as well as not so well-formed translated questions with  Google to understand 

their behavior.  Google is a very popular Internet search engine. It started as a basic information 

retrieval  engine  but  over  the  years  its  has  adopted  many  techniques  and  heuristics  within  its 

searching  mechanism that  it  is  now far  more  than  just  a  keyword  based  information  retrieval 

system. We cannot claim that  Google is now a complete question answering system but it does 

perform well with some question types though it does not actually produce a complete answer. Here 

we show some tests that we performed.

78

Fig 19: Google search with "cancer"



In the above figure we searched for the term “cancer” and we noticed that the top 5 results are 

related to our search key. Google even highlights our search key within the topic and the snippets it 

presented. Now we use a complete question which includes the same search key.

Here we notice that Google has used all the terms in the search query. And the snippets and most of 

the topics include the entire question we asked.  Google appears to use the rule44 that if a search 

query starts with “what” then it manages to find the topic of interest within the query and looks for 

a web definition for that topic and presents it as the first result. The snippet of that definition is in 

most cases the actual answer to a query. However, in the above case, we did obtain a definition and 

it is correct but not relevant to our query as we meant “cancer” in the medical sense. Thus even 

though our implemented system was able to produce “what is cancer” correctly we cannot limit our 

answer  to  the  web  definitions  provided.  The  definition  provided  is  completely  wrong  for  the 

medical domain. Thus we need to further look into the results for an answer. However this was a 

very special case as the term “cancer” has more than one meaning. But if we repeated our test with 

a different term the web definition itself is enough as an answer to our question as can be seen 

below.

44 Google does not disclose their internal techniques and algorithms. The observations stated here are found by 
performing many searches through Google.
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Now we tried the same question with our system. So, we typed in “konjunkteevytis ki” in pseudo-

English form and we obtained “what is chonjanctivitis” from our system. This is an example of a 

not so well-formed output. Our system did not manage to produce a correct spelling for the term 

“conjunctivitis” but it  produced “chonjanctivitis”.  We tried the exact output as a  Google search 

query.
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Here we have given a wrong spelling but even then Google has managed to give the correct results 

and it also proposes the correct spelling for the medical term. We tested this phenomenon a few 

more times.

We typed in “milanosytik nevas kokhon hoi” in pseudo-English form and we obtained “when does 
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Fig 22: Google search for "what is chonjanctivitis"



maleanuciaetic nevus occur” from our system. This is another example of a not so well-formed 

output. Our system did not manage to produce a correct spelling for the term “melanocytic” but it 

produced “maleanuciaetic”. The other medical term was spelled “nevas” in pseudo-English and it 

produced the correct English spelling “nevus”. Google was able to understand our wrong spelling 

and managed to even suggest the correct one. These observations are very promising for us as we 

have somewhat managed to ask a question in Bangla (we wrote it in a transliterated form) and we 

managed to  search  an  English text  collection  and obtain  some relevant  results.  This  definitely 

proves that our proposed system can play a major role in a cross-language QA task without having 

major language processing tools for the questioning language (here it is Bangla). However, in our 

experiment there were certain cases where Google could not produce a result at all. An example is 

shown below.

We typed in “komon and klasikal mygren kivabe chikitsha korte hoi” in pseudo-English form and 

we  obtained  “how to  treat  common and  classical  migreyn”  from our  system.  This  is  another 

example of a not so well-formed output as one term is not spelled correctly. Our system did not 

manage to produce a correct spelling for the term “migraine” but it produced “migreyn”. The other 

medical terms were correctly translated. Google was not able to find or suggest any relevant results. 

We corrected the spelling to see if  Google was really able to find some results and  Google did 

manage to find relevant results.
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As we have already mentioned that we have not implemented any techniques to process the output 

from  Google but  we have definitely  managed to prove our hypothesis  of  translation based on 

transliteration and table look-up as an interface for a cross-language question answering system in 

a very controlled environment. If our system provided a well-formed translation then in most of the 

cases  Google provided relevant information as top results unless the medical term involved has 

multiple meanings as we have seen for the term “cancer”. If the question contains multiple medical 

terms then there is further high probability of obtaining relevant results from Google even if one of 

the terms had multiple meanings.

4.3 Overall Analyses and Discussion

This far we have shown how our proposed design and its implementation performs. As the entire 

design is hard to evaluate with a single metric, we evaluated each component individually with our 

own methods. The named entity translation part was able to produce an overall 37% correct output 

from the transducer in our tests. We evaluated the table look-up mechanism individually and found 

that 72% of the times we managed to obtain a correct entry. This could actually be improved and 

also the limitations stated earlier could be avoided by allowing the user some sort of templates to 

choose from rather than typing the question themselves. That will eliminate the different spelling 

versions involved in the process.  We then found that 53% of the questions that we obtained from 

our volunteers were actually well-formed questions by which we meant that a correct table entry 

was found and the transliteration mechanism produced a correct output too. We tried most of our 

well-formed questions with Google and we were able to locate relevant results in most cases. We 
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Fig 25: Google search for "how do you treat common and classical  
migraine"



also tried some of our not so well-formed questions by which we meant that there were spelling 

mistakes in the medical terms (produced by the transducer). Google was able to understand where 

the spelling mistake was and was able to suggest correct spellings as well as relevant results without  

even modifying the question we obtained from our implementation.

These observations show promising results in a constrained environment. We have managed to use 

a Bangla question to look for relevant answers from the Internet without having a proper machine 

translation  engine.  We  have  managed  to  show  that  this  technique  of  translation  based  on 

transliteration and table look-up can act as an effective interface in a cross-language question  

answering scenario within a controlled environment.   
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5 Future Work and Conclusion

5.1 Conclusion

Through this thesis work, we tried to learn the important issues in the field of Question Answering 

(QA) systems. We peeked into the internals of many established QA systems. We explored the 

capabilities of each of them and the reasons that make them good at their task. Then we looked into 

the details of cross-language QA tasks. We learned that all the systems that do support multiple 

languages  or  work  in  a  cross-language  environment  have  access  to  well-established  machine 

translation systems. Apart from that a good number of them are heavily dependent on pre-processed 

contents.  Once  they  had  a  base  system  they  enhanced  their  base  system  with  several  other 

components and features which significantly improve their QA task. 

From our research findings we took the initiative of proposing a basic framework for a QA task for 

the language Bangla. Bangla is one of the top 10 most widely spoken languages of the world with 

over 200 millions speakers, however, having such a vast speaker base the language lacks many of 

the basic language processing resources and tools that are already available for other languages. 

There are ongoing projects to make those tools and resources available for public use but the entire 

initiative is behind schedule compared to the language's  presence in the world. Many tools and 

resources  have  already  come out  and are  maturing  day  by day.  However,  there  are  no  known 

initiatives for a digital  Bangla QA system. We have tried to grasp this opportunity and propose a 

basic QA system for Bangla but we were at an obvious disadvantage in terms of the resources and 

tools that were required. We learned that to have a complete open-domain Bangla QA system the 

first  thing we need is a significant quantity of digital  Bangla text. There are only a handful of 

Bangla corpora available and most of them are genre specific. Then we needed tools that could 

process Bangla text and grammar to query the text collections and generate the answers. We learned 

that some grammar processing tools with very limited capabilities are available for regular Bangla 

sentences but not for  Bangla questions. Then we explored the possibility of a cross-language QA 

environment where a user would ask a question in Bangla but the system would generate an answer 

from texts in a language other than Bangla and translate it back to Bangla for the user. This idea is 

feasible  when  a  robust  machine  translation  engine  is  available  between  Bangla and  the  other 

language(s) involved in the cross-language QA task. Unfortunately this was not possible either as a 

mature machine translation engine between English or any other language to Bangla has yet to be 
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developed.  There  are  some  systems  available  to  translate  English texts  to  Bangla but  for  our 

proposal we also needed a Bangla to English translation engine to translate the Bangla question to 

English and then process  the question in  an  English QA system. With all  these  limitations  we 

narrowed down our initial idea of building a complete open-domain Bangla QA system to building 

just  a  small  and  effective  interface  for  the  Bangla QA task  in  a  very  controlled  environment. 

According  to  our  proposed  framework  the  interface  is  able  to  take  in  a  Bangla question  in  a 

transliterated form and query an Internet search engine that works with  English texts.  We used 

transliterated  Bangla as our input language as transliterated  Bangla is very popular in day to day 

communications and minimizes the issues with Bangla script handling. 

We proposed a transliteration and table look-up based implementation as an interface for a digital 

Bangla QA scenario. We limited our domain to only certain varieties of medical questions. The 

reason behind choosing the domain was that medical terms in the  Bangla language sound pretty 

close to their English counterparts. So we proposed and finally proved a method to use finite state 

transducers to translate the medical terms written in transliterated Bangla to their original English 

spellings. We were able to achieve 37% correct translations for the medical terms which is close to 

the accuracy of Jiang et al. [2007] who implements a similar strategy to translate named entities and 

were able  to  obtain  48% correct  translations.  We used  a  very naive table  look-up approach to 

translate the rest of the question and generate the complete  English question. People may easily 

argue that table look-up approach is too simple a technology to be implemented for this task. We 

agree but given the constraints that we have mentioned time to time in this document, table look-up 

was the only possible approach to show a working interface. Earlier we didn't have a single way to 

forward a  Bangla question to an  English search engine but at least with our simple approach we 

have been able to ask a question in Bangla and get some results from English documents. With the 

transliteration module and the table look-up method combined we were able to translate 53% of our 

questions  correctly  from  Bangla to  its  equivalent  English versions.  We   observed  that  our 

transliteration module despite failing partially or completely in translating the medical  terms in 

certain instances, our overall implementation strategy of the interface managed to guide the search 

results to the right directions. We learned from Zhang [2004] that the snippets provided by Google 

are  enough  to  find  answers  to  most  of  the  question.  With  our  proposed  interface  and  some 

processing of the results that  we obtain from  Google we can get further  closer to generating a 

correct answer to our question. 
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We find  the  results  of  our  implemented  system very  promising  and  strongly  believe  that  this 

strategy can be modified, redesigned and extended to enhance the future of Bangla QA task.

5.2 Future work

We believe that we were able to achieve satisfactory results to prove our hypothesis of a possibility  

of translation based on transliteration and table look-up as an interface for a limited domain QA 

task.. Our prototype framework can be extended with many other technologies. The assumptions 

and limitations that we stated in section 4.1.3 might be addressed first in the next version of the 

system. 

The mapping rules in our implementation are all handcrafted. We started with a small set of rules 

and extended them as we came across new cases. A machine learning approach might be employed 

in refining and extending the rules. A supervised or adaptive learning strategy can be devised to 

make the transducer learn new rules. Further, a scoring mechanism for the rules can be employed so 

that rules that produce the correct translations are preferred over the other rules.

We  have  mentioned  that  apart  from medical  terms  there  are  many  other  words,  too,  that  are 

imported into the Bangla language on which we based our hypothesis. The words in fields involving 

Engineering and legal systems are also mostly loan-words for Bangla. The system can be extended 

to accommodate those terms, thus extending the implementation beyond the medical domain. 

We implemented our system with limited dataset and so we checked for the correct spellings within 

our dataset  itself.  Here an  English dictionary would be necessary when the system is extended 

beyond its medical genre. 

We have mentioned already that the table look-up approach will not be a very elegant method in a 

large-scale  implementation.  Thus,  new  techniques  need  to  be  explored  to  accommodate  more 

variations in questions. A good bilingual dictionary (Bangla to English) can be used to translate the 

individual  words (transliterated  Bangla to  English)  and find their  respective  POS tags.  English 

grammar rules can be used to generate the  English version of the question from the individually 
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translated words. Until such a bilingual dictionary becomes available a different strategy could be 

explored from some existing systems. Haque [2006] implemented a system to convert transliterated 

Bangla (pseudo-English)  texts  to  Unicode  encoded  Bangla texts.  A similar  strategy  might  be 

deployed in the current implementation to get the actual Bangla version of the rest of the question. 

We learned that  Hossain [2008] developed an open-source  English to Bangla MT system which 

produced Unicode encoded Bangla texts. An attempt could be taken to reverse the procedure of 

Hossain [2008] so that the Unicode encoded Bangla words can be used to obtain their  English 

counterparts. The process to reverse an English to Bangla MT system is definitely not a straight 

forward task and might end up as a task of designing a Bangla to English MT system from scratch. 

We have used the exact translations that we obtained to search for an answer. We have learned about 

query expansion methods in our research and that could be explored further and implemented in our 

framework for better and relevant results. Also the verb forms that are in use in our table look-up 

method could be changed and expanded for better results in retrieving relevant documents. 

During  our  research  we  learned  about  some  ongoing  projects  on  English to  Bangla machine 

translation systems. It would definitely be a good idea to interface such a translation engine to 

accept outputs that Google returns for our Bangla questions. That way the user will actually get the 

output in Bangla. 

We  believe  that  despite  having  resource  limitations  and  time  constraints  for  this  project,  we  

managed to get a step closer to having an a full fledged Bangla Question Answering system. 
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6 Appendices

Extract of the Mapping Rules
%%           -*-Mode: prolog;-*-

:- multifile rx/2.

:- multifile macro/2.

:- discontiguous macro/2.

:- discontiguous rx/2.

macro(bangla_eng,

     replace({

[a]:[e],

[a,a]:[a],

   [a,a,b]:[a,b],

[a,k]:[e,c],

[a,k]:[a,c],

[a,l]:[a,l],

[a,l]:[u,l],

[a,l]:[w,a,l],

[b,a]:[b,i],

[b,a,g]:[b,u,g],

[b,y]:[b,i],

[c,e]:[c,e],

[c,e]:[c,h,e],

[c,i,s]:[s,c,e,s,s],

[c,h,a,r]:[t,u,r,e],

[d,a]:[d,e],

[d,a,r]:[d,e,r],

[d,i]:[d,i,a],

[d,r,a]:[d,r,u],

[d,u,r]:[d,e,r],

[d,y]:[d,i],

[d,y]:[d,i,a],

[e]:[a],

[e]:[e],

[e,b]:[a,b],

[e,e]:[y,e,a],

[e,k]:[a,c],

[e,k]:[e,c],

[e,k,s]:[e,x],

[e,l]:[e,a,l],

[e,l]:[a,l],

[e,n]:[a,n],
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[e,s,k,a]:[s,c,a],

[e,t]:[a,t],

[e,v]:[a,v],

[f]:[f],

[f]:[f,f],

[f]:[p,h],

[g,o,o]:[g,u,e],

[g,u]:[g,u,e],

[g,y]:[g,i],

[h,a,r]:[h,e,r],

[h,i]:[h,y],

[i]:[e],

[i]:[i],

[i,a]:[e,a],

[j,a]:[j,u],

[j,a]:[g,e],

[j,a,r,y]:[g,e,r,y],

[k]:[c],

[k]:[n,c],

[k,a]:[c,a],

[k,a]:[c,u],

[k,a,a]:[c,a],

[k,i,a]:[c,i,a],

[k,i,l,o]:[k,e,l,o],

[k,l,a]:[c,h,l,a],

[k,o]:[c,h,o],

[k,o]:[c,o],

[k,r,a]:[c,r,a],

[k,r,i]:[c,r,y],

[k,r,y]:[c,r,y],

[k,s]:[x],

[k,t]:[c,t],

[k,u]:[c,a],

[k,u]:[c,u],

[l]:[l],

[l]:[l,e],

[l]:[l,l],

[l,a,a]:[l,e],

[l,e]:[l,a],

[m,a,k,s]:[m,y,x],

[m,e]:[m,a],

[m,i]:[m,e],

[m,i]:[m,y],

[m,i,y,a]:[m,i,a],

[n,i]:[n,e],

[n,y]:[n,e],

90



[p,a]:[p,e],

[p,i,s]:[p,e,s],

[p,o,k,s]:[p,o,x],

[r,a,k]:[r,a,c],

[r,a,k,s]:[r,a,x],

[r,e,n]:[r,e,i,g,n],

[r,i]:[r,i,e,e],

[r,i]:[r,e],

[s,a]:[c,e,s,s],

[s,a,r]:[s,u,r],

[s,h,i,a]:[c,i,a],

[s,h,o,n]:[t,i,o,n],

[s,h,o,n]:[s,i,o,n],

[s,h,o,r,i]:[c,o,r,i,e,e],

[s,i,s]:[s,c,e,s,s],

[s,k,s,k,o]:[e,x,c,o],

[s,t,e,e]:[s,t,i],

[s,y]:[c,y],

[t]:[t],

[t]:[t,e],

[t,h]:[t,h],

[t,a]:[t,e],

[u]:[o,o],

[u]:[u],

[v,a]:[v,e],

[v,e,r]:[v,a,r],

[v,s]:[v,e],

[y,d]:[o,i,d],

[z,i]:[z,e]

             })

     ).

macro(eng_bangla,

     inverse(bangla_eng)

     ).
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abreshon
abcis

akanthocis
akny

acrokordon
ektinik
ekuminata
ekuminatum

aaid
elba

ellergic
ellergisk
elopesia

anestheshia
engyoma
engular
enimal
enular
enthraks
epthos
ereta

erthropod
ethlet's
etopik
etipikal
evian
besisi
bebi
hsv
hair
hairi

hand-fut-and-mouth
hand-fut-and-

mauthe
hed
hedek
heet

heetstrok
helisis

hemangioma
harpis
harpetik

hidradenitis
hyves

hordeolum
horn
hot

heuman
hiparpigmentation
hyparpigmentation

hiperplashia
hipopigmentation
hypopigmentation

hipothermia
ikthiosis
ikthiosis
ilnes

imunodeficency
impetigo
infantile
infektion

keloidalis

milia
miliaria
mohs
mol
mol

moluskum
mongolian
mukosil
miksoid
nail

neonatal
neonatorum
nurogenic
nurogenic
nevas
neegra

neegrikans
nipel
nodosam
nodularis
nosbleed
notalgia
nukai

noomular
ook

objekt
onikolisis
onikomikosis
onikoshizia

oral
orofatial
ovaruse

palparbraram
papules
papulosa

parasthetika
paronikia
patch
patarn

pediatrik
pediculosis

pedis
pemfigas
perioral
perlish

fototherapy
pilar
pilaris
pink
pited

pitiriasis
plaag
plantar
planas
plaks
plaks

poikilodarma
poison

poisoning

keratoakanthoma
keratolisis
keratosis
keryon
lgv
lait
lamp
lasar

legionelosis
legionaires

lens
lentigo
leshon
lyce
liken
lifting
linia
lyns
leeps
local
loss
lupes
lym

lymfogranuloma
makul
male
marks
mesels

medikashon
melanositik
melanoma
melanotik
melasma

mikrobiologikal
mikrographik

mygrane
seborik
shingels
shok

simpleks
sinas
sixth
skin

smalpox
snekbite

sok
solar

solushon
sor
sors
spidar
splintar
spliting
spot
spots
sqames
stain
estasis
sting
stings

siringoma

bakterial
boldnes
barbay
basal
beeard
beau's
bedbagh
bedsors
benine
biopsi
bard

barthmark
byte
bytes

blefaritis
blistars
blu-gray
body
boels
botoks

botuleenum
bruises
boobonik

bag
bumps
barns
kaf
kalus

kandidiasis
kanker
kap

kapilarytis
kapitis
karsinoma
katarakts

sel
selulitis
sefalik
kalazion
kapped
keilytis
chery

chikenpoks
chyldhud
kalamidial
kolera

kondrodarmatytis
kronic
kronicus
kivate
klasical
klustar
kold
koli
komon

kondiloma
kongenital

konjunktivytis
kontakt

kontagiosum
korn
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infektions
infektiosam
infektiosam
influenza
intartrigo
iritant
ichh
ivi

jelyfeesh
jok

juvenile
keloyd
fungal

furunkulosis
jenital
jarman
gonoria
gaout

granuloma
h5n1
h1n1
hiv

stiches
stroberi
strech
stry
stri
stai
swain
sindrom
sifilis

dishidrotik
ekzima

elektrodesikation
epidarmoid
erosion
eruption
erithema
strech
stry
stri
stai
swain
sindrom
sifilis
sting
stings
stings
stiches
stroberi
nevas
akny

polydaktyli
port-wyne

post-inflamatory
pregnansy
presbiopia
preshar
prikly
primary
prosidure
pruritik

sudofolikulitis
sudomonas
soriasis
pubik
pubis

pastulosis
piogenik
rash

raynaud's
razor

rekarent
remuval
renual

romboidalis
ringwarm
rosashia
rosia
rosiola
rubela
rubra
sakral
samon

salmonela
salmonelosis

skabis
skalp
skali
skarlet
skrach
sebashos
stings
stiches
stroberi
strech
stry
stri
stai

estasis
allargik

hiparhidrosis
kensar

sistemik
tag
tatu

telangiktasia
tenshon
test
thrash
tik
tinia
tung

toksisity
toksikum
toksin
trama

tritment
trench
tub

tifoid
alsar
alsars

unklasifaid
unkonshasness
artikaria
artikarial
varisela
varikos

varikositis
variola
vaskular
veins
venerum
venus

versikolar
viral
viras

vitiligo
valgaris
wart

whitlow
wud's
wunds

janthelasma
jerosis
esst
yelow
zostar
fevar
fifth
farst
flashes
flat

korneal
korporis
kosmatic
kradel
kramps
kruris

kryosarjery
kulchar
kuretage
kutanios
kutis
sist

dandraf
dekubitus
dengu

darmatitis
darmatofibroma
daramatologik
darmatosis
darmopathy
dybetik
dypar
dejit
diskoid
desees
drag
drai

erithematosas
erithrasma
ethnik

eksaminashon
eksanthem
ekskori
eksaushon

ai
facial
faciale
faintin
femal

floters
phlu

folikulitis
food

fudborne
phut
fut

fordis
foren

frostbyte

Table 36: An extract of the medical terms in Transliterated Bangla
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Roman letter or 
letter-group

Name Bangla 
letter

Unicode

a
AA আ \u0986

SIGN AA া \u09BE

b BA ব \u09AC

bh BHA ভ \u09AD

c/ch CA চ \u099A

Ch/chh CHA ছ \u099B

d DA দ \u09A6

dh DHA ধ \u09A7

D DDA ড \u09A1

Dh DDHA ঢ \u09A2

e 
 

E এ \u098F

SIGN E ে \u09C7

f PHA ফ \u09AB

g GA গ \u0997

gh GHA ঘ \u0998

h HA হ \u09B9

H VISARGA ঃ \u0983

i 
 

I ই \u0987

SIGN I ি \u09BF

I 
 

II ঈ \u0988

SIGN II ী \u09C0

j YA য \u09AF

J JA জ \u099C

jh JHA ঝ \u099D

k KA ক \u0995

kh KHA খ \u0996 

l LA ল \u09B2

m MA ম \u09AE

M CANDRABINDU ঁ \u0981

n NA ন \u09A8

N NNA ণ \u09A3

Nh NYA ঞ \u099E

ng ANUSVARA ং \u0982

Ng NGA ঙ \u0999

o A অ \u0985

O @ BEGIN O ও \u0993

O @ MIDDLE/END SIGN O ো \u09CB

oi
 

AI ঐ \u0990

SIGN AI ৈ \u09C8

ou
 

AU ঔ \u0994

SIGN AU ৌ \u09CC

oo SIGN U উ \u09C1

p PA প \u09AA

ph PHA ফ \u09AB

q KA ক \u0995

r RA র \u09B0

R RRA ড় \u09DC

Rh DDHA ঢ় \u09A2
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Roman letter or 
letter-group

Name Bangla 
letter

Unicode

s SA স \u09B8

sh SHA শ \u09B6

S SSA ষ \u09B7

t TA ত \u09A4

th THA থ \u09A5

T TTA ট \u099F

Th TTHA ঠ \u09A0

u U উ \u0989

 SIGN U ু \u09C1

U UU ঊ \u098A

 SIGN UU ূ \u09C2

v BHA ভ \u09AD

w UU ঊ \u098A

x @ BEGIN YA য \u09AF

x @ MIDDLE/END KA SA কস \u0995 \u09B8

y YYA য় \u09DF

z YA য \u09AF

\ HASANT ্ \u09CD

Table 37: Phonetic Mapping Table  [UzZaman 2005]
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