
A prototype framework for a Bangla question answering system using
translation based on transliteration and table look-up as an interface

for the medical domain

Nafid Haque
M.Sc HLST

April 2010

University of Malta

Department of Computer Science and Artificial Intelligence

Masters Thesis

Nafid Haque

A prototype framework for a Bangla question answering system using
translation based on transliteration and table look-up as an interface for the

medical domain

Supervisor(s) :
Mike Rosner, University of Malta

Gertjan Van Noord, University of Groningen

Programme: M.Sc HLST
Specialization: Erasmus Mundus Masters Program in Language and Communication Technologies

(LCT)

April 2010

University of Groningen

Faculty of Arts

Masters Thesis

Nafid Haque

A prototype framework for a Bangla question answering system using
translation based on transliteration and table look-up as an interface for the

medical domain

Supervisor(s) :
Gertjan Van Noord, University of Groningen

Mike Rosner, University of Malta

Programme: Research Master Linguistics
Specialization: Erasmus Mundus Masters Program in Language and Communication Technologies

(LCT)

April 2010

University of Groningen

Faculty of Arts

Masters Thesis

Nafid Haque

A prototype framework for a Bangla question answering system using
translation based on transliteration and table look-up as an interface for the

medical domain

Supervisor(s) :
Gertjan Van Noord, University of Groningen

Mike Rosner, University of Malta

Programme: Research Master Linguistics
Specialization: Erasmus Mundus Masters Program in Language and Communication Technologies

(LCT)

April 2010

To the martyrs of The Language Movement of 1952…thank you

Acknowledgement

I would like to thank my supervisors and specially Mike Rosner for holding my spirits during my

bad times.

Special thanks to the organizers of the European Masters in Language and Communication

Technology (EM-LCT) to present such a nice program. This program has taught me many things

and I am grateful to each and every individual professors, lecturers and local co-ordinators of this

program who has helped me somehow in the past two years.

My family, whom I cannot thank enough for all their inspiration and support throughout my life.

Without their inspiration and support nothing would have been possible.

I am also very thankful to my employer and all my colleagues who understood my situation and

gave me all the time and support needed to complete this work.

Lastly I would like to thank all the friends and colleagues of the EM-LCT program for helping me

and inspiring me now and then.

Thank You.

Nafid H.

Abstract

Question Answering (QA) Systems allow the user to ask questions in a natural

language and obtain an exact answer. Through this thesis work, we tried to learn the

important issues in the field of Question Answering (QA) systems. We peeked into the

internals of many established QA systems. We explored the capabilities of each of

them and the reasons that make them good at their task. Then we looked into the

details of cross-language QA task. We learned that most of such systems employ some

form of machine translation engines. We aimed to have a complete cross-language QA

system for Bangla. The language Bangla is among one of the most widely spoken

languages of the world but is still in its early stages of research regarding language

processing resources and tools. Thus for the cross-language QA task we did not have

access to translation engine which was very essential. So we narrowed down our aim

and finally proposed an innovative concept of translation based on transliteration and

a table look-up approach as an interface for a cross-language QA task where one of

the languages involved is at a disadvantage in terms of digital language resources

and tools. The proposed concept is implemented in a form of a prototype framework

for a very controlled cross-language QA scenario. We do not claim that our proposed

approach is a complete approach for a Bangla QA task but we did achieve promising

results that can help in Bangla QA task until mature Bangla language processing

tools become available.

Table of Contents

Section # Topic Page #

1 Introduction 1

1.1 Generic Question Answering (QA) Systems 2

1.1.1 Question Processing 3

1.1.2 Document Processing 9

1.1.3 Answer Processing 11

1.1.4 Additional Important Components 12

1.1.5 General Evaluation Mechanism For QA Systems 15

1.2 Cross-Language QA System 17

1.3 The Bangla Language 18

1.4 Aim Of This Thesis 21

1.5 Chapter Summary 22

2 Literature Review 23

2.1 Question Processing 23

2.2 Document Processing 27

2.3 Answer Processing 28

2.4 Evaluation Methods Of QA Systems 31

2.5 Cross-Language/Multilingual QA Systems 34

2.5.1 Components That Are Used To Give Multilingual Support 36

2.5.2 Finite State Methods 38

2.5.3 Popular Finite State Manipulation Tools 40

2.6 Summary And Proposal 41

3 Design Of The Experimental Framework 44

3.1 Background 44

3.2 Proposal 45

3.3 Design 47

3.3.1 Analysis of Bangla Question Structure 54

3.3.2 Tokenizing The Question 55

3.3.3 Named Entity Translation 56

3.3.4 Table Look-Up Translation 64

3.3.5 English Question Generation 65

3.4 Implementation Decisions 66

3.4.1 FSA Utilities Toolbox 66

3.4.2 Python 67

3.4.3 JavaServer Pages 67

3.4.4 Apache Tomcat Server 67

3.5 Program Flow 67

3.6 Summary 68

4 Analyses, Evaluation and Discussion 69

4.1 Translation Task 69

4.1.1 Transducer Outputs 69

4.1.2 Table Look-up Approach 72

4.1.3 Exceptions, Assumptions and Limitations 76

4.2 Question Answering Task 78

4.3 Overall Analyses and Discussion 83

5 Future Work and Conclusion 85

5.1 Conclusion 85

5.2 Future Work 87

6 Appendices 89

7 References 96

List of Tables

Caption Page #

Table 1: Possible question types 4

Table 2: Sample patterns to classify question 4

Table 3: List of features for question words. 8

Table 4: The coarse and fine grained question categories 26

Table 5: CLEF Evaluation for Joost 32

Table 6: How many answers to TREC questions can be found in Google snippets 33

Table 7: MRR and CWS scores of LAMP 33

Table 8: Bangla Transliteration Example 44

Table 9: Bangla Transliteration Example 46

Table 10: Medical Terms 50

Table 11: Terms broken to syllables 50

Table 12: Morphological Analysis 51

Table 13: Two-level approach to transliteration 52

Table 14: Literal translations 52

Table 15: Bangla English Question comparison 54

Table 16: Transliteration Example 57

Table 17: Transliteration Example 58

Table 18: Syllabified terms 59

Table 19: Mapped syllables 60

Table 20: Character-level mapping 60

Table 21: Mapping Rules 61

Table 22: Transducer Outputs 62

Table 23: Medical Terms list 63

Table 24: Outputs Generated 64

Table 25: Rest of the Question Translation 65

Table 26: Bangla English Question comparison 66

Table 27: Test Run 1 70

Table 28: Test Run 2 70

Table 29: Test Run 3 71

Table 30: Test Run 4 71

Table 31: Test Run 5 72

Table 32: Bangla Questions 73

Table 33: Rest of the Question 73

Table 34: Question Generation 75

Table 35: Other Possible Transliterations 77

Table 36: An extract of the medical terms in Transliterated Bangla 93

Table 37: Phonetic Mapping Table 94

List of Figures

Caption Page #

Fig 1: Components of a generic QA system 3

Fig 2: Syntactic parse tree (Constituency tree) 13

Fig 3: Dependency parse tree 13

Fig 4: Architecture for Cross-language QA system 17

Fig 5: Bangla Graphemes 19

Fig 6: System architecture of Joost 24

Fig 7: Identifying question class 25

Fig 8: Google search results 29

Fig 9: The snippets from Google 30

Fig 10: The snippet clusters constructed from the example 30

Fig 11: The LAMP system 31

Fig 12: Proposed transfer architecture for MT 37

Fig 13: A finite state machine 39

Fig 14: A finite state transducer 40

Fig 15: Components of the proposed system 47

Fig 16: A simple FSA for English nouns 51

Fig 17: Two-level morphology 52

Fig 18: Architectural Diagram 68

Fig 19: Google search with "cancer" 78

Fig 20: Google search with "what is cancer" 79

Fig 21: Google search for "what is conjunctivitis" 80

Fig 22: Google search for "what is chonjanctivitis" 81

Fig 23: Google search for "when does maleanuciaetic nevus occur" 81

Fig 24: Google search for "how do you treat common and classical migreyn" 82

Fig 25: Google search for "how do you treat common and classical migraine" 83

1 Introduction

Question Answering (QA) systems go beyond the usual Information Retrieval (IR) systems which

underly popular Internet search engines. QA systems have the aim of responding to natural

language questions whereas IR systems take up keywords from users and deploy some intelligent

search mechanisms on a document collection to get back to the user with a ranked list of documents

rather than an exact answer. However, the user still has to go through the documents to find out the

exact answer of his or her query. This process of going through the documents to find an answer is

undesirable and QA systems, by contrast, are expected to eliminate this process by giving an exact

answer to a question. Thus the aim of a QA system is to localize the exact answer to a question from

a structured or a non-structured collection of texts.

Asking questions in natural language and obtaining exact answers make QA systems of paramount

importance to Information Retrieval [Laurent et al. 2006]. Previously, given an information need of

a user, systems retrieved information from a text collection by retrieving full-length documents;

however, in recent times the focus of these systems has moved to giving the specific information

rather than a bibliographic-like information.

The design of a standard QA system assumes that the language in which the question is asked and

the text collection available to be processed are all in the same language. However, there might be a

need for cross-lingual QA system which take in questions in one language and searches through a

document collection in a different language to get to the answer.

In this thesis work, we discuss the issues to look at to build a cross-language QA system and finally

present a model framework for such a cross-language QA system, where one of the languages

(Bangla) has very limited computational resources to have a complete QA system of its own. We

start by giving an introduction to general QA systems and their associated components and slowly

build the discussion towards a cross-language QA task. Then we introduce our research aim and

finally present what we have achieved through this work.

1

1.1 Generic Question Answering (QA) Systems

The basic architecture of a QA system is dependent mostly upon the anticipated user of the system,

the type of questions to be handled by the system, the type of expected answers and the format in

which the available information is stored [Monz 2003]. The possibility of the information to be

available in different formats makes the entire design of a QA system a bit more complex, not to

mention the final performance of the system. It is possible that the QA system tries to answer a

question by accessing a structured information source such as a database or an unstructured

information source such as plain text documents. It is also possible to have a hybrid system that can

handle both structured and unstructured data.

Those systems that have a structured knowledge-base mostly exploit that structure to produce a

match between the question and an answer [Monz 2003]. This type of system is relatively easy to

build compared to the ones having an unstructured knowledge-base. Unstructured information is

usually in plain-text format such as articles from newspaper, manuals, encyclopedias etc. QA

systems having an unstructured knowledge-base try to find a match between the text units in the

collection and the question itself to get to an answer. Thus the text units in the collection need to be

descriptive enough about their own structure as well as the content itself for the system to make

some intelligent use of them to reach to an answer.

[Pasca 2003] states that a QA task can be decomposed into three main subproblems. The

subproblems are:

1. Question Processing

2. Document Processing

3. Answer Processing

The question processing stage is responsible for taking a question in a natural language and

producing some kind of intelligent representation of the raw question string so that it becomes more

useful for finding answers. The document processing stage is used to reduce the search space of the

document collection where the answer to the question can be expected. This stage is basically a

complete Information Retrieval system where the idea is to take in some keywords and produce a

ranked list of documents related to those keywords. The final stage of a QA system is the answer

processing stage where the system does some intelligent matching with the output of the previous

2

two stages to produce an answer to the given question. Any QA system should have these three

basic components and may have a number of other components to make the system more useful and

robust. The general architecture of a QA system can be modeled like the diagram shown below.

There are many other components such as a parser, part-of-speech tagger, stemmer, named entity

recognizer and automatic machine translation engine which can be included in the skeleton system

to improve the performance and solve other complex issues in QA. All these additional components

may be merged between the 3 main components or may stay as individual black boxes to assist in

the overall task of question answering. Some of these important additional components will be

discussed in detail after some detailed discussions on the 3 major components of a QA system.

1.1.1 Question Processing

The main function of this component is to analyze the question taken from the user. Questions can

be of different types and classifications thus this component is responsible to identify in which class

the question falls. The question type derived here can be used for answer extraction and answer

filtering to improve the accuracy of the overall QA task. The question processing component also

needs to determine the expected answer type (EAT). A QA system can be made to work with only a

certain class of questions or it may be built in such a way as to entertain a wide variety of classes.

Further the system could entertain questions from a certain topic, making the entire system closed to

a single domain, or it could entertain varieties of topic, making the system respond to an open-

3

Fig 1: Components of a generic QA system [Monz 2003]

domain. Some of the possible question classifications are shown in Table 1.

Question Type Description

Agent Name or description of an animate entity causing an action
Who won the Oscar for best actor in 1970?

AKA Alternative name for some entity
What is the fear of lightning called?

Capital Capital of a state or country
What is the capital of Kentucky?

Date Date of an event
When did the story of Romeo and Juliet take place?

Date-birth Date of birth of some person
When was King Louis XIV born?

Date-death Date of death of some person
When did Einstein die?

Expand-abbr The full meaning of an abbreviation
What does NASDAQ stand for?

Location Location of some entity or event
Where did Golda Meir grow up?

Table 1: Possible question types [Monz 2003]

Question classification can be done in roughly two major ways, namely, a rule-based approach or a

statistical approach [Day et al. 2005]. There are many ways to identify in which class a question

belongs as stated in Monz [2003]. The most common and simple way is to look for patterns in the

incoming question which fall under the rule-based approach category. The task of pattern matching

can be achieved by handcrafting different regular expressions as can be seen in Table 2.

For a statistical approach towards question classification, expert knowledge is used to prepare a

sufficiently large collection of data which in this case would be a collection of question and answer

pairs. A model is trained to automatically capture all the useful patterns for question classification.

The statistical approach to question classification can be further enhanced with different machine

4

Table 2: Sample patterns to classify question [Monz 2003]

learning models to improve the performance of the question processing component as well as the

overall QA task. Zaanen et al. [2005] proposed a combination of the machine learning and pattern

matching approach to question classification. They use an Alignment-Based Learning classifier to

learn structure from plain text sentences. They train the model with pairs consisting of regular

expressions found and the corresponding expected answer type (EAT). Several questions can match

a single regular expression and thus have more than one EATs. During the classification task all the

regular expressions are tried and the EAT with the highest frequency is chosen. They also propose

an approach with a Trie1 classifier to determine the type of question. Their system learns from

questions inserted in a trie structure that contains the token, the EAT and the frequency information

(the number of questions that use that single path in the trie). During the classification task the trie

is traversed and if a new question is a prefix of a training question then the node at the end of the

traversal path indicates the EAT of the question, otherwise a lookahead approach is used on the sub-

tries until all the tokens are consumed and a path with the highest frequency is reached. Day et al.

[2005] uses INFOMAP2 and Support Vector Machines (SVM)3 to classify Chinese questions. They

develop a hierarchical two-layer taxonomy comprising of the question type or the EAT by analyzing

the TREC4 question corpus. Then they use INFOMAP to identify the category of the Chinese

questions. If the knowledge-based approach fails to identify a category for the question then an

SVM model is used as a fallback. The SVM model uses syntactic features like part-of-speech (POS)

and other models like bag-of-words5 to classify the question. It further uses semantic features from

another ontology database called HowNet 20006 to classify the question. Tomas et al. [2009]

proposed a semi-supervised approach called the semantic kernels for question classification. In their

approach they put the input data, which is the question, in a suitable feature space and then use a

1 Tries or digital trees are both an abstract structure and a data structure that can be superimposed on a set of strings
over some fixed alphabet. As an abstract structure they are based on splitting according to letters encountered in
strings: if S is a set of strings and A = {aj}r

j=1 is the alphabet, then the trie associated to S is defined recursively by the
rule: trie (S) = {trie(S/a1)...trie(S/ar)}, where S/a means the subset of S consisting of strings that start with ai stripped
of their initial letter a, recursion is halted as soon as S contains less than 2 elements. The advantage of the trie is that
it only maintains the minimal prefix set of characters that is necessary to distinguish all the elements of S. The
trie(S) supports the search for any string w in the set S by following an access path dictated by the successive letters
of w. [Clement at al. 1997]

2 A knowledge representation and inference engine. It is used to facilitate knowledge sharing by different application
systems. When a QA system receives a query, it extracts the corresponding events or scripts based on the ontology in
INFOMAP. [Hsu et al. 2001]

3 SVM is a supervised learning algorithm to classify elements.
4 The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards and Technology

(NIST) and U.S. Department of Defense, was started in 1992 to support research within the information retrieval
community by providing the infrastructure necessary for large-scale evaluation of text retrieval methodologies.
Since TREC-8 (1999) TREC introduced a question answering track.

5 Bag-of-words model represents a piece of text as an unordered collection of words without taking into consideration
the grammar and word ordering of the piece of text.

6 HowNet is an online common-sense knowledge base unveiling inter-conceptual relations and inter-attribute relations
of concepts as connoting in lexicons of the Chinese and their English equivalent. [Dong et al. 1999]

5

kernel function to discover any nonlinear pattern in the input space. The kernel function gives a

similarity measure between the input data that depends exclusively on the specific data type and

domain. Bouma et al. [2006a] uses dependency relations of the given question to determine the

question type. That approach is discussed in detail in chapter 2.

As can be seen that whatever the approach is to analyze the question (rule-based or statistical),

some kind of morpho-syntactic analysis and processing is required on the question itself such as

finding out the part-of-speech, the root form (stemming) and the cardinality. Once these are found,

it is the time to formulate a query that is to be used by the next component, which is the document

processing unit. Formulating a query is dependent upon the structure of the document processing

unit.

The way queries are formulated has a strong impact on retrieval effectiveness even if query

formulation is just based on term selection without expanding the queries with semantically related

terms [Monz 2007]. The most common and simple way is to identify keyword(s) from the question,

finding the morphological root forms of the keyword(s), using some boolean operators with them

and producing a query.

e.g Q: What is the abbreviation for United Nations?

A system can exclude the question terms (like What, When, Who) and just include the other terms as

a boolean query.

e.g abbreviation AND United AND Nations.

However, this simple approach can steer the retrieval process in a wrong direction because most

documents that contain an answer to the question asked might contain sentences like “...United

Nations (UN)...”, thus not using all the query terms. Both simple boolean conjunction of Bag-of-

Words as well as Vector-space retrieval7 will prefer documents containing all the terms over

documents that do not contain a term. Stemming a query term can help in overcoming vocabulary

mismatches. In case there are quotes in the question, then the entire quotation is treated as a phrase

and constituent words are not used as query terms. Once a question is POS tagged, a phrase level

7 Vector space model is used to represent text documents as an algebraic model. The model creates a space in which
both documents and queries are represented by vectors. For a fixed collection of documents, an m dimensional
vector is generated for each document and each query form sets of terms with associated weights, where m is the
number of unique terms in the documents collection. A vector similarity function (like inner product) can be used to
compute the similarity between a document and a query. [http://www2002.org/CDROM/refereed/643/node5.html]

6

http://www2002.org/CDROM/refereed/643/node5.html

analysis can be done to identify query terms. Terra et al. [2005] looks for some patterns to identify

noun phrases such as: 1) adjective followed by noun; 2) a non-proper noun followed by any noun;

3) foreign word followed by any noun; 4) any noun followed by a foreign word; 5) proper-noun

followed by proper noun; and 5) numeral followed by any noun. The intuition behind is that the

entire noun phrase conveys more information rather than the individual terms. The noun phrase can

be put inside quotations for better results. More details about document retrieval can be found in the

document processing section.

Monz [2007] proposed a machine learning approach for query term weighting to improve the

retrieval engine. He analyzed TREC (TREC 9,10,11) datasets to compute the optimal term selection

for each question. For a given question q having T terms, all the possible subsets of T are

considered and evaluated. That is, the set of term selection variants (tsv) is defined as tsv(q) =

POW(T) – {0}. Monz [2007] determined the query variant with the highest average precision for

each question in the 3 datasets. He suggests that if a term occurs in query variants that have a high

average precision it should have a high weight and a term that occurs in query variants that have a

low average precision then it should receive low weight. Thus, the weight of a query term depends

on two factors: its presence weight w+(t) and its absence weight w-(t). Those weights are normalized

and combined into a single weight by subtracting the absence weight from the presence weight

which is called the gain of term t (gain(t)=w+(t)-w-(t)). If a term t has a positive gain, then it should

be included, otherwise not. This approach to computing the term weights is solely based on the

distribution of the terms over the query variants. This leads to problems such as terms having a high

gain for one query and low gain for another. Also, this computation is not possible for terms missing

in the training data. Thus, Monz [2007] introduces a list of features to further enhance the

computation of the term weights. An extract of the features is shown Table 3.

7

Monz [2007] used the M5'8 algorithm to assign weights to query terms, where the input to the

learning algorithm is the set of feature vectors and the term gain is calculated from the training data.

They incorporated the learned weights in to an IR engine and observed modest improvements, with

some significant improvements in some cases.

Some query terms might need to be expanded to increase the probability of finding documents

containing an answer. A semantic knowledge base like WordNet9 can help to identify synonyms.

e.g Q: Where is Big Ben located?

The term “located” might not be enough (because of the system design) to search the text collection

as there might be sentences like “You can find Big Ben in London.” or “Big Ben is situated in

London.” Both the sentences are possible answers to the question but if the system is not aware that

“locate” is semantically equivalent to “find” or “situate” those sentences might be discarded though

8 M5' is a reconstruction of the Quinlan's M5 algorithm. The M5 algorithm builds model trees combining
conventional decision tree learning with the possibility of linear regression models at the leaves of the tree. M5 is
suited for learning query term weights as it allows to consider dependencies between features [Monz 2007].

9 WordNet is a large lexical database of English available freely and publicly. Nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by
means of conceptual-semantic and lexical relations. WordNet's structure makes it a useful tool for computational
linguistics and natural language processing. [http://wordnet.princeton.edu/]

8

Table 3: List of features for question words. [Monz 2007]

http://wordnet.princeton.edu/

being favorable candidates as an answer.

1.1.2 Document Processing

The document processing unit is just a regular IR engine which takes in a query and identifies some

documents from its collection that are likely to contain an answer. Choosing the most appropriate

query terms are very essential to get the most relevant documents. This unit is not responsible for

finding an actual answer to the question. However, the performance of this component is critical to

the overall performance of the entire QA system. The collection of text and its format is also an

important factor. The text collection could be a closed corpus with a limited amount of text or it can

be a dynamic corpus which changes over time such as the Internet. A limited document set is much

easier to handle as many things can be hard-coded to get a better performance. Bouma et al. [2006a]

talk about Linguistically Informed Information Retrieval. Bouma et al. [2006a] perform a full

syntactic analysis of their text collection over different linguistic dimensions such as POS tags, NE

tags and dependency relations. Using these linguistic features they index their data so as to improve

the performance of their retrieval task. A more detailed description of Linguistically Informed

Information Retrieval approaches can be found in the chapter 2.

In case the text collection is open and dynamic, the IR engine should be aware of that fact and index

the new information in a timely fashion so that the new information is searchable. In such cases it is

more likely that more relevant information can be obtained but this comes with some unavoidable

and additional overheads. Documents over the Internet can be structured in many different ways

and thus the system has to take care of such issues. And as these documents/text collection can

change frequently, it is not possible to do some kind of preprocessing from earlier as suggested by

Bouma et al. [2006a], instead everything needs to be done at runtime.

The IR engine can retrieve documents with only one of the keywords being present in the document

or it can retrieve documents with all of the keywords being present in each of the documents.

ZPRISE10 IR is one such engine which does not retrieve documents having all the keywords. It uses

a cosine vector space model where extraction of documents is based on a similarity measure

between the document and the query. This allows extraction of documents when only one of the

keywords is present. Furthermore all retrieved documents may not need to contain the same

10 ZPRISE is a public domain IR engine based on the NIST PRISE system that treats documents and queries as lists of
words and responds to a query with a list of documents ranked in order of their statistical similarity to the query.
[http://www-nlpir.nist.gov/works/papers/zp2/intro.html]

9

http://www-nlpir.nist.gov/works/papers/zp2/intro.html

keywords. Moldovan et al. [2000]'s LASSO system is based on the principle that documents are

retrieved only when all of the keywords are present in the document. It is implemented using

Boolean indexing11 as they claim that Boolean indexing increases the recall at the expense of

precision.

This unit can be tailored further to behave like an intelligent IR engine that produces passages that

may contain an answer rather than listing an entire document that may contain the answer. In

passage-based retrieval, documents are divided into several passages and the size of the passages

could vary depending upon the implementation. Monz [2003] states passage-based retrieval proves

to be very useful in the QA task as information sought in a QA system tend to be found in a

sentence or two. Thus for a document D there would be several passages like P1, P2, P3 ... Pn. And

for the query Q the relevant passage is P2. So instead of calculating some kind of similarity measure

between D and Q, similarity measures between Pi and Q are checked for i between 1 to n. The

passage having a greater similarity value with the query is more likely to contain the answer or help

in generating the answer. Moldovan et al. [2000] uses a PARAGRAPH n operator to filter out

paragraphs. The PARAGRAPH n operator searches like an AND operator for the words in the query

with the constraint that the words belong only to some n consecutive paragraphs, where n is a

controllable positive integer. The parameter n selects the number of paragraphs, thus controlling the

size of the text retrieved from a document considered relevant.

Moldovan et al. [2000], after obtaining a list of paragraphs in the LASSO system, performs a

paragraph ordering based on radix12 sort. It takes into account paragraph-windows13 based on three

different scores that are 1) the largest Same_word_sequence-score, 2) the largest Distance-score and

11 In Boolean indexing, documents are represented as words with their position information. Queries are expressions
composed of words and connectives such as “and”, “or”, “not” and proximity operators such as “within k words of”.
The answer to the query is the set of all the documents that satisfy a query. [Harabagiu et al. 1999]

12 Radix sort is a linear sorting algorithm that functions by sorting the input numbers/words by each digit/character for
each digit/character in the number/word.

13 Paragraph-windows are determined by the need to consider separately each match of the same keyword in the same
paragraph. For a set of keywords {k1, k2, k3, k4} suppose k1 and k2 are each matched twice in a paragraph, k3 is
matched only once and k4 is not matched, then there will be 4 windows defined as [k1-match1, k2-match1, k3], [k1-
match2, k2-match1, k3], [k1-match1, k2-match2, k3], and [k1-match2, k2-match2, k3]. Each of these windows consist of
all the text between the lowest positioned keyword in the window and the highest position keyword in the window.
For each such windows 3 scores are calculated [Moldovan et al. 2000].

1. Same_word_sequence-score – which is the number of words from the question that are recognized in
the same sequence in the current paragraph-window.

2. Distance-score – which is the number of words that separate the most distant key-words in the
window.

3. Missing_keywords-score – which is the number of unmatched keywords.

10

3) the smallest Missing_keyword-score. Finally, a radix sorting is done across all the window scores

for all paragraphs.

1.1.3 Answer Processing

The final component is responsible for analyzing the documents or passages returned by the

previous unit and finally identify possibly a single answer (could be a ranked list of answers, too)

to the question. The passages or documents retrieved are based on the query terms used in the first

component (IR engine) and those query terms are identified while processing the question itself in

the Question Processing stage. Moldovan et al. [2000] states that recognition of the answer type is

crucial to the identification of the answer. Thus we have already noticed that during the Question

Processing stage an expected answer type (EAT) is also formulated by most of the systems. From

Table 1 we have seen that each question is classified using possible question types. Those question

types give a hint of the possible answer that is expected for that question.

e.g. What is the capital of Bangladesh?

The above question can be classified as a location type question with an additional

constraint/information that the location must be a capital. Thus let the question type for the above

question be LOC-CAPITAL. Now if the system manages to identify a sentence like

e.g. The capital of Bangladesh is Dhaka.

having a term “Dhaka” labelled as LOC-CAPITAL and the sentence happens to contain the word

“Bangladesh” then that sentence can be considered a strong candidate for an answer. So we notice

that identifying the question type directly or indirectly helps in answer processing. The answer

extraction and processing part can employ many creative ways to improve the overall performance.

Jijkoun et al. [2007] implements 3 different approaches to answer extraction in their Quartz QA

system. In the first approach a table look-up method is searched for answers. The table is built

offline using predefined rules to extract specialized knowledge. The rules basically take advantage

of EATs such as location, dates etc. that are easily identifiable to build the offline table. At runtime a

match is looked for between the question and the entries in the table. Bouma et al. [2006a] also

implement such a table look-up method, which is discussed in the next chapter. The second

approach in Jijkoun et al. [2007] looks for answers by searching for the most frequent word n-grams

in the list of passages retrieved from the document processing stage. The third approach is similar to

the second approach but instead of searching for answers from the passages obtained from the

corpus, it tries to retrieve answers from the text snippets returned by the online web search engine

11

Google14. Monz [2003] talks about syntactic structure matching, pattern matching, lexical chaining

or linear proximity methods to find a possible link between the given question, the possible answer

pattern and the retrieved passages from the previous components to identify the likely answer to the

question. This unit is highly dependent on the creativity of the system designer to find the precise

answer to the question. The document collection may have an exact answer to the question or might

contain facts from which the exact answer is to be inferred. The performance of the overall system

is also dependent on the fact that how closely the question is matched with a passage that may

contain the answer and finally how that answer is extracted or generated. Bouma et al. [2006a]

states different ranking methods to rank the answers when there is more than one answer.

1.1.4 Additional Important Components

Here we introduce some special components that may work as add-ons to the skeleton architecture

of a QA system. Not all these components need to be present in a basic QA system; however,

several research works have shown how such add-ons influence in the overall performance of a QA

task. This section give general detail of such add-ons. Their respective uses are discussed in detail

in relevant sections of this thesis.

A parser is a program which in its simplest form checks for the grammatical consistency of a

sentence and builds a hierarchical data structure by following a set of rules. In natural language

processing, parsing is a method to perform some form of syntactic analysis of a sentence. The end

result of parsing is one or more parse trees giving detailed structural information about the syntax of

a sentence. This structural information comes in useful for many natural language processing tasks

such as information extraction (IE), sentence generation and especially question answering. We will

discuss here how and which parsing technologies are useful in a QA task.

A syntactic parser will produce a syntactic parse tree (Fig. 2) which gives information about the

syntax of a sentence. The tree structure will help in identifying the constituents, such as noun

phrases and verb phrases, but does not give further internal information such as dependencies

between the tokens/constituents etc.

14 Google is a popular search engine owned by Google Inc.. It scans web pages to find instances of the keywords
entered as query terms.

12

A dependency parser on the other hand produces a dependency tree (Fig. 3) which looks into the

concept of a word-to-word link to identify any semantic relations between words. Thus whenever

two words are connected by a dependency relation, one of them is the head playing the larger role

in determining the behavior of the pair and the other is its dependent, which acts as a modifier,

object or complement to the head. The dependent presupposes the presence of the head and the head

requires the presence of the dependent too [Covington 2000].

13

Fig 2: Syntactic parse tree (Constituency tree)
[Covington 2000]

Fig 3: Dependency parse tree [Covington 2000]

A dependency parse tree may not preserve the word ordering of sentences but gives more

information about which word is dependent on which one. A dependent that precedes its head is

called a pre-dependent, and post-dependent follows the head. Additional structural information from

the parse trees can be utilized in many ways within a QA task. A shallow parsing15 of the question

can help in identifying a clause or a phrase and thus could ultimately help in choosing the query

terms for the retrieval component. A dependency relation can further help in identifying the head

and thus helping in matching a question with an answer.

A POS tagger marks up the words in a sentence to a particular part-of-speech based on its definition

as well as the context. This helps the parser to produce the structural information.

A Named Entity (NE) tagger is similar to a POS tagger but only identifies and tags some predefined

categories such as names of persons, organizations, locations etc. An NE tagger is very important

tool for a QA task. Sometimes some adjectives maybe part of a proper/common noun and thus if the

adjective is considered literally then it might lead to something unexpected.

e.g. Which city is known as the Big Apple?

For the above question, though “big” itself is an adjective, in the example it is actually part of the

named entity “Big Apple”. Thus the QA system needs a mechanism to tag “Big Apple” as a named

entity and search for “Big Apple” as a single term rather than considering them as individual terms

and omitting one or the other while formulating the query. Further, when an expected answer type

(EAT) is formulated before an actual answer is obtained the EAT can point to a specific NE class

making the answer extraction task easier.

e.g. Where is the river Nile?

For this question a possible EAT is a location. Thus the retrieved passages/documents should

contain some entities marked as locations.

A stemmer extracts the morphological root form of a word, e.g. “Dietary”, “dietician” are reduced

to its root form “diet”. Stemming helps in formulating the query term for the document retrieval

component. Monz [2003] states that some QA systems do not use stemming to avoid compromising

15 Shallow parsing (chunking or light parsing) is an analysis of a sentence which identifies its constituents without
giving much information about the sentence's internal structure.

14

with early precision; however, some hybrid approaches consider both the root and actual one to

improve the document similarity during the document retrieval task.

A machine translation engine takes in a text in one language (source) and translates it to another

language (target). There are mainly two different approaches to machine translation, 1) rule-based

approach and 2) data-driven approach. In a rule-based approach the source language is analyzed

thoroughly to identify some properties between the source and the target language. These properties

when implemented as a set of rules help in translating the source language to the target language.

The identified rules are responsible for transferring the grammatical structure between the two

languages involved (source and target). Various tools such as morphological analyzers, parsers,

taggers etc. are used to generate these rules. These rules can be identified one at a time by human

experts or they can be identified by some kind of machine learning model. The second approach to

machine translation is the data-driven approach, which makes use of large monolingual and/or

parallel corpora16 to translate the source language to the target language. The pre-requisite for this

approach is a decent sized corpora as a source of knowledge. A statistical approach can be utilized

to build a model out of the corpora to help in the translation.

A transliteration engine takes in letters of one language and maps it to the letters of another

language. It attempts to produce a one-to-one correspondence between the languages involved

(source and target). The mapping can be formulated based on any established ease of use

methodology or based on matching sounds (phonetic approach) between the languages involved.

The phonetic approach is widely used. Transliteration is used in cases where the target language

script is not available, instead the source language script is used to represent the target language.

This work uses phonetic transliteration as an approach to translation for cross-language question

answering task.

1.1.5 General Evaluation Mechanism For QA Systems

From the previous sections it is evident that QA systems are not just made up of a single component

but a series of components working together to achieve the final goal. Though the final goal of a

QA system is to obtain a correct answer to the question asked, each of the individual components

within the system has their own goals which eventually lead to the final goal. Thus the performance

16 A parallel corpus involves more than one corpora in different languages where each corpora is an exact translation
of the others.

15

of the individual components are likely to influence the entire QA task. Ferrandez et al. [2006] says

the overall accuracy of a QA system is directly affected by its ability to correctly analyze the

question it receives. Moldovan et al. [2000] states that question analysis phase is responsible for

36.4% of the total number of errors in open-domain QA systems. QA systems may be evaluated in

two different approaches. They are:

1. Black-box evaluation approach – Here the performance of the entire system is considered a

whole without caring much about the performances of the individual components. Thus the

final answer from the system is compared with the question asked to evaluate the QA

system. A correct answer is what is expected from a QA system but there could be more than

one correct answer for a given question. Thus the QA system needs to find all the possible

final answers. Then there could be situations where the system needs to infer an answer

from related facts. Further, for questions requiring a descriptive type answer it is hard to tell

which answer is the best choice. Thus automatic evaluation methods and measures are not

very suitable at all times to check the performance of a QA system. TREC is one such

community involved in the research and evaluation of different tracks under the umbrella of

information retrieval and extraction. TREC has some automated evaluation measures for QA

systems but as TREC QA track is based on closed domains thus human judges play a major

role in identifying the best answer for a question from the closed corpus and then allowing

the researchers to compare their QA systems performance against those answers. Precision

and Recall values are one way to evaluate QA systems performance and would fall under the

black-box evaluation approach but the value itself might not make much sense in certain

implementations.

2. Glass-box evaluation approach – Here each of the individual components of the QA systems

are evaluated with appropriate methods particular to that component. The goal is to have

optimal performances for each individual component which will ultimately lead to a better

overall performance of the QA system. Examining and evaluating the components

individually helps in identifying errors and problems particular to that component. Thus they

can be fixed otherwise an error in one component leading to a poor performance in that

particular component will be forwarded to the next component and so even if the next

component was error-free due to some wrong input it might perform erratically and give bad

results. This chain could follow resulting into an overall poor performance of the QA

system. Thus glass-box evaluation approaches makes much sense to evaluate a QA system

and fine tune individual areas.

16

Further details about these approach can be found with their implementation details at relevant

sections of this document.

1.2 Cross-Language QA System

In a cross-language QA (CL-QA) system, the question are asked in language A and the system will

look for the answers from a document collection which is in language B. After the system finds a

relevant answer in language B from the document collection, the system will translate back that

answer to language A (ideally) to finally present it to the user. In some implementations, the answer

found in the intermediate language may not be translated back to the language in which the question

was asked but rather left that way. The framework suggested in this work has a similar approach

where the answer found in the intermediate language is not translated back to the language in which

the question was asked and the reason behind such a stance is explained briefly in the next section

as well as in further details in subsequent chapters. Thus the general architecture remains the same

but with one or more additional translation components as shown in Fig 4.

The translation component at the top takes in a question in language A and translates it to language

B. The document collection is in language B. The actual QA system works only with one language

that is language B. Once an answer (in language B) is found it is translated back to language A

which is the actual output of the system. In the case of CL-QA system, the precision of the system

depends on the correct translation and analysis of the questions that are received as input. An

17

Fig 4: Architecture for Cross-language QA system [Monz
2003]

imperfect translation of the question causes a negative impact on the overall accuracy of the system.

Currently, there are four approaches in CL-QA systems to solve the bilingual task in which the

question and the documents are in different languages [Ferrandez et al . 2006]. They are:

1. Using an automatic Machine Translation System to translate the question and the

answer

2. Translating terms using a bilingual dictionary

3. Ranking results from different MT systems and choosing the best one

4. Using a set of pre-processed transformation rules in order to improve the translation

outputs.

Examples of each of the approaches with their associated implementations are discussed in the

relevant sections of the document.

1.3 The Bangla Language

The language Bangla or Bengali17 is one of the Indo-Aryan18 languages of South Asia with over 200

million native speakers. Bangladesh with a population of about 150 million is the largest

concentration of Bangla native speakers. Bangla is also spoken in the western part of India.

Bangla is written in the Brahmi-derived Bangla script19. Bangla underwent a period of vigorous

Sanskritization20 that started in the 12th century and continued throughout the middle ages

[UzZaman 2005]. The Bangla lexicon consists of tatsama (Sanskrit words that have changed

pronunciation, but have retained the original spelling), tadbhava (Sanskrit words that have changed

at least twice in the process of becoming Bangla), and a fairly large number of “loan-words” from

Persian, Arabic, Portuguese, English and other languages. Also a large number of words are

considered to be of unknown etymology.

The Bangla script is a segmental writing system where the vowel graphemes21 are mostly attached

17 Interchangeably used with Bangla. From this point onwards only Bangla is used to refer to the Bangla Language.
18 The Indo-Aryans are the ethno-linguistic descendants of the Indic branch of the Indo-Iranians. As of today, there are

over one billion native speakers of Indo-Aryan languages, most of them native to South Asia.
19 The Brahmi script, which appeared in the 5th century, represents the earliest post-Indus corpus of texts and some of

the earliest historical inscriptions found in India. It is one of the most important writing systems in the world by
virtue of its time depth and influence and is the ancestor to hundreds of scripts found in South, Southeast and East
Asia. http://www.ancientscripts.com/brahmi.html

20 A particular form of social change found in India.
21 A fundamental unit in a writing language.

18

http://www.ancientscripts.com/brahmi.html

to the consonant graphemes as an ancillary glyph22. The Bangla script has a finite number of

graphemes divided into vowels, consonants (including consonant clusters23), modifier graphemes,

digits and punctuation marks. In the script 11 of the graphemes are vowels and 39 are individual

consonants.

The Bangla script has an irregular phonetic nature, so apart from those 50 standalone graphemes, it

can accommodate a large set of consonant clusters which ultimately create a gap between the

phonetic and orthographic rules for a given Bangla word [UzZaman et al. 2006]. All these

contribute to the complexity of the Bangla spelling rules with the Sanskritization process as the

largest contributor [UzZaman 2005]. Despite all these complexities Bangla is the first language of

choice for any sort of communication (written or spoken) among the native speakers. Numerous

publications can be found in Bangla including text books, newspapers and official documents. The

22 A glyph is an element of writing. A grapheme is made up of one or more glyphs.
23 In Bangla consonant clusters are called juktakkhors.

19

Fig 5: Bangla Graphemes (the ones in first row are vowels and
the rest are individual consonants)

[http://www.itcfonts.com/Ulc/2611/BookRevBengaliChar.htm]

use of Bangla was not very popular earlier in digital terms in the South Asian regions when personal

computers were first introduced. The reason behind not using Bangla in daily computing was

because of the complexity in spelling rules. Earlier there were no standardized keyboard layout for

Bangla and thus proprietary fonts were only evolving with their own layouts. Each of such font

developers mapped the Bangla letters to the English keyboard according to their wishes. This led to

the problem of sharing a Bangla digital document more complex as both parties needed the same

font installed to read a document. But, as time passed by, Bangla was included in Unicode24 and

further a standard keyboard layout was introduced to be followed for digital Bangla writings. With

these introductions came Bangla Unicode fonts which made things much easier. Also localized

versions of the popular softwares started to become available among computer users making Bangla

the second language of choice in daily computing. Bangla fonts started to be available in handheld

devices and mobile phones too. But the script having those 50 standalone graphemes and

furthermore clusters and a complex set of spelling rules fails to attract more users to type using the

Bangla script. Unless a user is very familiar with the standard Bangla keyboard, the Bangla typing

process ends up to be very time consuming and error prone. But these situations did not hold native

users from using Bangla for digital communications. Rather transliterated Bangla turned out to be

much more popular in unofficial communications.

Transliteration is a way of mapping letters of one script to the letters of another script. Using a

transliteration scheme, all those 50 standalone graphemes of the Bangla script can be mapped easily

by the 26 letters of the Latin alphabet (English). Transliteration can be implemented by a letter to

letter mapping (one to many correspondence possible too) between the English script and the

Bangla script (both ways) and also based on the phonology of the letters of the target script. Users

may key in their messages in Bangla using the English character set based on the original Bangla

sounds. Such transliterated Bangla is exchanged over unofficial emails and text messages mostly.

With the popularity of the use of Bangla in a transliterated form led to many digital applications in

Bangla to evolve over this concept. Rather than asking users to type in Bangla, many application

interfaces ask the user to key in their Bangla text in a transliterated form and the application maps

the transliterated Bangla to an equivalent Bangla text using the Bangla script. And as English script

is more accessible digitally, Bangla speakers tend to use such a transliteration scheme to express

Bangla information more frequently.

24 Unicode is a computing industry standard for the consistent representation and manipulation of text expressed in
most of the world's writing systems. The latest version of Unicode consists of a repertoire of more that 100,000
characters covering 90 scripts. http://en.wikipedia.org/wiki/Unicode

20

http://en.wikipedia.org/wiki/Unicode

Despite the wide usage and rich diversity of the Bangla language, it lacks most of the language

processing tools and resources specific to Bangla. The language is still in its infant stage as far as

research in the area of computational linguistics is concerned. The Bangla language lacks a basic

general purpose corpus as well as any computational grammars to parse Bangla sentences. There is

some ongoing research to build some language specific tools for Bangla such as a news corpus

[Arafat et al. 2006, Pavel et al. 2006], POS Tagger [Hasan et al. 2006], Text to Speech system

[Alam et al. 2007], Bangla OCR [Hasnat et al. 2007], text summarization and categorization,

machine translation system for Bangla, Bangla information retrieval systems and Head-driven

phrase structure grammar for Bangla [Mahmud et al. 2007].

1.4 Aim Of This Thesis

This thesis discusses some of the cross-language question answering systems that are available

mainstream. It highlights most of the important design and implementation issues of such cross-

language question answering systems. Finally, with the gathered knowledge, a prototype framework

is proposed for Bangla. Bangla has a huge speaker base but even then it lacks many of the basic

computational resources and tools that are already available to other languages. The main research

issue of this work was to explore the possibility of a QA system without having access to the

mainstream components that are common to regular QA systems.

While designing the prototype framework for a language with very limited computational resources,

many workarounds and limitations had to be accommodated because of the obvious reason of lack

of proper resources specific to the language involved. However, based on the knowledge gathered

from other systems a very limited capability interface for a Bangla QA system is built. The system

is in no way a complete QA system, however, it gives a basis to implement a complete QA system

for Bangla. The implementation involves questions from the medical domain only. The reason

behind the choice of the domain is because the Bangla lexicon consists of a good number of loan-

words from other languages. These loan-words sound almost the same as it would sound in its

original language. And almost all the medical terms available in English have been imported to

Bangla. Though some terms do have a proper translated version in Bangla, but the loan versions are

used widely in daily basis. In this work a translation based on transliteration and a table look-up

method is proposed as an interface to the actual QA task. The implementation part of this thesis thus

involves transliterating a Bangla question as an equivalent Latin alphabet (English) version that

could be used in an actual QA task.

21

The proposed framework discusses in detail how such an interface can help in a cross-language QA

task. As stated already, the aim of this thesis is to give a detailed information on QA systems and

mostly cross-language QA systems with an introduction to a new concept of translation based on

transliteration and a table look-up method as an interface to the actual QA task where a proper

machine translation engine is unavailable. Thus, the work mainly explore the possibility of

translation based on transliteration and table look-up as an interface for a limited domain QA task.

The performance of the proposed interface is evaluated and further details are given accordingly on

how such an interface can help in developing a complete QA system for Bangla.

1.5 Chapter Summary

While this introductory chapter has presented some general details on Question Answering (QA)

systems, the Bangla Language itself and the aim of this thesis, the following chapters will attempt to

convey further details and approaches to the QA task. It will highlight the mainstream systems and

concepts in details that are leading in the QA task and specially in cross-language QA task. This

document further discusses the related works in Bangla language computing and how they have

helped in bringing together the new idea of translation based on transliteration and table look-up

as an interface for cross-language QA system.

The next chapter Literature Review highlights some of such recent important research related to

cross-language QA systems and the hypothesis of this work.

The chapter Design and Experimental Framework discusses the proposal in further details with the

design issues and arguments behind such approaches.

The chapter Analyses, Evaluation and Discussion discusses the overall system behavior after the

prototype has been implemented.

Finally, the last chapter Future Work and Conclusion summarizes what we have learned and

achieved through this work. It also gives directions to improvements, enhancements and future

research.

22

2 Literature Review

There is much ongoing researches on QA systems and mainly on cross-language QA systems. This

chapter is a restricted literature review of some systems (covered topic by topic) that somehow

directly or indirectly influences in the main aim and the design decisions of the project.

From Pasca [2003] we have already learned that QA systems are basically made up of 3 main units

which are the:

1. Question Processing Unit

2. Document Processing Unit

3. Answer Processing Unit

All these units may be produced individually by different groups for completely different purposes

and later modified and merged to form the actual QA system. Thus each of the units may not have

similar working patterns and internal design but still could achieve the final goal of question

answering. The units could only be dependent on the outputs of their preceding units in the system

flowchart, however, to achieve an overall optimal performance the units should work as closely and

similarly as possible. There are certain overlaps between the units and thus if the units are designed

as closely as possible then apart from the outputs of the unit other intermediate workings of the unit

could help their neighboring units eliminating some redundant tasks.

2.1 Question Processing

By now we have already learned that though QA systems are somewhat similar to IR systems, they

have different emphasis. Laurent et al. [2006] states 3 key features that identify a QA or an IR

system. They are

1. The query mode is a natural language question for QA systems and keywords with some

boolean operators for an IR system.

2. The output from the systems which can be an exact answer from the QA systems and a list

of documents from the IR system.

3. The corpora which can be a closed and static set of documents or an open and dynamic

document collection for any of the systems.

23

The input to a QA system is thus always a complete question. Bouma et al. [2006a] in their Joost

system takes in a natural language question in Dutch. [Bouma et al. 2008], [Bouma et al. 2007],

[Bouma et al. 2006a], [Bouma et al. 2006b] are actually a series of papers on the same Joost system

that were published over several years highlighting the new things that have been added to the

actual skeleton system. The system architecture of Joost is shown below.

Joost actually started as a monolingual QA system for Dutch. Once the question is given to the

system the question is then parsed for syntactic information by a parser called Alpino25 [Bouma et

al. 2001]. Once the question is parsed by Alpino, the syntactic information is used to determine the

subsequent steps of the entire QA task. The actual goal of this question processing unit is to

25 Alpino is a wide-coverage, linguistically-motivated grammar and parser for Dutch based on the HPSG formalism. It
consists of 500+ grammar rules (defined using inheritance) and a large and detailed lexicon containing 100,000+
lexemes. Certain heuristics are implemented to deal with unknown words and ungrammatical or out-of-coverage
sentences. The grammar provides a 'deep' level of syntactic analysis, in which WH-movement, raising and control,
and the Dutch verb cluster (which may give rise to 'crossing dependencies') are given a principled treatment. The
output of the system is a dependency graph [Bouma et al. 2005].

24

Fig 6: System architecture of Joost [Bouma et al.
2007]

determine the question type and identify the keywords in the question [Bouma et al. 2006a]. Thus,

on the basis of the dependency relations returned by the parser the question class is determined

[Bouma et al. 2006b]. Joost works on a lot of pre-processed knowledge. This is a very common

approach in QA systems where designers try to gather knowledge from the corpus beforehand to

improve the actual QA task. Before actual questions are known, the text collection is exhaustively

searched for potential answers to specific types of questions such as capital, abbreviation, dates etc.

Such answers are extracted from the corpus off-line and stored in a structured table for quick

reference during the actual QA task [Bouma et al. 2005]. Such off-line methods have proven to be

very effective in QA [Fleischman et al. 2003]. The Joost system works on the CLEF26 corpus. The

entire CLEF data was thus parsed beforehand by the Alpino parser. Joost is able to determine 29

different question classes. 18 of those classes were determined by the off-line method. On the basis

of the dependency relations returned by the parser the question class is determined in Joost. For

each of the question class, one or more syntactic patterns were defined. Depending on the question

classes, additional arguments can be identified.

The extract above (Fig 7) is a dependency parse from the Alpino. Here it is seen that the

dependency relations assigned to the question “What is the capital of Togo?” (Wat is de hoofdstad

van Togo?) match with the pattern in the figure and thus instantiate Country as “Togo”. So the

question class Capital is also assigned with “Togo” as an additional argument. Similarly, “Who is

the king of Jordan?” would be classified as function(king, Jordan) and “In which year did the

liberation war in Bangladesh take place?” would be classified as date(liberation). Some question

classes require access to lexical semantic knowledge which is obtained from the Dutch

EuroWordNet like “In which American state is Iron Mountain?” asks for a location. Thus the

system should be aware that 'state' refers to a location too. Further, “Who is the advisor of Yasser

Arafat?” should be classified as function(advisor, Yasser Arafat), so the system should know that

advisor is a type of function [Bouma et al. 2006b]. Once the question type is determined the next

stage of the Joost system is determined.

26 The Cross-Language Evaluation Forum (CLEF) promotes R&D in multilingual information access by (i) developing
an infrastructure for the testing, tuning and evaluation of information retrieval systems operating on European
languages in both mono-lingual and cross-language contexts, and (ii) creating test-suites of reusable data which can be
employed by system developers for benchmarking purposes. http://www.clef-campaign.org/

25

Fig 7: Identifying question class [Bouma et al.
2007]

http://www.clef-campaign.org/

As Joost works with a closed set of text such as the CLEF dataset, pre-processing is possible. But

for systems working on open data set such pre-processing might not be possible at all.

Zhang [2004] is one such system where the questions are answered not from a saved collection of

text but from the Internet in real-time. The system is called LAMP27 which is based on the claim

that the Internet is an ideal source of answers to a large variety of questions due to the fact that

tremendous amount of information is available online these days. The system as others take in a

natural language question, transforms it to an appropriate query and submits the formulated query to

the popular search engine Google. The system is based on factoid questions only. It uses the

Support Vector Machine (SVM) to classify the question given to the LAMP system. The system

follows a two-layered question taxonomy having 6 coarse grained categories and also 50 fine

grained categories [Li et al. 2002] like Table 4.

The system assumes that questions are classified to a single category regardless of their ambiguity.

They tried several other machine learning algorithms apart from SVM such as the Nearest

Neighbors (NN), Naive Bayes (NB), Decision Tree (DT), and Sparse Network of Winnows (SnoW)

to classify the questions to any one of those categories. They used two surface text features bag-of-

words and bag-of-n-grams (all continuous word sequences in the question) in their SVM. The

results show that SVM with the bag-of-n-grams feature had the most accuracy among all the other

learning algorithms. Once it classifies the question it moves to formulate a query to be used. The

process is discussed in the next section.

27 Learning and Answering Program (LAMP)

26

Table 4: The coarse and fine grained question categories [Zhang et al. 2003]

2.2 Document Processing

Once the question has been processed, the document processing unit becomes responsible to find

relevant documents or passages related to the question given to the system at the beginning. The

document processing unit is mostly a retrieval engine that takes in keywords and gives back

passages or documents relevant to the keywords.

In Joost the question type determines the two possible ways of document processing. The Joost

system has an off-line method called the Qatar component. This Qatar component answers those

questions that match with one of the table categories. These tables are created off-line for facts that

frequently occur in fixed patterns. These facts are stored, together with the IDs of the paragraphs in

which they were found, as potential answers.

For those questions that cannot be answered by the Qatar component, a traditional keyword-based

information retrieval is used to narrow down the search space for the linguistically informed part of

the QA system which identifies the answer [Bouma et al. 2006b]. Agichtein et al. [2001] states that

using search engine specific queries instead of the raw question might significantly improve the

effect of question answering. Thus keywords are identified from the question using its content

words. Irrelevant and function words are eliminated using a static stop-word list. The authors

experimented with many publicly available IR engines and finally chose Zattair [Bouma et al.

2006b] as their IR engine because of the speed and recall performances. Using the keywords from

the question, the IR system retrieves relevant passages from the corpus. The authors found through

experimentation that segmentation of the documents into paragraphs is the most efficient for IR

performance in a QA task [Bouma et al. 2006b]. They used existing markups in the corpus to

determine the paragraph boundaries. Named entities found by Alpino were used as additional token

to identify a paragraph and making the overall IR task easier.

In Zhang [2004] two ways are used to formulate the query.

• Interrogative Word Deletion: As question elements like “who”, “what”, “when” are usually

not found in the answer thus they are dropped which increases the recall of the search

without affecting precision. Regular expressions are used in the LAMP system to

automatically remove such words.

27

• Verb Form Conversion: For instances like “When did Obama visit Afghanistan?” it is more

likely that texts would be found as “... Obama visited Afghanistan ...” rather than as “... did

Obama visit Afghanistan ...”. Thus LAMP converts the main verb from its original form to

the third person singular form. The MEI28 parser is used to locate the main verb in the

question and PC-KIMMO29 is used to find the different verb forms.

Once the query is formulated it is submitted to the search engine Google to obtain the answer. The

top 100 search results are considered in the system to find the answer to the natural language

question. In Google or any other Internet search engines, a search result is usually an URL30, a title

and some further string-segments of the related web document. Usually the title and the text

segments are called “snippets”. The LAMP system uses only those snippets of text to find the

answer which is described in the next section.

2.3 Answer Processing

At this stage any QA system would have some text snippets, passages or complete documents as

candidates from where the actual answer is to be obtained. Systems may just present an exact text

extract from a candidate as an answer or they may generate a proper answer from those candidate

text segments. Some may give possibly a ranked list of answer candidates and leave it up to the user

to make a pick or in ideal situations it would give a single well-formed correct answer to the

question asked.

In the answer processing stage of Joost it has this far obtained a set of paragraph IDs either provided

by Qatar or the IR system that was used. For questions that are answered by means of table look-up,

the relation table provides an exact answer string. For other questions, answer strings are to be

extracted from the set of paragraphs returned by the passage retrieval component. The paragraph

IDs are used to retrieve the dependency relations of the sentences in those paragraphs. Bouma et al.

[2006b] states that various syntactic patterns are defined to find the exact answer. For questions

asking for a named entity the component should find a constituent headed by a word with the

appropriate named entity. The authors claim that as all these occur frequently in the corpus, so more

than one potential answer is identified from the text collection. Thus comes the need of ranking the

potential answers. The authors also used the following features to determine a score for the answers:

28 A Maximum-Entropy-Inspired (MEI) Parser by Eugene Charniak
29 PC-KIMMO is a two-level processor for morphological analysis. It is designed to generate and/or recognize words

using a two-level model of word structure in which a word is represented as a correspondence between its lexical
level form and its surface level form. Available at http://www.sil.org/pckimmo/about_pc-kimmo.html

30 Uniform Resource Locator (URL)

28

http://www.sil.org/pckimmo/about_pc-kimmo.html

• Syntactic similarity – the proportion of dependency relation matching with the question and

the possible answers.

• Answer Context – a score is given for the syntactic context of the paragraph containing an

answer.

• Names – the proportion of named entities found in the answer string.

• Frequency – the frequency of the answer in all the paragraphs returned by the IR engine.

• IR – the score assigned to the paragraph from which the answer was extracted.

Earlier the authors did not consider ranking the answers for table look-up method but later they

implemented the entire ranking features to determine a score for all the possible answers.

Zhang [2004] is based on real-time data as whatever the search engine returns is new for the system.

It uses a HMM-based named entity recognizer and some other heuristics to extract information from

the snippets which would be the possible answer candidates. For the question “Who was the first

American in space?” Google returns the following result.

Thus the snippets extracted from Google after eliminating the other markups and URLs end up to

be like the following.

29

Fig 8: Google search results [Zhang 2004]

Zhang [2004] describes a snippet as S containing a plausible answer A. Using bag-of-words feature

vector s=(s1,s2, ... sn), where n is the number of all words and si is the occurring frequency of the i-

th word in snippet S. The question Q is also represented as a vector where q=(q1,q2, ... qn). Each of

the snippet S in the search result is assessed individually by the similarity between S and Q and the

plausible answers contained in the top few snippets are selected. Zhang [2004] proposes an answer

selection method based on aggregation. Thus for each plausible answer A the system aggregates all

the snippets containing A into a cluster CA. Also the snippet clusters of different answers referring to

the same entity are merged into a single cluster as can been seen in the following example where

“Sally Kristen Ride” and “Sally Ride” are merged to a single cluster as they are two variants of the

same person name.

The snippet cluster CA of a plausible answer A summarizes A's occurring context. It can also be

30

Fig 9: The snippets from Google [Zhang 2004]

Fig 10: The snippet clusters constructed from the
example [Zhang 2004]

represented as a vector a=(a1,a2, ... an) where n is the number of all words and ai is the occurring

frequency of the i-th word in CA which is equivalent to a=ΣAεSksk. A score function is used to rank

the plausible answers which is,

where q is the feature vector of the question Q, a is the feature vector of CA and Q is the angle

between them. The function incorporates both similarity and redundancy information for answer

selection and the value of score(Q,A) is the length of the “projection” of a on q. All the plausible

answers are ranked and the top ones are returned as an output from LAMP.

2.4 Evaluation Methods of QA systems

Laurent et al. [2006] talks about evaluation methods to compare performances and user-friendliness

of both QA systems and Information Retrieval (IR) systems. They apply their methods of evaluation

to Qristal (a French acronym meaning “Question Answering System using NLP”) and Google

Desktop Search engine. Qristal is based on the Cordial syntactic analyzer31 and makes heavy use of

all the usual constituents of natural language processing and sometimes manages to cover anaphora

resolution and metaphor detection [Amaral et al. 2004]. The system evolved from a single-user

program to a multi-lingual multi-user system [Laurent et al. 2006]. The latest marketed version of

Qristal was evaluated in CLEF2005 and it ranked first in the evaluation for French as well as for all

cross-language systems considering all the pairs [Laurent et al. 2005].

31 Cordial Analyser – Performs a morphological, syntactic and grammatical analysis of French texts.
http://www.synapse-fr.com/Cordial_Analyseur/Presention_Cordial_Analyseur.htm

31

Fig 11: The LAMP system [Zhang 2004]

http://www.synapse-fr.com/Cordial_Analyseur/Presention_Cordial_Analyseur.htm

Laurent et al. [2006] evaluated the two systems on 3 different “user effort” criteria. They are:

1. the time needed to key in the question

2. the delay before the results are displayed

3. the reading time of the snippets or sentences to reach a correct answer.

The authors concluded that though IR systems have advantages in some “user effort” situations

such as keying in the question, it is the the QA system that has an overall better performance over

both the systems.

In the basic Joost system that the authors implemented, they claim that the scores were satisfactory

for factoid and definition type questions. An extract of the scores are shown in Table 5.

Bouma et al. [2005] found that out of the 140 factoid questions they had, 46 were assigned a type

corresponding to a relation table. For 35 of those 46, an answer was located in one of the relation

tables. The remaining 11 went through the IR component which was the fall-back strategy for the

Qatar component. Parsing errors were the main cause of some wrong and incomplete answers.

Bouma et al. [2006b] concluded from their implementation that the dependency parsing of both

questions and the full document collection turns out to be very useful for developing an adequate

QA system.

Zhang [2004] ran several experiments using the test questions and the answer patterns of the dataset

from TREC-QA. They found that most of the TREC-QA questions can be answered from the

snippets obtained from Google's top 100 search results.

32

Table 5: CLEF Evaluation for Joost

Zhang [2004] claim that the abundance and the variation of texts on the Internet allows the system

to find correct answers with high probability, because the factual knowledge is usually replicated

across the Internet in different expressing manners. The “Mean Reciprocal Rank (MRR)” and the

“Confidence Weighted Score (CWS)” were used to rank their answers.

For calculating MRR, n is the number of test questions and ri is the rank of the first correct answer

for the i-th test question.

For calculating CWS, n is the number of the test questions and pi is the precision of the answers at

positions from 1 to i in the ordered list. The performance of the LAMP system on TREC11 dataset

is shown in Table 7.

The Mean Reciprocal Rank (MRR) score of LAMP was not close to the best QA systems in TREC

and the author claims that this was due to the fact that the answer patterns (regular expressions)

provided by TREC were very limited as many correct answers were judged wrong since they do not

occur in the TREC specified document collection. Another factor they noticed was questions related

to a period of time such as “Who is the U.S. president?” would be changing over time and can be

33

Table 6: How many answers to TREC questions can be found in
Google snippets [Zhang 2004]

Table 7: MRR and CWS scores of LAMP [Zhang 2004]

noticed over the Internet, however, in a closed document set the fact might not change at all over

time. So, Zhang [2004] state that the text found over the Internet are messier than any closed

document set such as the TREC document collection. Overall the LAMP system performed well on

PERSON, LOCATION and DATE related questions. Zhang [2004] concludes by saying that a high

performance QA based on Web search results is feasible.

2.5 Cross-Language/Multilingual QA systems

Multilingual support is a crucial aspect when the language of the search and the language of the text

collection are different [Magnini et al. 2001]. Most QA systems work with a single language as it is

much easier to implement. However, multilingual or cross-language QA systems can be useful in

many scenarios. One such case would be where one of the language of interest does not have

enough digital resources of its own to produce an answer to a question. In such scenarios the

question could be given in language A, the question would be translated to language B as language

B has more digital resources and finally the results obtained using language B would be translated

back to language A. In some cases the answer obtained in language B may not be translated back to

language A as will be the case of this prototype system proposed in this work. The actual scenario

and the arguments behind the approach are discussed ahead. There are four different approaches to

solve the bilingual task [Ferrandez et al. 2006] in any multilingual scenario. They are:

• Using a fully automated Machine Translation (MT) system to translate the question into the

language in which the text collection is.

• Using a bilingual dictionary to translate word by word.

• Having a hybrid of automatic MT systems to translate questions/answers.

• Using a set of pre-processed transformation rules to translate questions or help in correcting

translations of automated MT systems.

For the Joost system multilingual support was implemented too using an automatic MT system. The

system took an English question, translated it into Dutch using the freely available translation

engine Systran. There were some obvious drawbacks of using machine translation such as

• translations often resulted in grammatically incorrect sentences

• even if a translation could be analyzed syntactically, it contained words or phrases that were

not anticipated by the question analysis module

• named entities and multiword terms were not identified or wrongly translated

34

Bouma et al. [2007] says that automatically generated translations are usually of poor grammatical

quality. As their Joost system is based on parsing the question they found that due to poor

grammatical form of the translated question there were unexpected parse results and thus the

question classification is done incorrectly. To avoid such a situation they used an English question

classifier based on the question classes of Li et al. [2002], the same classes used in LAMP by Zhang

[2004]. For the monolingual part Joost only used the 40 question classes that they obtained from

their Dutch dataset. They constructed a mapping from the question types used for English to the

question types used in Joost. Both the mapped English question type and the Joost type assigned to

the translations are used to find an answer to the question. Some mismatches were noticed in the

mapping process as Bouma et al. [2007] claims that Joost expects a more fine-grained class than the

class produced using Li et al. [2002]. For instance “What is the capital of Bangladesh?” would be

classified as loc:city using Li et al. [2002] but as Joost has the class capital, it would thus be

classified as capital. Bouma et al. [2007] further says that question classes assigned by Joost are not

just labels but also includes some phrases from the question that eventually helps in answering the

question. For instance a question like “What does UNICEF stand for?” would be assigned the label

abbreviation(UNICEF) by Joost unlike other systems that classify the question as abbr:exp. In most

cases the question classes assigned by Joost ended up to be more helpful than the classes assigned

after mapping the English question class. However, exceptions were noticed for questions where

Joost couldn't assign a class due to bad parsing because of grammatically incorrect translation. In

such cases the use of mapped question class was more preferable over using no class at all. Later

the authors used Wikipedia to improve the performance of their system. Wikipedia has a complex

structure to hold the information. Here the authors removed some irrelevant materials from the

original XML version of the Dutch Wikipedia and finally used a highly simplified XML version

that contained only the information that were enough to identify the segmentation of the text into

titles, sections and lists [Bouma et al. 2007]. Further as Wikipedia keeps on expanding and new

things come into being, the authors started using the templates to identify the basic information for

a given entity using the list of attribute-value pairs [Bouma et al. 2006a]. They used XQuery to

extract all the attribute-value pairs from all the templates present in the Dutch Wikipedia. About 1.3

million tuples of the form <object, attribute, value, template_name> were found i.e. <AFC Ajax,

stadion, Amsterdam, ArenA, Voetbal_club_infobox>. The authors claim that the information in the

template tuples were potentially very useful for the QA task.

Further the authors considered expanding the query for a better IR performance. They tried to

35

extract and add various lexico-semantic information to the query such as:

• nearest neighbors from proximity-based distributional similarity

• nearest neighbors from syntax-based distributional similarity

• nearest neighbors from alignment-based distributional similarity

Bouma et al. [2007] concludes by claiming that the inclusion of Wikipedia made the QA task more

realistic and attractive. They are considering on using the structure of Wikipedia more seriously

which would enable answer extraction that combines NLP with XML-based extraction.

2.5.1 Components That Are Used To Give Multilingual support

To implement full or partial cross-language or multilingual support to any systems including QA

many approaches could be undertaken. An automatic machine translation engine between the

languages involved would be an ideal choice for that. A simple dictionary lookup method can also

be employed to translate texts between languages. Other heuristics could be used too such as Jiang

et al. [2007] suggest a transliteration approach with web mining to improve the named entity

translation. Such an approach could be very useful in QA systems as most questions include some

form of named entities within them. Jiang et al. [2007] suggest a 3-level transliteration model, 1)

English surface string to Chinese Pinyin32 string, 2) Chinese Pinyin string to Chinese character

string and 3) Chinese character language model. For a given English named entity, denoted as E,

Jiang et al. [2007] syllabify it into a syllable sequence SE = {e1, e2 ... en} with some linguistic rules

stated in the paper. For example, “Clinton” is split into “C / lin / ton”. Then a generative model is

used to transliterate the syllabified English name into Chinese character string based on Knight et

al. [1998]'s Machine Transliteration System. For the generated “syllable” sequence SE = {e1, e2 ...

en} a Chinese character sequence C = {c1, c2 ... cm} is looked for with the criteria C* = argmax

p(SE|PC) p(PC|C) p(C) where PC is a Chinese Pinyin sequence, p(SE|PC) is the probability of

translating PC into SE, p(PC|C) is the probability of translating C into PC and p(C) is the

generative probability of a character-based Chinese language model. The transliteration model is

evaluated by the Edit Distance measure between the character sequence of the “correct”

transliteration and the character sequence output by the system. [Jiang et al. 2007] claims the

addition of a transliteration model in NE translation improved the precision and recall of the NE

translation by a large margin. In their sample of 50 NEs, 48% were correctly translated.

32 Pinyin is the most commonly used romanization system for Standard Mandarin. http://en.wikipedia.org/wiki/Pinyin

36

http://en.wikipedia.org/wiki/Pinyin

Finch et al. [2008] presents a technique for transliteration based directly on techniques developed

for phrase-based statistical machine translation. They obtained correct or phonetically correct

results 80% of the time where the focus was to use transliteration to translate unknown words in a

speech-to-speech machine translation system.

UzZaman et al. [2006] propose a comprehensive English to Bangla transliteration scheme to handle

the full complexity of the Bangla Script. A phonetic encoding scheme is proposed to produce an

intermediate code-string that facilitates matching pronunciations of input strings and the desired

outputs. The proposed system has two approaches, a direct phonetic mapping and a lexicon enabled

mapping.

All these transliteration approaches can be used in cross-language QA system scenarios. This thesis

work proposes such a transliteration based approach to translation along with a table look-up

method as an interface in a cross-language QA system scenario. The language under consideration

in this thesis work is Bangla. Thus some Bangla machine translation related literature are discussed

too.

In Dasgupta et al. [2004], a 5-stage transfer based architecture is proposed to obtain a Bangla

syntactic tree from an English syntactic tree with an optimal time complexity for an English to

Bangla machine translation system.

37

Fig 12: Proposed transfer architecture for
MT (Dasgupta et al. 2004)

The 5 stages are 1) Tagging, 2) Parsing, 3) Changing the CNF33 parses to normal ones, 4)

Transferring English trees to equivalent Bangla trees and 5) Generating morphological analysis. The

authors used the CYK34 algorithm and claimed that the parsing steps were minimized to polynomial

order from exponential order. The CNF parses were converted to a normal parse tree using some

transformation rules and finally the transformed parses were converted to Bangla parse trees using a

bilingual dictionary.

Hossain [2008] developed an open-source English to Bangla machine translation system called

Anubadok35. It is written in Perl and uses the Penn Treebank annotation system for natural language

processing. It uses four major steps in translating from English to Bangla: 1) Pre-processing of

English documents, 2) POS tagging of documents from step 1, 3) English to Bangla translation of

POS-tagged documents and 4) Post-processing of translated documents. The POS tagged English

words are translated using a bilingual dictionary and then the translated words are organized in the

usual Bangla syntactic order (SOV36) to produce the final translation. The system writes out

translated documents as Unicode encoded Bangla texts.

2.5.2 Finite State Methods

Apart from automatic machine translation engines many other approaches could be used to obtain a

translation. These approaches could be used alongside the automatic machine translation engines to

improve their performance or they could be used completely on their own to translate text between

languages. Though an automatic machine translation engine is more preferable to translate texts

between languages, however, for some language pairs an automatic machine translation engine

might not be available. Bangla is such a language which has limitations in its digital language

processing tools. A complete Bangla to English machine translation system is yet to be available

though there are some ongoing initiatives. This thesis work deals with the language Bangla and

proposes an approach to translation based on transliteration in a cross-language QA system

scenario. The translation based on transliteration is achieved using the popular finite state

technology. Thus some important and related literature regarding finite state methods and

technologies are highlighted here.

33 Chomsky Normal Form
34 Cocke-Younger-Kasami
35 Anubadok is a Bangla word which literally means the one who translates.
36 Subject-Object-Verb. Though Bangla has a relatively free word-order SOV is the most common form.

38

An automaton, a mechanistic device, can be designed to embed certain properties of a formal

language. A formal language is a set of strings made by concatenating together symbols taken from

a finite vocabulary. The language may comprise a finite or an infinite number of sentences. For a

finite number a complete list of the sentences can be written down. But if the language generates

infinite number of sentences then it is not possible to list all the possible sentences, however, a

grammar can be defined which can characterize the sentences in some form of recursive or iterative

manner. Such grammatical rules can be applied to either produce further sentences or to recognize

certain sentences. Regular expressions are the most handy way to express such regular languages.

Regular expression is basically a formula that embeds the rules in which the symbols can be used

within a string. Regular expressions can be easily converted to a particular kind of automaton called

the finite-state machine which can be used to generate or check for the consistency of an input

string based on the actual grammatical rules formulated earlier. A finite-state machine consists of a

finite number of states and a function that determines transitions from one state to the others. The

machine somewhat represents the process of reading a sequential tape. The machine starts at a

distinguished initial state with the tape positioned at the first symbol of a particular string. The

machine transitions from state to state as it keeps reading the tape and eventually exhausting the

input tape. At the end of the tape if the machine is found to be in one of the states designated as the

final state then the machine has accepted the string read from the tape otherwise not. A finite state

machine is represented as a state-transition diagram where circles are the different states and arcs

between the circles are the transitions. The start state consists of an arrow pointed towards the state

and the final states are enclosed with double circles (Fig 13).

Transducers are a special type of automata which ultimately generates an output string. Each of the

transitions in the automata are labeled with two symbols. One of the symbol represents input and

the other represents the corresponding output. The transducer translates the input string to an output

string (Fig 14).

39

Fig 13: A finite state machine
[Wikipedia]

Though the syntax of a natural language cannot be completely described using finite-state machines

and regular expressions, however, the mathematical and computational simplicity of regular

expressions and finite-state machines can be used in different contexts to describe certain properties

of a natural language in a simple manner. Regular expressions have a clean, declarative semantics

but at the same time they constitute a high-level programming language for manipulating strings,

languages and relations [Kartunnen 2000]. For this reason they have turned out to be very useful for

linguistic applications. Descriptions consisting of regular expressions can be efficiently compiled

into finite-state machines which can eventually be determinized, minimized, sequentialized,

compressed and optimized to reduce use of computational resources as well as time.

2.5.3 Popular Finite State Manipulation Tools

This project makes use of finite-state machines specially transducers to the fullest to achieve its

primary goal of translation based on transliteration. The actual design of the finite-state transducer

is described in the next chapter. Here all the popular tools to handle finite-state machines are

described.

The Finite State Compiler (FSC) is an interactive interface for finite state calculus developed by

[Tapanainen 1995]. Apart from converting simpler regular expressions into finite state automata it is

also able to handle extended regular expressions, allows sophisticated features like lexical lookup

and analysis, parsing, writing scripts etc. It can further handle alternative regular expressions for

writing idioms. FSC was built primarily to handle multiword expressions (MWE) which could take

different forms while it is being identified from within a text. Those multiword expressions are

encoded as regular expressions according to a developed notation. Each idiom is compiled into a

finite-state network [Segond et al. 1995]. Whenever an idiom is matched their corresponding

meanings can be obtained from the transducer.

Xerox Finite-State Tool (XFST) [Beesley et al. 2003] is a utility tool to handle finite-state networks.

40

Fig 14: A finite state transducer [Jan Daciuk]

It is developed by the Xerox Corporation37. Simple automata and transducers can be easily created

using XFST. It is a successor of two similar earlier implementations IFSM and FSC. XFST is able

to read finite-state networks from binary files, regular expressions and other networks by a variety

of operations. It uses virtual networks to avoid excess computation which is a primary drawback in

traditional finite-state operations which produce huge networks. Users apply a network to determine

whether the string is accepted by the network or transform it to another string if the network is built

as a transducer. The tool allows different ways to get information about the virtual network and

finally to inspect and make modifications in that virtual structure.

FSA Utilities toolbox [Van Noord 1997] is a collection of utilities to manipulate regular

expressions, finite-state automata and finite-state transducers. Using the toolbox it is possible to

construct automata from regular expressions, performing minimization, composition,

complementation, intersection, Kleene closure, determinization (both for finite-state acceptors and

finite-state transducers) etc. The toolbox is available under the GNU General Public license and

allows various visualization tools to browse finite-state automata. FSA supports four types of

automata:

• recognizers

• weighted recognizers

• transducers

• weighted transducers

It can also handle macros and other user-defined regular expression operators. One further

advantage with FSA toolbox is that it can produce C and Prolog code of a finite-state automata or

finite-state transducer to be used in other implementations.

Except for FSA toolbox all the other tools named above are proprietary and not freely available.

2.6 Summary And Proposal

All the researches highlighted this far implement many different technologies related to QA systems

and specifically Cross-Language QA (CLQA) systems. None of the systems mentioned this far can

be considered a complete solution to Question Answering; however, each one of them has addressed

37 http://www.xerox.com/

41

http://www.xerox.com/

some particular issues in QA that make them perform better in particular situations. Compared to

IR, QA systems are still in the early stages of research and thus only a handful of QA systems have

emerged this far. The already available QA systems are maturing day by day and implementing

more features to address a wider variety of issues in question answering. Most of the QA systems

available these days are usually for languages with a large amount of digital resources and having a

good number of matured language processing tools. Thus with the availability of such language

processing tools and resources, the process of building a QA system becomes much easier as a QA

system is made up of several components utilizing such varied tools and resources. But for

languages with limited digital resources and processing tools the entire process of designing and

implementing an all purpose Question Answering system turns out to be very difficult. Some

assumptions and considerations have to be made in an attempt to design just a basic QA system for

languages with limited resources.

Bangla, though being being one of the top 10 most widely spoken languages with over 200 million

speaker, is one such language with very limited digital resources and language processing tools. The

language is still in its infant stage as far as research in the area of computational linguistics is

concerned. The language lacks the very essential general purpose corpus to be used for different

Bangla language processing tasks. There are some ongoing initiatives to build a large general

purpose corpus and already a 97 million word electronic corpus of South Asian Languages is

available from the EMILLE38 project which includes Bangla. Further there is also a News corpus of

Bangla developed from the articles of the online version of a popular Bangla newspaper of

Bangladesh. Also there are ongoing researches on many different language processing tools for

Bangla; however, no notable research on Bangla Question Answering systems can be found till

date.

Building a complete open-domain QA system for Bangla is not yet feasible as there are not many

digital texts available in Bangla on varied topics. Large collection of Bangla texts are available in

non-digital format but that doesn't help much in a digital QA system. At this point a cross-language

QA system can be very effective for the Bangla language. There are significant amount of digital

texts available in other languages, specially in English on varied topics which can be used to answer

Bangla questions. A system can be designed to take a Bangla question, look for the answer in an

English text collection and later the answer can be translated back to Bangla to present to the user.

38 Enabling Minority Language Engineering (EMILLE). Available at http://www.emille.lancs.ac.uk/

42

http://www.emille.lancs.ac.uk/

The proposal sounds reasonable but as the language Bangla lacks many language processing tools,

the proposal comes with a bottleneck of translating the text between Bangla and any other

languages. Bangla is yet to have a complete machine translation system. From earlier texts we have

learned that there has been some work on Bangla MT systems but none of them are complete on its

own to be used as a component to aid in cross-language QA systems.

This thesis has studied and reviewed many of the challenges to be met in building mono-lingual as

well as multi-lingual QA systems. With the knowledge gathered from reviewing those available

systems an attempt is taken to design a small scale QA system for Bangla which depends upon

English text and is limited to a particular domain. As already mentioned, Bangla lacks many forms

of digital resources, and thus a complete general purpose QA system for Bangla would not be

possible unless many other tools and resources become available. And it is definitely beyond the

scope of this dissertation to present an all-purpose Bangla QA system. However, a prototype Bangla

QA system is designed and partially implemented, based on the Joost and LAMP systems discussed

earlier. The proposed system uses a type of transformation rules, one of the four types of approach

to translation, to partially translate Bangla questions to its equivalent English and then searches over

the Internet to look for potential answers. The partial translations are achieved using transliteration

based on finite state technology. The concept of transliteration in QA systems is relatively under-

explored, let alone translation based on transliteration. Along with the transliteration module a table

look-up approach is also employed to obtain an English question from a transliterated Bangla

version. The next chapter discusses in detail the design of such a cross-language QA system which

takes ideas from already existing QA systems and uses some Bangla language specific phenomenon

to solve a very limited scale Bangla QA task.

43

3 Design Of The Experimental Framework

The previous chapters have given a detailed overview of the technologies related to Question

Answering (QA) systems as well as Cross-Language question answering (CLQA) systems. This

chapter introduces a framework for such a cross-language QA system where one of the languages

involved has limited digital resources. The proposed design uses concepts from existing state-of-

the-art systems but, due to limited language resources and overall time allocated for the project, a

limited scenario of the question answering task is addressed.

3.1 Background

Transliteration is a way of mapping letters of one script to letters of another script. Using a

transliteration scheme all the 50 standalone graphemes of the Bangla script can be mapped easily by

the 26 letters of the Latin alphabet (English). It can be implemented by a direct letter to letter

mapping (one to many correspondence too) between the English script and the Bangla script (both

ways) and also based on the phonology of the letters of the target script. The second form of

transliteration (transliteration based on the phonology of the letters) is easier to formulate and thus

is more popular. Users key in their messages in Bangla using the English character set based on the

original Bangla sounds. Such transliterated Bangla is exchanged over unofficial emails and text

messages mostly. The popularity of the use of Bangla in a transliterated form led to many digital

applications in Bangla to evolve over this concept. Many application interfaces ask the user to type

in their Bangla text in a transliterated form and the application maps the transliterated Bangla to an

equivalent Bangla text using the Bangla script. And as English script is more accessible digitally,

Bangla speakers use such a transliteration scheme widely to express Bangla information more

frequently.

e.g.

Message in English My name is Nafid Haque.

Message in Bangla Script

Transliterated Bangla

 a|ma|ra na|ma na|fi|da ha|ka

Gloss my name nafid haque

Table 8: Bangla Transliteration Example

44

The concept of transliteration has been exploited in many ways to make use of Bangla digitally.

There are interfaces available for the web and mobile devices that take in Bangla text in a

transliterated form and produce the same text in the original Bangla script. The concept of the use of

Bangla in a transliterated form is exploited further in this thesis work to translate some Bangla

words to equivalent English versions.

3.2 Proposal

As stated earlier, the Bangla lexicon consists of a good number of “loan-words” from Arabic,

Persian, English and other languages. And most of them are pronounced almost the same way as

would be pronounced in the original language.

Following are some English words that are pronounced almost the same way in Bangla.

Police, Telephone, Television, Computer, Table, Chair, Bottle, Bus, Truck, Train, Ulcer, Cancer

The following table gives a detailed comparison:

45

English Word Actual Bangla Spelling Transliterated Bangla

Police

Telephone

Television

Computer

Table

Chair

Bottle

Bus

Truck

˔

Train

Ulcer

Cancer

˕

Table 9: Bangla Transliteration Example

From Table 9 we notice that the transliterated Bangla is very similar to its equivalent English

˔ '\' is used to produce a consonant cluster between 't' and 'r'.
˕ '\z' is used to produce a phonetic emphasis on the previous consonant.

46

versions but not exactly the same. As Bangla has more characters and supports more phonemes39

than English, to accommodate the actual pronunciation of such loan-words in Bangla, the

transliterated Bangla version of those loan-words are not exactly spelled the same way as they are in

English. However, the transliterated Bangla version, which we may call as pseudo-English version,

can be intelligently processed to get back the original English spellings. This thesis explores that

possibility.

As stated earlier most of these loan-words in the Bangla lexicon sound almost similar to the ones in

their original languages but that does not necessarily mean that those loan-words do not have an

exact Bangla translation. The words “television” and “telephone” both have Bangla versions like

“duro-dorshon” and “dur-alaponi” respectively but “Telivishn” and “Telifon” are more commonly

used in every day official and unofficial communications. There is no single specific genre to which

these loan-words can be categorized like only electronic names or auto-motives but it is noticed

that, in the Bangla lexicon, almost all the medical terms are such loan-words and sound exactly or

similar to the imported form. Thus, in this thesis we limit our experiment to only those medical

terms and test the hypothesis of translation based on transliteration as an interface for a limited

domain cross-language question answering system scenario. The entire work can be divided into

two components, the translation based on transliteration with table look-up and the question

answering part.

In this thesis the first component is exploited in detail and a small prototype system is developed.

The second component has been explored mostly theoretically and thus the findings of the research

will be stated.

3.3 Design

The basic idea of the system is to 1) take in a question in Bangla written in a transliterated form, 2)

translate that Bangla question to its equivalent English version, then 3) search over the Internet for

39 A phoneme is the smallest contrastive unit in the sound system of a language.

47

Fig 15: Components of the proposed system

the answer to the question, 4) translate the English answer to Bangla and present it to the user. As

the goal of this project is not to develop a complete Machine Translation system for Bangla, the

answer/result obtained in English for the given question will not be translated to Bangla. The work

concentrates mostly on getting the English version of the question from its Bangla equivalent using

translation based on transliteration and table look-up.

These days a wide variety of information is available on the Internet and a good amount of it are in

English. With the introduction of web blogs and forums, any individual can post a view or an

article, thus contributing to this huge information pool. Initiatives are taken to make all the

published books available over the Internet. These days electronic articles, magazines and books are

more popular than their printed versions. The electronic versions are easily accessible, cheaper than

printed ones, takes less or no physical space at all and most importantly can be digitally searched

and processed. Thus, while looking for specific information, rather than buying a book or a

magazine from a shop, the trend has become to search for the topic over the Internet and obtain all

the related information at one place without even going through unnecessary content. An individual

looking for legal information can avoid going through a huge pile of books on law but just search

over the Internet to obtain some information about his or her query. The same is the case for an

individual wanting to know more about a disease or a medical term. The person can have some

basic idea about the disease from all the medical texts available over the Internet without consulting

the medical books. These uses of the technology are not meant to eliminate a medical doctor or a

legal advisor from the society but the access of information through these technologies is meant to

make individuals better informed rather than keep them totally ignorant of the basic information.

People having access to basic information on a variety of topics over the Internet can make a small

research of their query and have a basic background before they move to seek professional advice.

Information retrieval systems in the form of Internet Search Engines have already made it possible

for people to have access to basic information. These search engines take in query terms and point

to documents having information about those terms. However, this trend has moved towards

complete question answering, where a user asks a complete question and expects a complete and

correct answer in return.

The design of this framework is highly motivated by the LAMP and the Joost systems discussed in

the earlier chapters. The LAMP system by Zhang [2004] claims that the Internet is an ideal source

of answers to a large variety of questions due to the fact that a tremendous amount of information is

available online these days. The information available online is written in many different languages

48

and a huge share of this information is in English. There are texts available in Bangla too over the

Internet but the volume is still not comparable to many of the other most spoken languages of the

world. Also, the Bangla texts available online are mostly limited to the news genre as online Bangla

newspapers are very popular. So these limited Bangla texts are not enough for Zhang [2004]'s claim

that online resources are an ideal source of answers to a large variety of questions for a Bangla QA

system scenario. But if the English content available online is considered as the search space to

answer Bangla questions, then a large variety of questions could be answered. Having such a cross-

language solution could benefit many native speakers of Bangla as they could ask a question in

Bangla and obtain their desired information. The proposition sounds feasible but comes with the

bottleneck of translating a Bangla question to the equivalent English. This is achievable if a

complete automatic machine translation system is available between Bangla and English in both

directions. Then a Bangla question can be easily fed to a translation engine to obtain an English

equivalent question, and that obtained English question can be processed like the Zhang [2004]'s

LAMP system or Bouma et al. [2006]'s Joost system to obtain the answer. Lastly that answer can be

translated back to Bangla for the user. But as stated earlier Bangla is still to have a complete

Bangla/English machine translation system, making the proposal of a QA system for Bangla to be

hard. Thus, to create such a cross-language QA system for Bangla, the first step is to build a

complete Bangla/English MT system, which is another research area of its own. But until such a

complete translation system becomes available, the cross-language QA task for Bangla maybe be

solved using a slightly different approach, limiting some features and options of a full-fledged QA

system.

From earlier discussions we have noticed that Bangla words have some complex phonetic and

spelling structures. These complexities of the language can be utilized to translate specific Bangla

words to equivalent English forms. If this property of the Bangla language can be generalized and

automated, then a very limited scale translation system can be produced which may ultimately help

in a limited scenario QA task. We have mentioned already that the Bangla lexicon consists of a

good number of loan-words from other languages that are pronounced somewhat similarly to the

sound of their original languages. Though these loan-words are spread around among different

genres, the medical terms take a big share in the list of these loan-words. Table 10 highlights some

such medical terms.

49

Medical terms in English Transliterated Bangla

cancer kansar

heart attack hart etak

fracture phrakchar

stroke estrok

liver leevar

lung cancer laang kansar

blood blad

conjunctivitis konjunktivitis

fever fivar

cyst sist

flu flu

Table 10: Medical Terms

From Table 10, if we try to speak out the transliterated Bangla versions of these medical terms, we

will be more or less able to guess the actual English versions. This is due to the fact that these terms

have been imported into the Bangla lexicon but due to many language specific properties especially

phonetics, the pronunciation has changed slightly. The original versions are broken into smaller

syllables and then converted to the phonemes available in Bangla to pronounce. Table 11 gives an

overview of that property.

English Bangla

can + cer kan +sar

heart ha +r + t

a + tack e + tak

frac + ture phrak + char

stroke es + t +ro + k

li + ver lee + var

Table 11: Terms broken to syllables

From the above comparisons, a technique can be devised to transform the syllables of the

transliterated Bangla to the syllables of the original English version. If that transformation can be

performed as closely and correctly as possible, then we are able to obtain the original English

spellings from the transliterated Bangla forms. The approach is similar to Jiang et al. [2007], who

50

suggest a transliteration approach to improve the named entity translations. Jiang et al. [2007]

syllabify an English named entity into a syllable sequence like the word “Obama” to “O / ba / ma”

and then use a generative model to transliterate the syllabified English name into a Chinese

character string. They used this approach in their QA task with the claim that most questions

include some form of named entities within them and implementing such a transliteration model

improved their named entity translation. For a Bangla QA scenario for the medical domain, the

medical terms are the named entities which can be translated to English using a transliteration

model like Jiang et al. [2007]. In our case a syllabified transliterated Bangla (pseudo-English) term

is transformed into a correct English term to be used for further processing.

This transliteration approach to translation is very similar to the morphological analysis of a word.

A word is typically a stem together with a set of affixes. The smallest meaning-bearing units are

called morphemes. During the analysis, morphemes are identified. Finite-State technologies are

widely used for morphological parsing.

Input Morphological Parsed Output

cat cat + N + SG

cats cat + N + PL

books book + N + PL

Table 12: Morphological Analysis [Jurafsky et al. 1999]

The morphological parser has knowledge about the

• lexicon – the list of stems and affixes

• morphotactics – the model of morpheme ordering that explains which classes of morphemes

can follow other classes of morphemes inside a word

• orthographic rules – the spelling rules of the words

The finite-state automaton above accepts regular, orthographic singular and plural English nouns.

Further, a two-level morphology model as finite-state transducers.

51

Fig 16: A simple FSA for English
nouns [Jurafsky et al. 1999]

The finite-state transducer is able to map between the lexical and the surface level of the words.

A similar two-level approach could be used in the translation based on transliteration approach for

the translation of the medical terms of Bangla. Individual syllables are dealt with instead of the

morphemes.

Terms Individual Syllables

Transliterated Bangla kansar kan + sar

English cancer can + cer

Table 13: Two-level approach to transliteration

A finite-state transducer maps the syllables of the transliterated Bangla form to the English ones.

Once all the English syllables have been obtained correctly and merged together it is possible to get

the correct English word. This approach should work for most of the medical terms if designed very

carefully. But a QA scenario involves not just a single term but a complete question. Now the

question is whether such a two-level transliteration approach works for an entire question given in a

transliterated Bangla form. Unfortunately the answer is negative. As we have mentioned earlier, the

Bangla lexicon has a good number of loan-words that sound similar to their original versions but

the rest of the words in the lexicon are not such loan-words. And these Bangla words have no

phonetic similarity with their English counterparts.

English Transliterated Bangla

book boi

car gari

where kothay

why keno

here ekhane

how kibhabe

Table 14: Literal translations

52

Fig 17: Two-level morphology [Jurafsky et al.
1999]

Table 14 includes some question elements too which would occur in a typical question scenario.

e.g

English: What is Cancer?

Translation in transliterated Bangla: Kansar ki?

The two-level transliteration approach that we were suggesting earlier only works for the named

entity in the question but does not work for the other terms in the question. And if we only work

with the named entities, then the actual purpose of question answering is not achieved; rather the

system would end up as a cross-lingual information retrieval (IR) system.

e.g

English: How do you treat Cancer?

Translation in transliterated Bangla: Kansar kivabe chikitsha korte hoi?

In the previous two example questions, if the medical term “Cancer” was only considered then for

both the cases the IR engine will produce identical results. But “What is Cancer?” and “How do you

treat Cancer?” are two completely different questions with different set of answers. What

differentiates between the two questions is not the named entity or the medical term but the other

terms in the question. Thus, to attempt a QA task the entire question needs to be considered. So,

now the issue is to map the transliterated Bangla word “ki” to English “What is” or “Kivabe

chikitsha korte hoi” to “How do we treat”. This would be easily possible if a bilingual dictionary

was available. Hossain [2008]'s Anubadok system is an English to Bangla MT system which uses a

bilingual dictionary to translate POS tagged English words to Bangla. But for our QA task, we need

a Bangla to English MT system or at least a Bangla to English bilingual dictionary. Though some

digital English to Bangla dictionaries are available, Bangla to English digital versions are yet to be

made available. Moreover, as we are dealing with transliterated Bangla texts, we need a bilingual

dictionary that is able to handle the transliterated Bangla (pseudo-English). As none of these are

available yet, a cheap mechanism is required for our limited domain (medical) QA system

prototype.

A table look-up approach can be implemented to translate the rest of the transliterated Bangla

question. The table look-up approach is similar to the QATAR component of the Joost system of

Bouma et al. [2005] but, instead of mapping a question to an answer, our system would map parts of

the transliterated Bangla question to its equivalent English version. Once such a mapping is

obtained for the rest of the question, and the named entities are translated using the two-level

transliteration approach, it is possible to obtain a complete English question for further processing.

53

So, our system would take in “kansar ki?” as input and produce its equivalent English translation

which is “What is Cancer?” using a table look-up method as well as translation based on

transliteration. Then it will use that English question to do the Question Answering (QA) part.

In the sections ahead we discuss each of the proposed approaches in further detail.

3.3.1 Analysis of Bangla Question Structure

One of the reasons behind choosing the medical domain was to make medical information available

to the native speakers of Bangla. There are many medical articles and books available in Bangla,

too, but only a handful can be found in digital form. But a significant amount of medical

information in English is accessible digitally over the Internet. There are many printed medical

FAQs available in Bangla but to date no digital versions are publicly available. Some such Bangla

printed FAQ's are obtained to study the structure of the questions. Some of the most probable

questions are of the following types.

Bangla Question (Transliterated form) English Question

kansar ki?

(gloss: Cancer what)

What is Cancer?

kansar hole ki korte hobe?

(gloss: Cancer have what to do)

What do you do when you have

Cancer?

kanser ki protirod kora jai?

(gloss: Cancer can prevented be)

Can Cancer be prevented?

kansar kivabe choray?

(gloss: Cancer how spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi?

(gloss: Cancer how treatment to do)

How do you to treat Cancer?

kansar kivabe protirod kora jai?

(gloss: Cancer how prevent do)

How can Cancer be prevented?

bard phlu kivabe chinnito kora jai?

(gloss: Bird Flu how recognize)

How do you recognize Bird Flu?

komon warts kothay hoy?

(gloss: Common warts where occur)

Where do common warts occur?

pregnansi kokhon hoy?

(gloss: Pregnancy when does occur)

When does pregnancy occur?

Table 15: Bangla English Question comparison

54

In Table 15 some of the simplest common questions in the medical domain are presented. The table

gives a complete Bangla question in a transliterated form and its equivalent English versions. Here

we notice that for a Bangla question, the disease name (the named entity) is always the first item of

the question usually followed by the question element and then any additional verbs. This structure

can be found not only for medical questions but for most questions in Bangla.

e.g

Bangla: kompiuTar ki?

English: What is Computer?

Bangla: bangladesh'er rajdhi ki?

English: What is the capital of Bangladesh?

Studying the structure of the questions listed earlier, if a Bangla question is tokenized, then the first

token or the first few tokens will be a named entity or more specifically the subject matter of the

question. This phenomenon is widely noticeable, specially in the medical domain.

Thus, an approach to translate the Bangla question could be

• tokenizing the transliterated version of the Bangla question,

• using translation based on transliteration to translate the named entities (medical terms)

• translating the rest of the question by a simple table look-up method (This is definitely not a

very ideal approach for a large-scale implementation and we will discuss the issues,

however, the prototype system is built upon this simple approach).

3.3.2 Tokenizing the Question

This is a very trivial issue. As we have already noticed from previous examples in Bangla that each

word is separated by a space, same as in English. Thus, a word or a token is

• a set of characters between the start of the question string and the first space

• a set of characters between spaces on either side

• a set of characters with a preceding space and a question mark

• a set of characters with a preceding space and a punctuation mark

Once a transliterated Bangla question has been tokenized, according to our analysis the first or the

first few tokens are the named entity or the medical term. Thus the first few tokens are individually

processed until a question term is obtained. Once we identify a question term, the tokens before the

55

first question term are considered the named entity and are translated using transliteration. The rest

of the question is translated using the table look-up method for a longest possible match.

3.3.3 Named Entity Translation

We have learned this far that if a named entity is present in a question then it is of utmost

importance and describes the subject matter of the entire question. For our medical domain

scenario, the disease names or any medical terms are the named entities. And we have already

shown that almost all of such medical terms used in Bangla are phonetically similar to English.

Thus, it is just a matter of transforming the transliterated Bangla terms into equivalent English

version. This can be achieved by a comprehensive rewrite transducer.

We have obtained a list of commonly used medical terms, specifically disease names, from a

medical book to further analyze our hypothesis and design the transducer. The list contained 348

disease names in English that commonly occur in humans. Not all of these names/terms were

limited to a single word but a good number of these diseases had multiple words like “Dengue

Fever”, “Yeast Infection” or “Angular Cheilitis”. Thus, these multiple word terms were broken

down into single words. That resulted in 851 medical terms from those 348 disease names. We

organized the terms alphabetically and found that there were multiple entires for a single term at

several instances. These duplicate terms resulted from the disease names such as “Atopic

Dermatitis” and “Contact Dermatitis”. Here we notice that the word “Dermatitis” occurs for both

the disease names and when they were broken to single terms, 4 medical terms were obtained

“Atopic”, “Dermatitis”, “Contact” and “Dermatitis” with the term “Dermatitis” occurring twice in

the list. There is no use of this second instance of the word “Dermatitis” and thus it can be filtered

out. Such duplicate terms were noticeable many times in the 851 single-word list. After filtering out

duplicate terms there were about 430 different medical terms from the original list of 348 multiple-

word disease names.

Those 430 terms were provided to 4 native speakers of Bangla (including 2 medical doctors) to get

the transliterated form of the terms roughly following the mapping scheme of UzZaman et al.

[2006]. The volunteers were briefed with the phonetic mapping scheme to give an idea in case they

were unaware of transliterated Bangla. Then they were asked to provide a transliterated Bangla

version of the English medical terms. They were allowed to provide multiple transliterated versions

for a single English term but they were not allowed to skip any single English term.

56

Thus a list like Table 16 was obtained from each of the native speakers of Bangla.

Transliterated Bangla Actual English

kansar cancer

blad blood

konjunktivitis conjunctivitis

fivar fever

sist cyst

flu flu

Table 16: Transliteration Example

When each of those individual transliteration tables from the native speakers were merged to have a

single table, the results showed that there were many transliterated forms for a single English term.

This was obvious because Bangla has 50 individual graphemes, each having a different sound, and

when these 50 graphemes are mapped to the 26 letters of English, multiple Bangla graphemes are

mapped to a single English letter considering the closest pronunciation. Thus when a native speaker

tries to transliterate a Bangla term, he or she takes note of the pronunciation as well as the subtle

mapping of the letters between the languages and also the actual spelling in the original script. This

thinking leads to multiple transliterated versions of a single English term.

Thus, after merging the different versions obtained from the volunteers of this project, there were

796 transliterated Bangla terms against the 430 English terms provided. The final table looked

somewhat like Table 17.

57

Transliterated Bangla Actual English

kansar

kensar

kanser

cancer

blad

blud

blood

konjunktivitis

konjancteevytis

conjunctivitis

fivar

feebhar

phivar

fever

sist

seest

cyst

flu

flue

phlu

flu

akni

akny

ekny

acne

dybatis

dybatees

dibatis

diabetes

Table 17: Transliteration Example

The original list of 430 English terms were randomly separated into two groups of 215 terms each.

One group was chosen as the training set and the other for further testing and evaluation. The

training set had 215 English terms and their corresponding 279 transliterated Bangla terms. The test

set had 215 English terms and their corresponding 517 transliterated Bangla terms. In total, there

were 430 English terms and their corresponding 796 transliterated Bangla terms involved in the

project.

The training set of 215 English terms and their corresponding 279 transliterated Bangla terms were

carefully analyzed and studied. Each of the English terms were broken into individual syllables and

so were their corresponding Bangla transliterated versions.

58

English Transliterated Bangla

cancer:
 can + cer

kansar:
 kan + sar
kensar:
 ken + sar
kanser:
 kan + ser

fever:
 fe + ver

fivar:
 fi + var
feebhar:
 fee + bhar
phivar:
 phi + var
fiver:
 fi + ver

ulcer:
 ul + cer

alsar:
 al + sar
alser:
 al + ser
aalcer:
 aal + cer
aalser:
 aal + ser
aalsar:
 aal + sar

Table 18: Syllabified terms

The syllabified versions of all the terms were obtained by hand, using careful inspection. Then a

table was prepared to compare the syllabified English with the corresponding syllabified

transliterated Bangla versions.

59

English Transliterated Bangla

can kan
ken
kan

cer sar
cer
ser

fe fi
fee
phi
fi

ver ver
bhar
var

ul al
aal

Table 19: Mapped syllables

After obtaining a mapping of the syllables, each of those syllables is further broken to analyze the

smallest possible character correspondence between English and the transliterated Bangla.

English Transliterated Bangla

c + a +n k + a +n
k + e + n
k + a + n

c + e + r s + a + r
c + e + r
s + e + r

f + e f +i
f + ee
ph + i
f +i

v + e + r v + e + r
bh + a + r
v + a +r

u + l a + l
aa + l

Table 20: Character-level mapping

After analyzing those character-level correspondence between the syllables of the English and the

pseudo-English (transliterated Bangla) we managed to obtain a pattern. The pattern is very similar

60

to the phonetic mapping scheme of UzZaman et al. [2006] for English and transliterated Bangla.

Thus, from those 215 English terms concerned, about 100 mapping rules were initially obtained. An

extract of the mapping rules is shown in Table 21.

Bangla English

aab ab

ak ec

ak ac

al ul

al wal

ba bi

bag bug

char ture

kri cry

poks pox

Table 21: Mapping Rules

These rules are responsible for replacing the longest possible character sequence of the pseudo-

English version to the corresponding English version. These mapping rules, they were implemented

as a rewrite transducer. A run was conducted after implementing the transducer with all the obtained

rules. We noticed in our first run that each pseudo-English input (transliterated Bangla term)

produced an average of 1.7 outputs (actual English name). Of all the produced outputs, only 12%

were found to be correct English spellings.

Then by analyzing the produced outputs, a few more mapping rules were identified that were

missing in the first run. Also, by accommodating some further longest matches of the letter

sequences and slightly modifying the existing rules, an improvement in performance was noticed.

With these new modifications and addition of new mapping rules, the transducer produced about

37% correct English spellings; however, this lead to more outputs generated per input. The

modification led to generating an average of about 5.7 outputs per input, with the worst case of a

single input generating over 23 outputs. The process of obtaining the rules is not done using any

standard machine learning setup. The rules are all handcrafted with the aim that, with a limited

generic mapping rules, a good number of correct transducer outputs will be generated. With that

aim in mind the dataset was purposefully chosen the way was mentioned.

61

Though the modifications helped in the improvement of the performance it led to another problem

of identifying the correct English spelling or the closest one of all the produced outputs. So a

ranking mechanism was essential to rank the most correct English disease name or the medical

term. For this implementation, a simple edit-distance count was used to rank the generated outputs.

This was achieved by a rather naive implementation as the domain of words involved was very

small. For a large-scale implementation, this ranking mechanism would not be at all efficient. As

there were only 430 English medical terms involved, they were sorted alphabetically and stored on

individual files according to the starting alphabet of the term itself. Each of the generated outputs

was compared in one of those files and the edit-distance measure was noted. The output that

matched with one of the terms in the files had an edit-distance of zero and was most likely the term

we were looking for. If none of the outputs had an edit-distance count of zero then the output with

the minimum count was taken for further processing. In case two or more terms ended up with the

same count, the one on top, after sorting alphabetically, was taken. An example is shown below.

Actual Medical Term: excoriee

Transliterated Bangla Input: ekshori

Bangla Input Outputs Generated

ekshori

acschore

acschoriee

acscore

acscoriee

ecschore

ecschoriee

ecscore

ecscoriee

exchore

exchoriee

excore

excoriee

Table 22: Transducer Outputs

Here we notice that the input generated 12 outputs, and one of the output form is the term we were

62

looking for. From the outputs generated, the system realizes that the outputs either start with an 'a'

or an 'e'. So it looks in those two respective files and runs the edit-distance algorithm for each of the

outputs. The files involved are shown in Table 23.

Terms starting with 'a' Terms starting with 'e'

abrasion

abscess

acanthosis

acne

acrochordon

actinic

acuminata

acuminatum

aid

alba

allergic

allergies

alopecia

anesthesia

angioma

angular

animal

annulare

anthrax

aphthous

areata

arthropod

athlete's

atopic

atypical

avian

eczema

electrodesiccation

epidermoid

erosion

eruption

erythema

erythematosus

erythrasma

ethnic

examination

exanthem

excoriee

exhaustion

eye

Table 23: Medical Terms list

As can be seen for this case, only one output will exactly match one of the terms in the two files and

63

that is the term we are looking for. As already said this is not a very good implementation to rank

the outputs because of the number of comparisons involved. A few hard-coded rules are also

implemented to eliminate the most obvious wrong outputs. For example,

Bangla Input Outputs Generated

fut

foot

phoot

ffoote

phoote

Table 24: Outputs Generated

For the input “fut” the correct output is “foot”. The other outputs were generated because of the

mapping rules such as “f->ph”, “f->ff” and “t->te”. All these mapping rules were needed to

accommodate other terms, for example, for the input “dandraf” the output should be “dandruff” and

so the mapping rule “f->ff” is needed. But in English no word starts with “ff” so for the input “fut”

the output “ffoote” can easily be discarded as it violates a basic language model rule. Having such

rules help to eliminate some obvious wrong outputs.

3.3.4 Table Look-Up Translation

Once the medical terms are translated it is the turn to translate the other words within the Bangla

question. As this study involves a very limited/closed domain, the most common medical questions

were analyzed from different medical FAQs available both for English and Bangla. A list of those

simplest medical questions in Bangla was prepared and an equivalent English translation was also

prepared. Thus a final list of just about 20 question variations were prepared to be considered in this

prototype. The current implementation searches for the longest match of words (the Bangla question

terms) in a file which also contains their equivalent English versions.

64

Rest of the Question

(Bangla:Transliterated form)

Equivalent English

ki? (gloss: what) What is -?

hole ki korte hobe? (gloss: have what to do) What to do when you have -?

ki protirod kora jai? (gloss: can prevented be) Can - be prevented?

kivabe choray? (gloss: how spread) How does - spread?

kivabe chikitsha korte hoi? (gloss: how

treatment to do)

How do you treat -?

kivabe protirod kora jai? (gloss: how prevent

do)

How can - be prevented?

kivabe chinnito kora jai? (gloss: how recognize) How do you recognize -?

kothay hoy? (gloss: where occur) Where does - occur?

kokhon hoi? (gloss: when does occur) When does - occur?

Table 25: Rest of the Question Translation

The equivalent English version is the rest of the question that is required along with the medical

term to generate the English question. Further discussion and results can be found in the next

chapter.

3.3.5 English Question Generation

To generate a correct natural language sentence computationally, a POS tagger and a syntactic

parser plays a major role. In this case no such tools are yet freely available for Bangla. Thus, a

quick and simple workaround has been implemented for this limited domain framework design.

For almost all the medical questions in Bangla, the question starts with the disease name itself

followed by the question elements and any other verbs. Table 26 illustrates the phenomenon.

65

Bangla Question (Transliterated form) Equivalent English Question

kansar ki? (gloss: Cancer what) What is Cancer?

kansar hole ki korte hobe? (gloss: Cancer have

what to do)

What do you do when you have

Cancer?

kanser ki protirod kora jai? (gloss: Cancer can

prevented be)

Can Cancer be prevented?

kansar kivabe choray? (gloss: Cancer how

spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi? (gloss:

Cancer how treatment to do)

How do you treat Cancer?

Table 26: Bangla English Question comparison

Thus, the named entity Translation part considers the first or the first few tokens of the input string

and uses the transducer to translate the disease name to its correct English version. The rest of the

input string is searched for a longest match through the table look-up translation method. Once a

match is found from the table look-up translation, the blank space reserved for the named entity (in

this case the disease name or the medical term) is replaced with the output produced from the

named entity Translation part. Again, this is not a very elegant solution but in this limited

experimental scenario, where the performance in terms of speed is not taken into consideration,

these naive approaches are enough to prove the hypothesis of the overall project.

3.4 Implementation Decisions

We list here the tools used to implement the prototype.

3.4.1 FSA Utilities Toolbox

The highlight of the prototype framework is the translation based on transliteration part which is

used to translate the named entities (the medical terms) of a transliterated Bangla question (pseudo-

English) to its actual English versions. The syllabified mapping rules obtained in the Design section

can be implemented in many ways. Each of the mapping rules can be hard-coded with a

programming language of choice and used in the implementation. The other way to implement the

mapping rules is to build a rewrite transducer using the rules. The transducer is responsible to read a

character sequence which in this case is a medical term written in pseudo-English. The transducer

compares each character or a sequence of characters within the input term with the available rewrite

rules. If a rewrite rule is available for a character or a character sequence then the corresponding

output of the rule is written in that particular position of the input term. If no rewrite rule is present

66

for a character then it is copied as it is to the output. The rewrite transducer for the Named Entity

Translation part has been prepared using the FSA Utilities Toolbox. FSA6.240 is available under the

GNU general public licence. It is a collection of utilities to manipulate regular expressions, finite-

state automata and finite state transducers.

3.4.2 Python

Python is a very powerful dynamic programming language which is used in a variety of application

domains. Python's vast standard library and flexible coding style makes it a very popular and

efficient programming language to be used in Natural Language Processing applications. The

ranking of the outputs from the Named Entity Translation, Table look-up Translation and the

English Question Generation part is prepared using Python 2.5.2.

3.4.3 JavaServer Pages

The web-interface of the prototype framework has been prepared using JavaServer Pages (JSP). JSP

is platform-independent technology that allows rapid development and easily maintainable dynamic

webpages.

3.4.4 Apache Tomcat Server

The open source Apache Tomcat server was used to handle the JSP technologies involved. Apache

Tomcat is developed by the Apache Software Foundation (ASF) and provides a HTTP server

environment for Java code to run.

3.5 Program Flow

The web-interface takes in a Bangla question in a transliterated form, calls in a Python script to

tokenize the question, then FSA is called to translate only the named entity within the question. The

output from the transducer is saved in a file. A Python script uses the transducer output and the

result of the table look-up process to generate the English version of the Bangla Question. Once the

English question is ready, Google is passed with the exact question to obtain the answers. In this

implementation the results from Google are just studied but not further processed for actual answer

generation.

40 Available at http://www.let.rug.nl/~vannoord/Fsa/fsa.html

67

http://www.let.rug.nl/~vannoord/Fsa/fsa.html

3.6 Summary

This far we have introduced our aims of the project and have given the detailed steps in designing

the prototype framework. We have repeatedly mentioned at several places that the aim of this

project is not to build a complete Bangla question answering system but to propose an approach to

solve a subset of a complete Bangla question answering task, thus the prototype deals with very

limited cases to prove the hypothesis of translation based on transliteration and table look-up

method. Some of the proposed ways such as the table look-up and the ranking method of the

medical terms would not be a good approach in large-scale implementations as in such large-scale

implementations the number of question types and the total number of medical terms involved

would be much larger. And with the increase in number of types and terms, the number of

comparisons in the table look-up approach would increase exponentially leading to the overall poor

performance of the system in terms of speed. The Future Work section presents those issues and

their possible solutions. In Chapter 4 we evaluate our system and discuss the results.

68

Fig 18: Architectural Diagram

4 Analyses, Evaluation and Discussion

In this chapter we describe the overall performance and the limitations of the implemented system.

We present some results for the individual components involved in the system. Then we evaluate

the entire implementation as a whole. We also present some comparisons with similar other

implementations at appropriate sections of this chapter as well as the next chapter.

4.1 Translation task

In a cross-language QA scenario there are two main tasks. The translation task and then the QA

task. The QA task's performance is highly dependent on the translation task as the translated output

will be used for the actual question answering. If the quality of the translation is not good then no

matter how good the QA component is, it is bound to give bad results. The quality of a machine

translated text are mostly evaluated using the BLEU41, NIST42 and METEOR43 scores. All these

metrics are very suitable for larger datasets but the translation component of this project deals with

a limited set of text that requires translation so the conventional metrics measures available to

evaluate translations is not applicable here. We have formulated our own evaluation mechanism to

evaluate individual components of our implementation. As a simple implementation strategy has

been employed in the overall design, each of the components are tested empirically with our

controlled dataset.

4.1.1 Transducer Outputs

We have used rewrite transducers to obtain the translation of the medical terms. We had access to

348 disease names in English and our implementation is based on these terms. Of the 348 disease

names there were 430 different single-word terms in English. We randomly separated these 430

single-word terms into two equal groups (215 terms on each group). One group was used to build

the mapping rules and the other group was used later to evaluate the transducer output for unknown

inputs.

41 Bilingual Evaluation Understudy – It is a measure to evaluate the quality of a machine translated text while
comparing with a version translated by human judges. The score accounts for adequacy by looking at word precision
and accounts for fluency by calculating n-gram precisions. Also a brevity penalty is there to compensate for recall.
The final score is calculated by a weighted geometric average of the n-gram scores over a large set of test data
[Papineni et al 2001].

42 It is another metric to evaluate the quality of a machine translated text and is based on the BLEU metric, however, it
takes the arithmetic mean of the n-gram counts unlike the geometric mean in BLEU metric [Doddington 2002].

43 Metric for Evaluation of Translation with Explicit Ordering – It gives a score based on explicit word to word
matches between the translation and a given reference [Agarwal et al. 2008].

69

We used the 215 English terms of the training set to build the initial 100 mapping rules for the

transducer. Those 215 English terms had 279 corresponding pseudo-English (transliterated Bangla)

terms. Once these 100 mapping rules were implemented, the same 279 pseudo-English terms of the

training set were used to check the performance of the transducer.

Test Set Size # of mapping
rules

Total # of
outputs

Average
output per

input

of correct
terms

% of correct
outputs

215 English
terms, 279

pseudo-English
terms

(training set)

100 475 1.7 33 11.8

Table 27: Test Run 1

After our initial run on the same training set the percentage of correct output was just about 12%.

We evaluated each of the 475 outputs against the 215 terms and found many mapping rules to be

missing. We added 17 more rules and modified some of the existing ones. We have already

mentioned earlier that this implementation does not employ any machine learning techniques. The

rules are all handcrafted and we expect to translate as many correct terms possible with a generic set

of rules. Thus the smaller dataset (215 English and 279 pseudo-English terms) was deliberately

chosen to design the mapping rules so that they can be tested on the larger dataset (215 English and

517 pseudo-English terms).

Test Set Size # of mapping
rules

Total # of
outputs

Average
output per

input

of correct
terms

% of correct
outputs

215 English
terms, 279

pseudo-English
terms

(training set)

117 642 2.3 41 14.6

Table 28: Test Run 2

After the modification and addition of few rules we noticed that the percentage of correct outputs

improved by about 3% but with that the total number of outputs generated by the transducer

increased significantly producing about 2.3 outputs per input.

70

Test Set Size # of mapping
rules

Total # of
outputs

Average
output per

input

of correct
terms

% of correct
outputs

215 English
terms, 279

pseudo-English
terms

(training set)

124 1004 3.6 61 21.8

Table 29: Test Run 3

As with some modifications and addition of rules an improvement was noticed, so the output was

further comprehensively analyzed to identify any missing rules. Our initial mapping rules were

mostly limited to one or two character sequences such as “a->e”, “k->c” or “aa->a”. These smaller

sequences were contributing mostly in generating more outputs without improving the overall

performance. Thus some of the longest character sequences were obtained like “char->ture”, “shori-

>coriee” etc. With about 6 such new rules and other additions the performance was further

evaluated (Test Run 3). And this time we noticed a significant improvement over our previous runs

but with that the average number of outputs also increased. This means that the recall of the system

was going down. After further adjustments to the rules we ended up with a final 129 mapping rules.

We used the test set to evaluate the transducer. The test set had 215 English terms with their

corresponding 517 pseudo-English terms.

Test Set Size # of mapping
rules

Total # of
outputs

Average
output per

input

of correct
terms

% of correct
outputs

215 English
terms, 517

pseudo-English
terms

(test set)

129 2430 4.7 212 41

Table 30: Test Run 4

With the test set of 517 pseudo-English terms the transducer strangely produced about 41% correct

outputs. We analyzed our data further to find a reason behind such improvement and we noticed that

the test set had more terms where the smaller mapping rules (“i->i”, “i->e”, “e->e”, “e->a” etc.)

were used. This lead to the generation of more outputs but overall it was producing correct outputs

most of the time. With these results we made another final run with all the 796 pseudo-English

71

terms to evaluate the transducer.

Test Set Size # of mapping
rules

Total # of
outputs

Average
output per

input

of correct
terms

% of correct
outputs

215 English
terms, 796

pseudo-English
terms

(test set)

129 4139 5.2 295 37

Table 31: Test Run 5

With all the 796 pseudo-English terms the transducer produced about 37% correct outputs. The

transducer also generated an average of about 5.2 outputs per input term. We also noticed that in the

worst case scenario the transducer produced 39 outputs for a single input term.

4.1.2 Table look-up Approach

For the translation of the rest of the question a cheap table look-up mechanism was employed. The

implementation looks for the longest possible word sequence from the input string. This is not a

very ideal and elegant solution because in a larger implementation scenario there will be hundreds

of question variations. Thus the number of comparisons will multiply with the number of question

types addressed. This will lead to a slower performance of the overall QA task. In our limited

implementation we dealt with 20 different questions types only that were obtained from the medical

FAQs and the medical resources used in the project and were verified by the volunteers of the

project.

72

Bangla Question (Transliterated form) English Question

kansar ki?

(gloss: Cancer what)

What is Cancer?

kansar hole ki korte hobe?

(gloss: Cancer have what to do)

What do you do when you have

Cancer?

kanser ki protirod kora jai?

(gloss: Cancer can prevented be)

Can Cancer be prevented?

kansar kivabe choray?

(gloss: Cancer how spread)

How does Cancer spread?

kansar kivabe chikitsha korte hoi?

(gloss: Cancer how treatment to do)

How do you treat Cancer?

Table 32: Bangla Questions

In Table 32 we see some typical questions asked in Bangla and their corresponding English

versions. From such a list of our 20 question variations we excluded the medical term itself and

produced a table. An extract shown in Table 33.

Rest of the Bangla Question

(Transliterated form)

English Question

- ki?

(gloss: - what)

What is -?

- hole ki korte hobe?

(gloss: - have what to do)

What do you do when you have -?

- ki protirod kora jai?

(gloss: - can prevented be)

Can - be prevented?

- kivabe choray?

(gloss: - how spread)

How does - spread?

- kivabe chikitsha korte hoi?

(gloss: - how treatment to do)

How do you treat -?

Table 33: Rest of the Question

From Table 33 we generated a list of stop words which will help the system to identify the end of a

medical term in the question and the start of the rest of the question. So for Table 33 the list of stop

words would be

73

“ki” , “hole” and “kivabe”

The implementation looks for one of these terms from the beginning of the entered question (in

pseudo-English), and as soon as it finds one, the word or words before that stop word is the medical

term to be translated using the transliteration mechanism and the rest of the words in the question

starting and including the stop word itself is searched in a file implemented like Table 33. The

implementation looks for an exact string match entry for the rest of the question words that were

entered. Once an entry in the table matches, the corresponding English version of the rest of the

question is taken for processing. The obtained English version has a marker within the question (in

our case we had a hyphen) which is replaced by the term or the terms obtained from the

transliteration mechanism. Following are the results of some test runs.

74

Input Output Result Observation

kansar ki

(gloss: kansar

what)

what is cancer Correct The medical term was translated

correctly and there was a correct table

look-up entry. The generated question

is a correct generation.

ekny hole ki korte

hobe?

(gloss: ekny have

what to do)

what to do when

you have acne

Correct The medical term was translated

correctly and there was a correct table

look-up entry. The generated question

is a correct generation.

folikulytees ki

(gloss: folikulytees

what)

what is

faleeacaleiaetic

table look-up is

correct but

transliteration

mechanism gave

wrong output

Here the medical term was one of those

that didn't produce a correct term. The

top ranked term is not very close to the

actual term “Folliculitis”

melanositik nevas

kokhon hoi?

(gloss: melanositik

nevas when

occurs)

when does

maleanuciaetic

nevus occur

table look-up is

correct but

transliteration

mechanism gave

one correct and

one wrong

output

Here there were two medical terms

involved. One was translated correctly

but the other one was somewhat close

enough but not the correct one.

komon and klasikal

migrane kivabe

chikitsha korte

hoi?

(gloss: komon and

klasikal how

treatment to do)

how to treat

common and

classical

migreyn

table look-up is

correct but

transliteration

mechanism gave

partially correct

output.

This is an interesting case. Here the

medical term involves more than one

word and one of them is actually a

conjunction. The conjunction “and”

has a literal translation but this

phenomenon was tested the volunteers

and all of them kept the original one.

Now the system expects pseudo-

English term to be translated but “and”

was a correct English term and because

of some mapping rules the “and” was

translated correctly to “and” itself.

Table 34: Question Generation

Table 34 shows how the transliteration mechanism and the table look-up method together

75

performed to generate the English question. The quality of the generated question is very hard to

evaluate in our implementation scenario because a major portion of the generated question is done

by looking it up in a table containing correct translations. So the question part without the medical

terms should always turn out to be a correct translation for our implementation. However, in our

tests, in only 72% of the cases the rest of the question part was found using our table look-up

approach. Though we had a very limited question variation set (20 only) and we limited our

evaluation to only those variations, those variations could be spelled in more than one way just like

the medical terms in pseudo-English (transliterated Bangla) so if the entered question in pseudo-

English was not an exact match in our table look-up, the system behaved erratically or did not

produce a question at all. This phenomenon of the system is explained in the next section.

Whenever the translation mechanism produces a correct medical term along with a correct table

look-up entry, the generated question is definitely a well-formed question. In our testing 53% turned

out to be a well-formed question without any spelling mistakes. We further evaluated those well-

formed questions and found that 83% of those had only a single word medical term. We tried to

analyze a bit further and noticed that most of those medical terms accommodated the longest

character sequence mapping rules. We tested our well-formed as well as not so well-formed

questions using Google and the observations are stated in section 4.2 of this chapter.

4.1.3 Exceptions, Assumptions and Limitations

The entire prototype has been designed and implemented considering some assumptions and

exceptions. The main reason behind most of the assumptions and exceptions is due to the lack of

language specific resources and tools. And it was beyond the scope of this thesis to properly address

those exceptions before, and then design and build the proposed framework. However, the main

objective of this study was to propose something effective within such limitations. Setting aside the

greater limitation such as the lack of resources and the time to build them, we had to further

accommodate some limitations in our design. They are listed below:

1. Not all the medical terms in Bangla are imported words. There are native Bangla

translations available for some medical terms such as “Heart” and “Stomach” are “hridoy”

and “pakostholi” in Bangla but their imported versions are equally used. So if a user

preferred to use the actual Bangla word instead of their imported forms the system would

behave erratically as the system is in no way capable of identifying whether the entered text

was Bangla, transliterated Bangla or English. And as this implementation does not make

use of a Bangla to English dictionary, only the imported versions have been considered.

2. There could be many transliterated Bangla versions for a single term if the phonetic

76

mapping rules of UzZaman et al. [2006] are comprehensively used. However, in this

implementation only the most common forms have been considered that are enough to

phonetically represent the English terms. The term “stomach” can be written as “estomak”,

“stomak”, “estomach”, “estomuk”, “stomuk” etc. Though we have considered many

transliterated versions of an English term, we surely have not considered all the possible

transliterated versions of the medical terms. We considered only those that were obtained by

consulting native speakers of Bangla and the volunteers of this project.

3. Only the simplest type of medical questions are being handled in this prototype

implementation. Questions like “How can babies be infected by Chicken Pox?” in Bangla is

“bacchara ki chiken poks-e akranto hote pare” or “Can Avian influenza affect both adults

and children?” in Bangla is “bacchara ebong boro-ra, duijon-i ki ebhian inphluenza dara

akranto hote pare” have a far more complex structure in Bangla than the ones handled in this

implementation. These types of questions may not be generalized by the structure “disease

name followed by the rest of the question”. A good syntactic as well as dependency parser is

essential to generate such questions. We have already learned how different types of parsing

can help in the overall QA task in many ways. As our implementation scenario is proposed

for an open text collection such as the Internet, the parsing technologies cannot be used

exhaustively to parse all the text available over the Internet but it could definitely be used to

parse a pseudo-English version of a question and then generate the actual English question.

Further, in Bangla the medical terms may include case markings in complex question cases

like the ones just stated above. Thus a morphological analysis is also essential to obtain the

correct medical term out of the entire question. Generating a good quality question without a

table look-up method that we proposed is a major research area of its own.

4. Only one transliterated form of the rest of the question is considered for our implementation;

however, each word used in the table look-up translation can have more than one

transliterated form.

e.g.

English Word Bangla Transliteration Used Other Possible Transliteration

what ki kee

how kivabe kibhabe, keevabe

prevent protirod protirodh, proteerodh

treat chikitsha chikitsa, cheekitsa, cheekeetsha

Table 35: Other Possible Transliterations

77

In our implementation we had only one version of these words (the words occurring in the

rest of the question). We considered only those versions that were the most probable and

easier to spell, keeping in mind the mapping scheme of UzZaman [2005]. We verified our

version with our volunteers, too.

4.2 Question Answering Task

The QA part of this thesis was of secondary importance in the entire project and thus most of the

analyses presented here are empirically tested. We proposed a method where a user types in a

question in a transliterated form and gets answers from a system which does not necessarily work

with the user's native language. So we basically proposed a translation mechanism as an interface

for question answering.

From our implementation we managed to obtain 53% well-formed translated questions. We tested

these well-formed as well as not so well-formed translated questions with Google to understand

their behavior. Google is a very popular Internet search engine. It started as a basic information

retrieval engine but over the years its has adopted many techniques and heuristics within its

searching mechanism that it is now far more than just a keyword based information retrieval

system. We cannot claim that Google is now a complete question answering system but it does

perform well with some question types though it does not actually produce a complete answer. Here

we show some tests that we performed.

78

Fig 19: Google search with "cancer"

In the above figure we searched for the term “cancer” and we noticed that the top 5 results are

related to our search key. Google even highlights our search key within the topic and the snippets it

presented. Now we use a complete question which includes the same search key.

Here we notice that Google has used all the terms in the search query. And the snippets and most of

the topics include the entire question we asked. Google appears to use the rule44 that if a search

query starts with “what” then it manages to find the topic of interest within the query and looks for

a web definition for that topic and presents it as the first result. The snippet of that definition is in

most cases the actual answer to a query. However, in the above case, we did obtain a definition and

it is correct but not relevant to our query as we meant “cancer” in the medical sense. Thus even

though our implemented system was able to produce “what is cancer” correctly we cannot limit our

answer to the web definitions provided. The definition provided is completely wrong for the

medical domain. Thus we need to further look into the results for an answer. However this was a

very special case as the term “cancer” has more than one meaning. But if we repeated our test with

a different term the web definition itself is enough as an answer to our question as can be seen

below.

44 Google does not disclose their internal techniques and algorithms. The observations stated here are found by
performing many searches through Google.

79

Fig 20: Google search with "what is cancer"

Now we tried the same question with our system. So, we typed in “konjunkteevytis ki” in pseudo-

English form and we obtained “what is chonjanctivitis” from our system. This is an example of a

not so well-formed output. Our system did not manage to produce a correct spelling for the term

“conjunctivitis” but it produced “chonjanctivitis”. We tried the exact output as a Google search

query.

80

Fig 21: Google search for "what is conjunctivitis"

Here we have given a wrong spelling but even then Google has managed to give the correct results

and it also proposes the correct spelling for the medical term. We tested this phenomenon a few

more times.

We typed in “milanosytik nevas kokhon hoi” in pseudo-English form and we obtained “when does

81

Fig 23: Google search for "when does maleanuciaetic nevus occur"

Fig 22: Google search for "what is chonjanctivitis"

maleanuciaetic nevus occur” from our system. This is another example of a not so well-formed

output. Our system did not manage to produce a correct spelling for the term “melanocytic” but it

produced “maleanuciaetic”. The other medical term was spelled “nevas” in pseudo-English and it

produced the correct English spelling “nevus”. Google was able to understand our wrong spelling

and managed to even suggest the correct one. These observations are very promising for us as we

have somewhat managed to ask a question in Bangla (we wrote it in a transliterated form) and we

managed to search an English text collection and obtain some relevant results. This definitely

proves that our proposed system can play a major role in a cross-language QA task without having

major language processing tools for the questioning language (here it is Bangla). However, in our

experiment there were certain cases where Google could not produce a result at all. An example is

shown below.

We typed in “komon and klasikal mygren kivabe chikitsha korte hoi” in pseudo-English form and

we obtained “how to treat common and classical migreyn” from our system. This is another

example of a not so well-formed output as one term is not spelled correctly. Our system did not

manage to produce a correct spelling for the term “migraine” but it produced “migreyn”. The other

medical terms were correctly translated. Google was not able to find or suggest any relevant results.

We corrected the spelling to see if Google was really able to find some results and Google did

manage to find relevant results.

82

Fig 24: Google search for "how do you treat common and classical
migreyn"

As we have already mentioned that we have not implemented any techniques to process the output

from Google but we have definitely managed to prove our hypothesis of translation based on

transliteration and table look-up as an interface for a cross-language question answering system in

a very controlled environment. If our system provided a well-formed translation then in most of the

cases Google provided relevant information as top results unless the medical term involved has

multiple meanings as we have seen for the term “cancer”. If the question contains multiple medical

terms then there is further high probability of obtaining relevant results from Google even if one of

the terms had multiple meanings.

4.3 Overall Analyses and Discussion

This far we have shown how our proposed design and its implementation performs. As the entire

design is hard to evaluate with a single metric, we evaluated each component individually with our

own methods. The named entity translation part was able to produce an overall 37% correct output

from the transducer in our tests. We evaluated the table look-up mechanism individually and found

that 72% of the times we managed to obtain a correct entry. This could actually be improved and

also the limitations stated earlier could be avoided by allowing the user some sort of templates to

choose from rather than typing the question themselves. That will eliminate the different spelling

versions involved in the process. We then found that 53% of the questions that we obtained from

our volunteers were actually well-formed questions by which we meant that a correct table entry

was found and the transliteration mechanism produced a correct output too. We tried most of our

well-formed questions with Google and we were able to locate relevant results in most cases. We

83

Fig 25: Google search for "how do you treat common and classical
migraine"

also tried some of our not so well-formed questions by which we meant that there were spelling

mistakes in the medical terms (produced by the transducer). Google was able to understand where

the spelling mistake was and was able to suggest correct spellings as well as relevant results without

even modifying the question we obtained from our implementation.

These observations show promising results in a constrained environment. We have managed to use

a Bangla question to look for relevant answers from the Internet without having a proper machine

translation engine. We have managed to show that this technique of translation based on

transliteration and table look-up can act as an effective interface in a cross-language question

answering scenario within a controlled environment.

84

5 Future Work and Conclusion

5.1 Conclusion

Through this thesis work, we tried to learn the important issues in the field of Question Answering

(QA) systems. We peeked into the internals of many established QA systems. We explored the

capabilities of each of them and the reasons that make them good at their task. Then we looked into

the details of cross-language QA tasks. We learned that all the systems that do support multiple

languages or work in a cross-language environment have access to well-established machine

translation systems. Apart from that a good number of them are heavily dependent on pre-processed

contents. Once they had a base system they enhanced their base system with several other

components and features which significantly improve their QA task.

From our research findings we took the initiative of proposing a basic framework for a QA task for

the language Bangla. Bangla is one of the top 10 most widely spoken languages of the world with

over 200 millions speakers, however, having such a vast speaker base the language lacks many of

the basic language processing resources and tools that are already available for other languages.

There are ongoing projects to make those tools and resources available for public use but the entire

initiative is behind schedule compared to the language's presence in the world. Many tools and

resources have already come out and are maturing day by day. However, there are no known

initiatives for a digital Bangla QA system. We have tried to grasp this opportunity and propose a

basic QA system for Bangla but we were at an obvious disadvantage in terms of the resources and

tools that were required. We learned that to have a complete open-domain Bangla QA system the

first thing we need is a significant quantity of digital Bangla text. There are only a handful of

Bangla corpora available and most of them are genre specific. Then we needed tools that could

process Bangla text and grammar to query the text collections and generate the answers. We learned

that some grammar processing tools with very limited capabilities are available for regular Bangla

sentences but not for Bangla questions. Then we explored the possibility of a cross-language QA

environment where a user would ask a question in Bangla but the system would generate an answer

from texts in a language other than Bangla and translate it back to Bangla for the user. This idea is

feasible when a robust machine translation engine is available between Bangla and the other

language(s) involved in the cross-language QA task. Unfortunately this was not possible either as a

mature machine translation engine between English or any other language to Bangla has yet to be

85

developed. There are some systems available to translate English texts to Bangla but for our

proposal we also needed a Bangla to English translation engine to translate the Bangla question to

English and then process the question in an English QA system. With all these limitations we

narrowed down our initial idea of building a complete open-domain Bangla QA system to building

just a small and effective interface for the Bangla QA task in a very controlled environment.

According to our proposed framework the interface is able to take in a Bangla question in a

transliterated form and query an Internet search engine that works with English texts. We used

transliterated Bangla as our input language as transliterated Bangla is very popular in day to day

communications and minimizes the issues with Bangla script handling.

We proposed a transliteration and table look-up based implementation as an interface for a digital

Bangla QA scenario. We limited our domain to only certain varieties of medical questions. The

reason behind choosing the domain was that medical terms in the Bangla language sound pretty

close to their English counterparts. So we proposed and finally proved a method to use finite state

transducers to translate the medical terms written in transliterated Bangla to their original English

spellings. We were able to achieve 37% correct translations for the medical terms which is close to

the accuracy of Jiang et al. [2007] who implements a similar strategy to translate named entities and

were able to obtain 48% correct translations. We used a very naive table look-up approach to

translate the rest of the question and generate the complete English question. People may easily

argue that table look-up approach is too simple a technology to be implemented for this task. We

agree but given the constraints that we have mentioned time to time in this document, table look-up

was the only possible approach to show a working interface. Earlier we didn't have a single way to

forward a Bangla question to an English search engine but at least with our simple approach we

have been able to ask a question in Bangla and get some results from English documents. With the

transliteration module and the table look-up method combined we were able to translate 53% of our

questions correctly from Bangla to its equivalent English versions. We observed that our

transliteration module despite failing partially or completely in translating the medical terms in

certain instances, our overall implementation strategy of the interface managed to guide the search

results to the right directions. We learned from Zhang [2004] that the snippets provided by Google

are enough to find answers to most of the question. With our proposed interface and some

processing of the results that we obtain from Google we can get further closer to generating a

correct answer to our question.

86

We find the results of our implemented system very promising and strongly believe that this

strategy can be modified, redesigned and extended to enhance the future of Bangla QA task.

5.2 Future work

We believe that we were able to achieve satisfactory results to prove our hypothesis of a possibility

of translation based on transliteration and table look-up as an interface for a limited domain QA

task.. Our prototype framework can be extended with many other technologies. The assumptions

and limitations that we stated in section 4.1.3 might be addressed first in the next version of the

system.

The mapping rules in our implementation are all handcrafted. We started with a small set of rules

and extended them as we came across new cases. A machine learning approach might be employed

in refining and extending the rules. A supervised or adaptive learning strategy can be devised to

make the transducer learn new rules. Further, a scoring mechanism for the rules can be employed so

that rules that produce the correct translations are preferred over the other rules.

We have mentioned that apart from medical terms there are many other words, too, that are

imported into the Bangla language on which we based our hypothesis. The words in fields involving

Engineering and legal systems are also mostly loan-words for Bangla. The system can be extended

to accommodate those terms, thus extending the implementation beyond the medical domain.

We implemented our system with limited dataset and so we checked for the correct spellings within

our dataset itself. Here an English dictionary would be necessary when the system is extended

beyond its medical genre.

We have mentioned already that the table look-up approach will not be a very elegant method in a

large-scale implementation. Thus, new techniques need to be explored to accommodate more

variations in questions. A good bilingual dictionary (Bangla to English) can be used to translate the

individual words (transliterated Bangla to English) and find their respective POS tags. English

grammar rules can be used to generate the English version of the question from the individually

87

translated words. Until such a bilingual dictionary becomes available a different strategy could be

explored from some existing systems. Haque [2006] implemented a system to convert transliterated

Bangla (pseudo-English) texts to Unicode encoded Bangla texts. A similar strategy might be

deployed in the current implementation to get the actual Bangla version of the rest of the question.

We learned that Hossain [2008] developed an open-source English to Bangla MT system which

produced Unicode encoded Bangla texts. An attempt could be taken to reverse the procedure of

Hossain [2008] so that the Unicode encoded Bangla words can be used to obtain their English

counterparts. The process to reverse an English to Bangla MT system is definitely not a straight

forward task and might end up as a task of designing a Bangla to English MT system from scratch.

We have used the exact translations that we obtained to search for an answer. We have learned about

query expansion methods in our research and that could be explored further and implemented in our

framework for better and relevant results. Also the verb forms that are in use in our table look-up

method could be changed and expanded for better results in retrieving relevant documents.

During our research we learned about some ongoing projects on English to Bangla machine

translation systems. It would definitely be a good idea to interface such a translation engine to

accept outputs that Google returns for our Bangla questions. That way the user will actually get the

output in Bangla.

We believe that despite having resource limitations and time constraints for this project, we

managed to get a step closer to having an a full fledged Bangla Question Answering system.

88

6 Appendices

Extract of the Mapping Rules
%% -*-Mode: prolog;-*-

:- multifile rx/2.

:- multifile macro/2.

:- discontiguous macro/2.

:- discontiguous rx/2.

macro(bangla_eng,

 replace({

[a]:[e],

[a,a]:[a],

 [a,a,b]:[a,b],

[a,k]:[e,c],

[a,k]:[a,c],

[a,l]:[a,l],

[a,l]:[u,l],

[a,l]:[w,a,l],

[b,a]:[b,i],

[b,a,g]:[b,u,g],

[b,y]:[b,i],

[c,e]:[c,e],

[c,e]:[c,h,e],

[c,i,s]:[s,c,e,s,s],

[c,h,a,r]:[t,u,r,e],

[d,a]:[d,e],

[d,a,r]:[d,e,r],

[d,i]:[d,i,a],

[d,r,a]:[d,r,u],

[d,u,r]:[d,e,r],

[d,y]:[d,i],

[d,y]:[d,i,a],

[e]:[a],

[e]:[e],

[e,b]:[a,b],

[e,e]:[y,e,a],

[e,k]:[a,c],

[e,k]:[e,c],

[e,k,s]:[e,x],

[e,l]:[e,a,l],

[e,l]:[a,l],

[e,n]:[a,n],

89

[e,s,k,a]:[s,c,a],

[e,t]:[a,t],

[e,v]:[a,v],

[f]:[f],

[f]:[f,f],

[f]:[p,h],

[g,o,o]:[g,u,e],

[g,u]:[g,u,e],

[g,y]:[g,i],

[h,a,r]:[h,e,r],

[h,i]:[h,y],

[i]:[e],

[i]:[i],

[i,a]:[e,a],

[j,a]:[j,u],

[j,a]:[g,e],

[j,a,r,y]:[g,e,r,y],

[k]:[c],

[k]:[n,c],

[k,a]:[c,a],

[k,a]:[c,u],

[k,a,a]:[c,a],

[k,i,a]:[c,i,a],

[k,i,l,o]:[k,e,l,o],

[k,l,a]:[c,h,l,a],

[k,o]:[c,h,o],

[k,o]:[c,o],

[k,r,a]:[c,r,a],

[k,r,i]:[c,r,y],

[k,r,y]:[c,r,y],

[k,s]:[x],

[k,t]:[c,t],

[k,u]:[c,a],

[k,u]:[c,u],

[l]:[l],

[l]:[l,e],

[l]:[l,l],

[l,a,a]:[l,e],

[l,e]:[l,a],

[m,a,k,s]:[m,y,x],

[m,e]:[m,a],

[m,i]:[m,e],

[m,i]:[m,y],

[m,i,y,a]:[m,i,a],

[n,i]:[n,e],

[n,y]:[n,e],

90

[p,a]:[p,e],

[p,i,s]:[p,e,s],

[p,o,k,s]:[p,o,x],

[r,a,k]:[r,a,c],

[r,a,k,s]:[r,a,x],

[r,e,n]:[r,e,i,g,n],

[r,i]:[r,i,e,e],

[r,i]:[r,e],

[s,a]:[c,e,s,s],

[s,a,r]:[s,u,r],

[s,h,i,a]:[c,i,a],

[s,h,o,n]:[t,i,o,n],

[s,h,o,n]:[s,i,o,n],

[s,h,o,r,i]:[c,o,r,i,e,e],

[s,i,s]:[s,c,e,s,s],

[s,k,s,k,o]:[e,x,c,o],

[s,t,e,e]:[s,t,i],

[s,y]:[c,y],

[t]:[t],

[t]:[t,e],

[t,h]:[t,h],

[t,a]:[t,e],

[u]:[o,o],

[u]:[u],

[v,a]:[v,e],

[v,e,r]:[v,a,r],

[v,s]:[v,e],

[y,d]:[o,i,d],

[z,i]:[z,e]

 })

).

macro(eng_bangla,

 inverse(bangla_eng)

).

91

abreshon
abcis

akanthocis
akny

acrokordon
ektinik
ekuminata
ekuminatum

aaid
elba

ellergic
ellergisk
elopesia

anestheshia
engyoma
engular
enimal
enular
enthraks
epthos
ereta

erthropod
ethlet's
etopik
etipikal
evian
besisi
bebi
hsv
hair
hairi

hand-fut-and-mouth
hand-fut-and-

mauthe
hed
hedek
heet

heetstrok
helisis

hemangioma
harpis
harpetik

hidradenitis
hyves

hordeolum
horn
hot

heuman
hiparpigmentation
hyparpigmentation

hiperplashia
hipopigmentation
hypopigmentation

hipothermia
ikthiosis
ikthiosis
ilnes

imunodeficency
impetigo
infantile
infektion

keloidalis

milia
miliaria
mohs
mol
mol

moluskum
mongolian
mukosil
miksoid
nail

neonatal
neonatorum
nurogenic
nurogenic
nevas
neegra

neegrikans
nipel
nodosam
nodularis
nosbleed
notalgia
nukai

noomular
ook

objekt
onikolisis
onikomikosis
onikoshizia

oral
orofatial
ovaruse

palparbraram
papules
papulosa

parasthetika
paronikia
patch
patarn

pediatrik
pediculosis

pedis
pemfigas
perioral
perlish

fototherapy
pilar
pilaris
pink
pited

pitiriasis
plaag
plantar
planas
plaks
plaks

poikilodarma
poison

poisoning

keratoakanthoma
keratolisis
keratosis
keryon
lgv
lait
lamp
lasar

legionelosis
legionaires

lens
lentigo
leshon
lyce
liken
lifting
linia
lyns
leeps
local
loss
lupes
lym

lymfogranuloma
makul
male
marks
mesels

medikashon
melanositik
melanoma
melanotik
melasma

mikrobiologikal
mikrographik

mygrane
seborik
shingels
shok

simpleks
sinas
sixth
skin

smalpox
snekbite

sok
solar

solushon
sor
sors
spidar
splintar
spliting
spot
spots
sqames
stain
estasis
sting
stings

siringoma

bakterial
boldnes
barbay
basal
beeard
beau's
bedbagh
bedsors
benine
biopsi
bard

barthmark
byte
bytes

blefaritis
blistars
blu-gray
body
boels
botoks

botuleenum
bruises
boobonik

bag
bumps
barns
kaf
kalus

kandidiasis
kanker
kap

kapilarytis
kapitis
karsinoma
katarakts

sel
selulitis
sefalik
kalazion
kapped
keilytis
chery

chikenpoks
chyldhud
kalamidial
kolera

kondrodarmatytis
kronic
kronicus
kivate
klasical
klustar
kold
koli
komon

kondiloma
kongenital

konjunktivytis
kontakt

kontagiosum
korn

92

infektions
infektiosam
infektiosam
influenza
intartrigo
iritant
ichh
ivi

jelyfeesh
jok

juvenile
keloyd
fungal

furunkulosis
jenital
jarman
gonoria
gaout

granuloma
h5n1
h1n1
hiv

stiches
stroberi
strech
stry
stri
stai
swain
sindrom
sifilis

dishidrotik
ekzima

elektrodesikation
epidarmoid
erosion
eruption
erithema
strech
stry
stri
stai
swain
sindrom
sifilis
sting
stings
stings
stiches
stroberi
nevas
akny

polydaktyli
port-wyne

post-inflamatory
pregnansy
presbiopia
preshar
prikly
primary
prosidure
pruritik

sudofolikulitis
sudomonas
soriasis
pubik
pubis

pastulosis
piogenik
rash

raynaud's
razor

rekarent
remuval
renual

romboidalis
ringwarm
rosashia
rosia
rosiola
rubela
rubra
sakral
samon

salmonela
salmonelosis

skabis
skalp
skali
skarlet
skrach
sebashos
stings
stiches
stroberi
strech
stry
stri
stai

estasis
allargik

hiparhidrosis
kensar

sistemik
tag
tatu

telangiktasia
tenshon
test
thrash
tik
tinia
tung

toksisity
toksikum
toksin
trama

tritment
trench
tub

tifoid
alsar
alsars

unklasifaid
unkonshasness
artikaria
artikarial
varisela
varikos

varikositis
variola
vaskular
veins
venerum
venus

versikolar
viral
viras

vitiligo
valgaris
wart

whitlow
wud's
wunds

janthelasma
jerosis
esst
yelow
zostar
fevar
fifth
farst
flashes
flat

korneal
korporis
kosmatic
kradel
kramps
kruris

kryosarjery
kulchar
kuretage
kutanios
kutis
sist

dandraf
dekubitus
dengu

darmatitis
darmatofibroma
daramatologik
darmatosis
darmopathy
dybetik
dypar
dejit
diskoid
desees
drag
drai

erithematosas
erithrasma
ethnik

eksaminashon
eksanthem
ekskori
eksaushon

ai
facial
faciale
faintin
femal

floters
phlu

folikulitis
food

fudborne
phut
fut

fordis
foren

frostbyte

Table 36: An extract of the medical terms in Transliterated Bangla

93

Roman letter or
letter-group

Name Bangla
letter

Unicode

a
AA আ \u0986

SIGN AA া \u09BE

b BA ব \u09AC

bh BHA ভ \u09AD

c/ch CA চ \u099A

Ch/chh CHA ছ \u099B

d DA দ \u09A6

dh DHA ধ \u09A7

D DDA ড \u09A1

Dh DDHA ঢ \u09A2

e

E এ \u098F

SIGN E ে \u09C7

f PHA ফ \u09AB

g GA গ \u0997

gh GHA ঘ \u0998

h HA হ \u09B9

H VISARGA ঃ \u0983

i

I ই \u0987

SIGN I ি \u09BF

I

II ঈ \u0988

SIGN II ী \u09C0

j YA য \u09AF

J JA জ \u099C

jh JHA ঝ \u099D

k KA ক \u0995

kh KHA খ \u0996

l LA ল \u09B2

m MA ম \u09AE

M CANDRABINDU ঁ \u0981

n NA ন \u09A8

N NNA ণ \u09A3

Nh NYA ঞ \u099E

ng ANUSVARA ং \u0982

Ng NGA ঙ \u0999

o A অ \u0985

O @ BEGIN O ও \u0993

O @ MIDDLE/END SIGN O ো \u09CB

oi

AI ঐ \u0990

SIGN AI ৈ \u09C8

ou

AU ঔ \u0994

SIGN AU ৌ \u09CC

oo SIGN U উ \u09C1

p PA প \u09AA

ph PHA ফ \u09AB

q KA ক \u0995

r RA র \u09B0

R RRA ড় \u09DC

Rh DDHA ঢ় \u09A2

94

Roman letter or
letter-group

Name Bangla
letter

Unicode

s SA স \u09B8

sh SHA শ \u09B6

S SSA ষ \u09B7

t TA ত \u09A4

th THA থ \u09A5

T TTA ট \u099F

Th TTHA ঠ \u09A0

u U উ \u0989

 SIGN U ু \u09C1

U UU ঊ \u098A

 SIGN UU ূ \u09C2

v BHA ভ \u09AD

w UU ঊ \u098A

x @ BEGIN YA য \u09AF

x @ MIDDLE/END KA SA কস \u0995 \u09B8

y YYA য় \u09DF

z YA য \u09AF

\ HASANT ্ \u09CD

Table 37: Phonetic Mapping Table [UzZaman 2005]

95

7 References

Amaral, C., Laurent D., Martins A., Mendes A., Pinto C. 2004. Design and Implementation of a

Semantic Search Engine for Portuguese. In Proceedings of the 4th International Conference on

Language Resources and Evaluation (LREC '04), Lisbon, Portugal. May 2004.

Agarwal, Abhaya; Alon Lavie. 2008. METEOR, M-BLEU and M-TER: Evaluation Metrics for

High-Correlation with Human Rankings of Machine Translation Output. In Proceedings of the

3rd Workshop on Statistical Machine Translation (StatMT '08). June 2008. Ohio, USA. Pages

115-118.

Agichtein, Eugene; Steve Lawrence; Luis Gravano. 2001. Learning search engine specific query

transformations for question answering. In Proceedings of the 10th International Conference

on World Wide Web (WWW '01). Hong Kong, Pages 169-178.

Alam, Firoj; Promila Kanti Nath, Mumit Khan. 2007. Test to Speech for Bangla Language using

Festival. In Proceedings of the 1st International Conference on Digital Communications and

Computer Applications (DCCA '07), March 2007, Irbid, Jordan.

Arafat, Yeasir; Md. Zahurul Islam, Mumit Khan. 2006. Analysis and Observation from a Bangla

News Corpus. In Proceedings of the 9th International Conference on Computer and

Information Technology (ICCIT '06), December 2006, Dhaka, Bangladesh.

Bendersky, Micheal; Oren Kurland. 2008. Utilizing Passage-Based Language Models for

Document Retrieval. Lecture Notes in Computer Science, Volume 4956, March 2008,

SpringerLink, Berlin, Germany.

Beesley, Kenneth R.; Lauri Karttunen. 2003. CSLI Publications 2003. Finite State Morphology.

Bouma, Gosse; Geert Kloosterman, Jori Mur, Gertjan van Noord, Lonneke van der Plas, and Jorg

Tiedemann. 2008. Question answering with Joost at QA@CLEF 2008. In Working Notes for

the CLEF 2008 Workshop. Aarhus, Denmark.

Bouma, Gosse; Ismail Fahmi, Jori Mur, Gertjan van Noord, Lonneke van der Plas, and Jorg

Tiedemann. 2006a. The University of Groningen at QA@CLEF 2006: Using syntactic

knowledge for QA. In Working Notes for the CLEF 2006 Workshop, Alicante.

Bouma, Gosse; Geert Kloosterman, Jori Mur, Gertjan van Noord, Lonneke van der Plas, and Jorg

Tiedemann. 2007. Question answering with Joost at QA@CLEF 2007. In Carol Peters et al.,

editor, In Proceedings of CLEF 2007. Springer, Berlin.

96

Bouma, Gosse; Jori Mur, Gertjan van Noord, Lonneke van der Plas, and Jorg Tiedemann. 2006b.

Question Answering for Dutch using Dependency Relations. In: C. Peters, F. Gey, J. Gonzalo,

H. Mueller, G. Jones, M. Kluck, B. Magnini, M. De Rijke (editors), Accessing Multilingual

Information Repositories. Lecture Notes in Computer Science Vol. 4022/2006. Springer.

Pages 370-379.

Bouma, Gosse; Jori Mur, Gertjan van Noord, Lonneke van der Plas, and Jorg Tiedemann. 2005.

Question Answering for Dutch using Dependency Relations. In Proceedings of the CLEF2005

Workshop. 2005.

Bouma, Gosse; Gertjan van Noord, and Robert Malouf. 2001. Alpino: Wide-coverage

computational analysis of Dutch, 2001.

Clement, Julien; Philippe Flajolet; Brigitte Valle. 1997. The Analysis of Hybrid Trie Structures.

In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

'98), November 1997, Philadelphia, USA.

Covington, Micheal A.; 2000. A Fundamental Algorithm for Dependency Parsing. In

Proceedings of the 39th Annual ACM Southeast Conference (ACMSE '01), 2001, Georgia,

USA.

Dasgupta, Sajib; Abu Wasif; Sharmin Azam. 2004. An optimal way towards machine translation

from English to Bengali. In Proceedings of the 7th International Conference on Computer and

Information Technology (ICCIT '04), December 2004, Dhaka, Bangladesh.

Day, Min-Yuh; Cheng-Wei Lee; Shih-Hung Wu; Chorng-Shyong Ong; Wen-Lian Hsu. 2005. An

Integrated Knowledge-bases and Machine Learning approach for Chinese Question

Classification. In Proceedings of 2005 IEEE International Conference on Natural Language

Processing and Knowledge Engineering (IEEE NLP-KE '05), November 2005, Wuhan, China.

Doddington, George; 2002. Automatic evaluation of machine translation quality using n-gram

co-occurrence statistics. In Proceedings of the 2nd International Conference on Human

Language Technology Research. 2002.

Dong, Z; Q. Dong, 1999 "HowNet", http://www.keenage.com/html/e_index.html/, 1999. Last

accessed on November 2009.

Duca, Alan. 2007. The SketchNet Project: Knowledge-based word sense disambiguation.

Undergraduate Thesis, May 2007, University of Malta, Malta.

Ferrandez, Sergio; Ferrandez Antonio; Sandra Roger; Pilar Lopez-Moreno; Jesus Peral. 2006.

97

http://www.keenage.com/html/e_index.html/

BRILI, an English-Spanish Cross-Lingual Question Answering System. In Proceedings of the

International Multiconference on Computer Science and Information Technology. 2006. pages

25-31.

Finch, Andrew; Eiichiro, Sumita. 2008. Phrase-based Machine Transliteration. In Proceedings of

the 3rd International Joint Conference on Natural Language Processing of the Asian Federation

of Natural Language Processing (IJC-NLP '08), Hyderabad, India. Pages 13-18.

Fleischman, Michael, Eduard Hovy, and Abdessamad Echihabi. 2003. Oine strategies for online

question answering: Answering questions before they are asked. In Proceedings of the 41st

Annual Meeting of the Association for Computational Linguistics (ACL '03), pages 1-7,

Sapporo, Japan.

Harabagiu, Sanda; Steven Maiorano. 1999. Finding answers in large collections of texts:

Paragraph Indexing + abductive Inference. In Proceedings of AAAI Fall Symposium on

Question Answering Systems, November 1999, Pages 63-71.

Hasnat, Md. Abul; S M Murtoza Habib, Mumit Khan. 2007. A high performance domain specific

OCR for Bangla Script. In Proceeding of the International Joint Conferences on Computer,

Information and Systems Sciences and Engineering (CISSE '07). December 2007.

Hasan, Fahim Muhammad; Naushad UzZaman, Mumit Khan. 2006. Comparison of different

POS Tagging techniques (n-gram, HMM and Brill's tagger) for Bangla. In Proceedings of the

International Conference on Systems, Computing Sciences and Software Engineering (SCSS

'06). December 2006.

Haque, Nafid. 2006. Web-based English to Bangla Transliteration with lexicon support.

Independent Study Project, Spring 2006, BRAC University, Bangladesh.

Haque, Nafid. 2006a. Design of Head-driven Phrase Structure Grammar for Bangla.

Undergraduate Thesis, Fall 2006, BRAC University, Bangladesh.

Hossain, Golam Mortuza. 2008. A brief introduction to Anubadok: The Bengali Machine

Translator. Work in progress. July 2008.

Hsu, Wen-Lian; Shih-Hung Wu; i-Shiou Chen. 2001. Event Identification based on the

Information Map. In Proceedings of the IEEE International Conference on Systems, Man, and

Cybernatics, October 2001.

Jiang, Long; Ming Zhou, Lee-Feng Chien, Cheng Niu. 2007. Named entity translation with web-

mining and Transliteration. In Proceedings of the 20th International Joint Conference on

98

Artificial Intelligence (IJC-AI '07), Hyderabad, India.

Jijkoun, V B; Hofmann K.; Ahn D D.; Khalid M A; van Rantwijk J.; de Rijke M.; Tjong Kim

Sang E F. 2007. The University of Amsterdam's Question Answering System at

QA@CLEF2007. Lecture Notes in Computer Science: Advances in Multilingual and

Multimodal Information Retrieval. Pages 344-351.

Jurafsky, Daniel; James H. Martin. 1999. Speech and Language Processing, Prentice Hall, 1999.

Karttunen, Lauri. 2000. Applications of Finite-State transducers in Natural Language Processing.

In lecture notes in Computer Science. Vol. 2088. Pages 34-46.

Karttunen, Lauri; Kenneth, R. Beesley. 2001. A short history of two-level morphology. Xerox

Research Center. September 2001.

Knight, K; Graehl, J. 1997. Machine Transliteration. Computational Linguistics, 24(4), Pages

599-613.

Laurent, Dominique. Patrick Seguela, Sophie Negre. 2005. Cross-Lingual Question Answering

using Qristal for CLEF 2005. In Working Notes for the CLEF 2005 Workshop, Vienna,

Austria.

Laurent, Dominique. Patrick Seguela, Sophie Negre. 2006. QA better than IR?. In Proceedings of

the Workshop on Multilingual Question Answering (MLQA '06), Trento, Italy.

Li, X; D. Roth. 2002. Learning Question Classifiers. In Proceedings of the 19th International

Conference on Computational Linguistics (COLING'02), 2002.

Magnini, Bernardo; Matteo, Negri; Roberto, Prevete; Hristo, Tanev. 2001. Multilingual

Question/Answering: the DIOGENE System. In Proceedings of the 10th Text Retrieval

Conference (TREC '01), 2001.

Mahmud, Altaf; Mumit Khan. 2007. Building a Foundation of HPSG-based treebank on Bangla

Language. In Proceedings of the 10h International Conference on Computer and Information

Technology (ICCIT '07), December 2007, Dhaka, Bangladesh.

Moldovan, Dan; Sanda Harabagiu, Marius Pasca, Rada Mihalcea, Roxana Girju, Richard

Goodrum and Vasile Rus. 2000. The structure and performance of an open-domain question

answering system. In Proceedings of the Conference of the Association for Computational

Linguistics (ACL '00), 2000.

Monz, Christof. 2003. From Document Retrieval to Question Answering. PhD Thesis. University

99

of Amsterdam, 2003.

Monz, Christof. 2007. Model tree learning for Query Term Weighting in Question Answering. In

Proceedings of the 29th European Conference on Information Retrieval Research (ECIR '07).

Lecture Notes in Computer Science 4425, pages 589-596.

Pasca, Marius. 2003. Open-Domain Question Answering from Large Text Collections. CSLI

Publications.

Pavel, Dewan Shahriar Hossain; Asif Iqbal, Mumit Khan. 2006. A proposed automated

extraction procedure of Bangla text for corpus creation in Unicode. In Proceedings of the

International Conference on Computer Processing of Bangla (ICCPB '06). February 2006.

Dhaka, Bangladesh.

Papineni, K; S. Roukos, T. Ward, W. Zhu. 2001. BLEU: a method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics (ACL '01), 2001.

Segond, Frederique; Pasi Tapanainen. 1995. Using a finite-state based formalism to identify and

generate multiword expressions. In MLTT technical Reports, May 1995.

Strötgen, Robert; Mandl, Thomas; Schneider, René. 2006. A Fast Forward Approach to Cross-

lingual Question Answering for English and German. In: Peters, Carol; Gey, Fredric C.;

Gonzalo, Julio; Jones, Gareth J.F.; Kluck, Michael; Magnini, Bernardo; Müller, Henning;

Rijke, Maarten de (Eds.). Accessing Multilingual Information Repositories: 6th Workshop of

the Cross-Language Evaluation Forum, CLEF 2005, Vienna, Austria, Revised Selected

Papers. Berlin et al.: Springer [Lecture Notes in Computer Science 4022] Vorab in: Working

Notes of the 6th Workshop of the Cross-Language Evaluation Forum, CLEF 2005. Sept.

2005, Wien.

Tapanainen, Pasi. 1995. FSC tool developed at XRCE in 1994-1995.

Terra, Egidio; Charles L.A. Clarke. 2005. Comparing query formulation and Lexical Affinity

Replacements in Passage Retrieval. In ELECTRA: Methodologies and Evaluation of Lexical

Cohesion Techniques in real world applications, SIGR Workshop, August 2005, Salvador,

Brazil.

Tomas, David; Claudio Giuliano. 2009. A semi-supervised approach to question classification. In

Proceedings of the 17th European Symposium on Artificial Neural Networks: Advances in

Computational Intelligence and Learning, April 2009, Bruges, Belgium.

100

UzZaman, Naushad. 2005. Phonetic Encoding for Bangla and its application to spelling checker,

transliteration, cross-language information retrieval and name searching. Undergraduate

Thesis, Spring 2005, BRAC University, Bangladesh.

UzZaman, Naushad; Arnab, Zaheen; Mumit, Khan. 2006. A comprehensive Roman (English) to

Bangla transliteration scheme. In Proceedings of International Conference on Computer

Processing on Bangla (ICCPB '06), February 2006, Dhaka, Bangladesh.

Van Noord, Gertjan. 2006. At last parsing is now operational. In: Piet Mertens, Cedrick Fairon,

Anne Dister, and Patrick Watrin, editors, TALN06. Verbum Ex Machina. Actes de la 13e

conference sur le traitement automatique des langues naturelles. Pages 20-42.

Van Noord, Gertjan. 1997. FSA Utilities: A Toolbox to Manipulate Finite-state Automata. In:

Darrell Raymond, Derick Wood and Sheng Yu (eds), Automata Implementation. Lecture

Notes in Computer Science 1260, Springer Verlag.

Zaanen, Menno van; Luiz Augusto Pizzato; Diego Molla. 2005. Question Classification by

Structure Induction. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJC-AI '05), August 2005, Edinburgh, Scotland.

Zhang, Dell; 2004. Web based Question Answering with Aggregation Strategy. In Proceedings of

the 6th Asia Pacific Web Conference (APWEB '04), Hangzhou, China. April 2004.

Zhang, Dell; Wee, Sun Lee. 2003. A Web-based Question Answering System. In Proceedings of

the SMA Annual Symposium 2003, Singapore, 2003.

101

	Table of Contents
	List of Tables
	List of Figures

