## Shedding Light on Dickens' Style through Independent Component Analysis and Representativeness and Distinctiveness

CARMEN KLAUSSNER

European Masters Program in Language & Communication Technologies (LCT)

*University of Groningen* Department of Literature and Arts

Thesis Supervisors: Prof. Dr. John Nerbonne Dr. Çağrı Çöltekin *University of Nancy 2* Department of Cognitive Science

Thesis Supervisor: Dr. Jean-Charles Lamirel



UNIVERSITÉ DE LORRAINE

Date: 31 July 2013

## Acknowledgments

I would like to thank my supervisors in Groningen, John Nerbonne and Çağri Çöltekin, for their excellent guidance during this work, in particular for keeping an open mind for my interests and ideas, for having the oversight to terminate my listless wanderings into mathematical limbo, and finally for their understanding and patience in the face of frequent bafflement.

Also, I would like to sincerely thank my supervisor in Nancy, Jean-Charles Lamirel, for continued support from the distance in the joined endeavour of adapting *Independent Component Analysis* for style analysis.

I hope that this work will give some credit to their joined effort and that they would also regard it as such.

## CONTENTS

#### 1 INTRODUCTION 1

- 2 APPROACHES TO STYLE ANALYSIS 2
  - 2.1 Exploring the Use of Style Analysis 2
    - 2.1.1 First Attempts: Characteristic Curves of Composition 2
    - 2.1.2 Disputed Authorship in the Federalist Papers 3
    - 2.1.3 Recent Approaches to Authorship Attribution 4
    - 2.1.4 Applications of Authorship Attribution 5
  - 2.2 Characteristics of Style Analysis 6
    - 2.2.1 Frequent Word Features 6
      - 2.2.2 Obstacles in Style Analysis 7
  - 2.3 Dickens' Style Analysis
    - 2.3.1 Corpus Linguistics' Approach to Dickens' Style 9
    - 2.3.2 Attributing Dickens' "Temperance"
    - 2.3.3 Approaching Dickens' Style through Random Forests 10

10

## 3 STATISTICAL ANALYSIS OF DICKENS' TEXTS 13

- 3.1 Authorship Data Sets 13
  - 3.1.1 Dickens and Collins Comparison 1 13
  - 3.1.2 Dickens and Collins: Augmented 14
  - 3.1.3 Dickens vs. World set 15
  - 3.1.4 Data Collection and Preparation 15
- 3.2 Independent Component Analysis for Characteristic Term Selection 16
   3.2.1 Independent Component Analysis 16
  - 3.2.2 Preprocessing in Independent Component Analysis 18
  - 3.2.3 Independent Component Analysis in Text Classification 24
  - 3.2.4 ICA General Model 27
- 3.3 Representativeness and Distinctiveness 31
  - 3.3.1 Representativeness and Distinctiveness for Dialectrometry 31
  - 3.3.2 Representative & Distinctive Terms for Authorship Attribution 32
  - 3.3.3 The Representativeness-Distinctiveness' General Model 33
- 3.4 Model Scenarios for Characteristic Term Selection 38
  - 3.4.1 Model 1: Separate Representativeness Distinctiveness 38
  - 3.4.2 Model 2: Separate Independent Component Analysis 39
  - 3.4.3 Model 3: ICA & Representative and Distinctive Components 40

## 4 EVALUATING DICKENS' CHARACTERISTIC TERMS 41

- 4.1 Evaluation Methods 41
  - 4.1.1 Relative Histogram Differences of Author Profiles 42
  - 4.1.2 Clustering Dissimilarity of Author Sets 44
  - 4.1.3 Profile Consistency 47
- 4.2 Evaluation of Dickens' Terms 48
  - 4.2.1 Characteristic Term Experiments 48
  - 4.2.2 Differences in Evaluation of Representativeness & Distinctiveness vs. ICA 49
  - 4.2.3 Characteristic Terms of Dickens and Collins (1) and (2) 50
  - 4.2.4 Characteristic Terms of Dickens vs. World 61

- 4.3 Discussion and Interpretation of Characteristic Term Results 68
  - 4.3.1 Comparing to Tabata's Random Forests 68
  - 4.3.2 Towards a More Suitable Evaluation for Representative and Distinctive Terms 70
- 5 CONCLUSION AND FUTURE WORK 72
- A AUTHORSHIP DATASETS 75
  - A.1 Dickens vs. Collins Data Set (2) 75
  - A.2 Dickens vs. World Data Set 76
- B EVALUATION RESULTS 78
  - B.1 Representative & Distinctive Terms of Dickens vs. Collins (2) 78
  - B.2 Separate ICA's Characteristic Terms of Dickens vs. Collins (1) and (2)
  - B.3 ICA with Representative & Distinctive Components on Dickens vs. Collins (1) and (2) 85

80

- B.4 Representative & Distinctive Terms of Dickens vs. World 90
- B.5 Separate ICA's Characteristic Terms of Dickens vs. World 92
- B.6 ICA with Representative & Distinctive Components on Dickens vs. World 94
- B.7 Additional Results: Term Ranking over different Iterations 96

"To them, I said, the truth would be literally nothing but the shadows of the images [...]

And if they were in the habit of conferring honours among themselves on those who were quickest to observe the passing shadows and to remark which of them went before, and which followed after, and which were together; and who were therefore best able to draw conclusions as to the future, do you think that he would care for such honours and glories, or envy the possessors of them?"

-Plato's 'The Republic', Book VII

## INTRODUCTION

The concept of *style* is a characteristic that is somewhat difficult to define or measure distinctly and is thus far less tangible compared to other possible characteristics. The concept of an author's style, the *feel* of his writings, is reminiscent of the *feel* of a piece of music that we instinctively perceive to originate from a particular composer, such as Chopin or Debussy, without being quite able to name the exact reasons, because style is a composite feature, a sum of entwined parts.

Plato's *Allegory of the Cave* (Plato and Jowett 2011) describes some prisoners in a cave, who are chained so that they face the wall and are unable to turn their heads towards the light, which holds the truth. They can only glimpse at reality through the shadows projected at the wall in front of them, without knowing whether what they observe is in any way close to the truth. This allegory is often employed to express the sheer difficulty of any knowledge-seeking person at making deductions solely on the basis of some observations (shadows) without knowing their relationship to reality. Like the prisoners, we are reaching out for the truth, while not knowing which part of the shape reflecting reality is representative of the real object.

The associated predicament may be even be more fitting with respect to style analysis, where we are not only interested in a solid explanation of what we observe, but also in the explanation itself.

In our "cave" of style analysis, we imagine there to be two kinds of *prisoners*. The first is the expert or the close observer, who continues watching one or maybe a couple of particular shapes and is able to recognize details and spot one shape among many, even when a little distorted, but all others remain a puzzle to him. The second kind of prisoner tries to abstract and to generalize. He does not know any shape well, but has techniques that can tell him whether two shapes are similar and therefore finds those properties common to all shapes and those distinctive only for some. The first type of prisoner is very accurate, but lacks generalization ability, while the second type of prisoner is less specific, although potentially more impartial, as he may draw conclusions from his findings. Even if ever escaping from the cave is unlikely, one step closer towards the light might be achieved through combining beliefs and findings about style from both perspectives and fixing our vision on the shapes in front of us.

Thus, for this thesis, we are content to settle on a distortion of the truth, but hoping for some interesting insights into the style of an author. The following work is a tentative attempt at measuring what is generally conceived to be an author's *fingerprint*, in particular with respect to the author Charles Dickens, and all results should essentially be seen in this light, namely a modest attempt at quantifying something that is in fact very difficult to measure.

The remainder of this work is structured as follows: chapter 2 presents an insight into the diverse aspects of non-traditional style analysis, considering both past and present. Chapter 3 continues by building the statistical basis for this work. Chapter 4 explains experiments and the evaluation of the methods presented and chapter 5 closes with the conclusion to this study of Dickens' style and possible future continuation.

## APPROACHES TO STYLE ANALYSIS

In this chapter, we introduce *Stylometry*, in particular in the realm of non-traditional authorship attribution. We begin by looking at the early beginning and tentative development of statistical methods to settle cases of disputed authorship. Stylometry, although set in the general field of text classification, differs considerably in regard to its underlying assumptions, which consequently place different requirements on the overall task. The present study is concerned with Dickens' style analysis and it therefore seems appropriate to consider related approaches that focus particularly on Dickens' style.

Thus, section 2.1 recounts early studies of authorship methods, that in part still form the basis for computationally more advanced approaches today. It continues with recent state-of-the-art techniques to solve questions of authorship and concludes with examples of where authorship attribution methods can be applied, which incidentally also form part of their motivation and charm. Section 2.2 deals with the specific characteristics of authorship attribution and how these affect common methodologies in the field. Finally, section 2.3 then concentrates on studies particularly relevant to the present task of analysing Dickens' style, both from the disciplines of statistics and machine learning, but also corpus linguistics.

#### 2.1 EXPLORING THE USE OF STYLE ANALYSIS

Stylometry is an interdisciplinary research area combining literary stylistics, statistics and computer science (He and Rasheed 2004). It is an investigation into the *style* or *feel* of a piece of writing influenced by various parameters, such as genre, topic or the author. Stylometry for authorship attribution is not concerned with deciding on the topic of a document, but rather with unearthing features distinctive of its author that can be abstracted away from its source and taken as markers that will generally apply to the author's documents regardless of their individual topics.

Discriminatory features of an author (and a particular strata of his work) have to be considered with respect to the other authors he is to be distinguished from and the quality and general appropriateness of those features is subject to the authors' document collection as well as the reference that gave rise to it.

### 2.1.1 First Attempts: Characteristic Curves of Composition

The first pioneering attempts at authorship attribution were in 1887 by the American physicist Thomas C. Mendenhall, who investigated the difference between writers, such as Charles Dickens and William Thackeray by looking at word length histograms, extending English logician Augustus de Morgan's original suggestion, that average word length could be an indicator of authorship (Mendenhall 1887).

On the basis of these word length histograms, Mendenhall constructed *characteristic curves of compositions*, that revealed *persistent peculiarities* of an author seemingly impermeable to his influence. While two curves constructed on the basis of 1000 words showed irregularities for the same author, two 100,000 words-based curves were practically identical. Even when on one occasion, an author tried to actively manipulate his own writing in an attempt to simplify it for a different audience, his curves remained strikingly alike in their main feature.

Mendenhall concluded that, in order to show that the method was sound, it would need to be applied repeatedly and to different authors, i.e. for each author, several 100,000 word length curves needed to be compared. If these were found to be practically identical for one author, while being different for two different ones, the method could be reliably applied to problems of disputed authorship (Mendenhall 1887).

In 1901, Mendenhall conducted a second study, where he attempted to settle the question of Shakespeare's authorship, in particular the question of whether Francis Bacon had been author of his plays, poems or sonnets (Mendenhall 1901). An extensive study showed that Bacon's curve was quite dissimilar to the one of Shakespeare, but that the one constructed for Christopher Marlowe agreed with the one of Shakespeare as much as Shakespeare's curves agreed with themselves.

Although word length by itself may not be considered sufficient evidence to settle the question of disputed authorship, this early study already showed the benefit of focusing on unconscious stylistic features and also conveyed the need for enough data samples to support one's claim.

#### 2.1.2 Disputed Authorship in the Federalist Papers

Among related statistical studies following this early attempt was the influential work by George K. Zipf in 1932 establishing *Zipf's law* on word frequency distributions in natural language corpora, stating that the frequency of any word is inversely proportional to its rank in the frequency table (Zipf 1932).

However, there was no considerable advancement in authorship attribution studies until well into the second half of the 20th century, which marked the emergence of what was to become one of the most famous and influential studies into disputed authorship. In 1964, the two American statisticians Frederick Mosteller and David L. Wallace set out to use word frequencies to investigate the mystery of the authorship of *The Federalist Papers* (Mosteller and Wallace 2008).

During the years of 1787-1788, both Alexander Hamilton and James Madison and John Jay wrote the *Federalist* in an endeavour to persuade the citizens of New York to ratify the constitution. The question of authorship arose because originally all articles had been published under the pseudonym of "Publius" and for 12 papers both Hamilton and Madison later put in a claim. Even considering additional factors and accounts could not settle the dispute satisfactorily.

Consequently, Mosteller and Wallace conducted an extensive study as to who wrote the 12 disputed papers, which to complicate matters all had to be attributed individually. Analysis using ordinary style characteristics, such as average sentence lengths did not yield suitable variables for discrimination between the two authors, which led them to word count analysis.

The authors preliminarily concluded that one single word or a few words would not provide a satisfactory basis for reliable authorship identification, but that many words in unison were needed to create an "overwhelming" evidence, that no clue on its own would be able to provide likewise (Mosteller and Wallace 2008, p. 10).

#### Preliminaries: Words and Their Distributions

They embarked on the laborious task of looking at word distributions in the search of choice of words with good discrimination power. High frequency words (mostly function words) seemed to provide better discriminators, being both frequent and less subjective to contextual influence. However, even words of high frequency had relatively small rates

of usage, which led the authors to search for a more fitting distribution for the Bayesian study, settling on the *Poisson* and *negative binomial* distribution. In addition, stability and independence of the word distributions over time and context was also reasonably satisfied (Watson 1966).

#### Bayesian Study

The main study was concerned with the estimation of the final odds (log odds), which are the product of the initial odds and the likelihood ratio. The authors employed the Bayes theorem to obtain an approximation of the prior distributions that were needed to determine conditional/posterior probabilities. Given a vector of word frequencies with density of  $f_1(x)$  for Hamilton and  $f_2(x)$  for Madison, the likelihood ratio is (Watson 1966):

$$\frac{f_1(x)}{f_2(x)}$$
 and prior probabilities :  $\pi_1, \pi_2 \Rightarrow \frac{f_1(x)\pi_1}{f_2(x)\pi_2}$  (final odds) (2.1.1)

A paper could then clearly be attributed to Hamilton, if  $f_1(x)\pi_1 > f_2(x)\pi_2$  and to Madison if  $f_1(x)\pi_1 < f_2(x)\pi_2$ . Great pains were taken in the determination of the final odds to take into consideration a range of factors, so as to minimize the effects of variation in the choice of the underlying constants of the prior distributions (Khamis 1966).

After additional analyses, the authors were able to attribute all 12 papers to Madison and for each paper  $\frac{f_2(x)}{f_1(x)}$  was so large as to render any conceivable  $\frac{\pi_1}{\pi_2}$  insignificant (Mosteller and Wallace 2008).

## Conclusion and Critical Acclaim

At the time, Mosteller and Wallace's work marked the departure point for non-traditional authorship attribution studies, as opposed to what had been a traditional human-expertbased methods domain (Stamatatos 2009). Apart from the authors' invaluable contribution to the advancement of authorship attribution studies, they were the first to give more credibility of the application of Bayes to practical problems. Although the assumption of independence of function words is technically not correct, conditional probabilities are difficult to estimate in practise (Malyutov 2005). Their verdict of authorship in favour of Madison was supported by more recent studies, e.g. (Bosch and Smith 1998) and (Fung et al. 2003) using support vector machines.

Considering the fast pace of research nowadays and the continued importance of *Inference and Disputed Authorship: The Federalist*, it can only be regarded as a remarkable achievement overall.

#### 2.1.3 Recent Approaches to Authorship Attribution

During the time post-*Federalist papers* studies and until the late 1990s, research in authorship attribution experimented and proposed a variety of methods, including sentence length, word length, word frequencies, character frequencies, and vocabulary richness functions, although methods tended to be more computer-assisted than computer-based (Stamatatos 2009). This earlier period suffered from a lack of objective evaluation methods, as most methods were tested on disputed material and evaluation was mainly heuristic and intuition-driven.

The rise of the internet and the availability of electronic texts brought authorship attribution closer to the disciplines of information retrieval, machine learning and natural language processing (NLP) and saw the development of more sophisticated evaluation techniques allowing for inter-method evaluation and the blossoming of more advanced features, such as syntax-based features. This change also enabled the field to become more relevant to criminal law, computational forensics, as well as to more traditional applications of investigating authorship as in *Federalist* case (Mosteller and Wallace 2008). However, statistical or stylistic authorship attribution of literary pieces, hitherto the domain of literary scholars, is still not a widely accepted practise among literary experts (Mahlberg 2007).

Among the common methods developed and applied to authorship attribution are *Burrows Delta* (Burrows 2002), a simple measure of the difference between two texts and principal component analysis (PCA), which is reported to provide insightful clustering in literary stylometry (Burrows 1992), but is defeated by discriminant analysis, when the authors are non-literary and have a more similar background (Baayen et al. 2002).

Neural networks, an artificial intelligence method that models human brain behaviour, is less desirable for the task of authorship attribution regardless of performance. Given appropriate training data and a test sample, a neural network returns a decision without motivation, a property insufficient for application in e.g. forensic linguistics, where humanly understandable evidence is of the essence (Clark 2011).

### 2.1.4 Applications of Authorship Attribution

Authorship attribution has a variety of potential applications, as for instance plagiarism detection, email spam writer detection or in forensics. In the following, we consider some of these applications in more detail.

AUTHORSHIP VERIFICATION An example of authorship verification already encountered was the *Federalist papers* case. Given a piece of disputed authorship and some *suspects* and examples of their writing, the task is to verify that a given target text was or was not written by this author (Koppel et al. 2009). The problem is complicated if authorship is not limited to a small set of possible candidates.

AUTHOR PROFILING In the case where there is an anonymous text sample, but no candidate (set) at all, making comparisons impossible, profiling is concerned with the extraction of information e.g. gender, age, native language or neuroticism levels of the author of the anonymous text (Koppel et al. 2009). Thus, lacking training data, one opts to create a psychological profile. Neurotic personalities, for instance, tend to have an increased use of reflexive pronouns and pronouns for subjects.

PLAGIARISM DETECTION The availability of electronic texts has also facilitated the reuse of them, which in some cases results in unauthorized reuse, more commonly known as plagiarism. There are different kinds of this infringement on original ownership, some of which are easier to detect than others. Word-for-word plagiarism is a direct copy or a minimally rewritten equivalent of a source text without acknowledgement (Clough 2003). Other types include paraphrasing by changing the wording or syntax of the source.

Automatic plagiarism detection involves measuring similarities between two documents that would be unlikely to occur by chance or finding inconsistencies in the style of an author that would indicate borrowed passages adapted in wording or syntax and quite unlike the remainder of the text (Clough 2003).

AUTHORSHIP ANALYSIS IN FORENSICS Forensic stylometric authorship analysis (FSAA) is the authorship attribution equivalent relevant for scientific methodology for providing evidence in a courtroom situation (Clark 2011) and also sometimes used by the police even when evidence is too non-conclusive for the courtroom. Undoubtedly due to the severe

repercussions of the acceptance of evidence, FSAA as a method is subject to the legal framework for admissibility of scientific evidence under the *Daubert Standard* (Clark 2011), namely before being admitted to provide evidence, a method has to fulfil the following criteria:

- 1. Testability or falsifiability
- 2. Peer review and publication
- 3. Known or potential error rate
- 4. General acceptance

Obviously the exact error rates are more significant in a setting where conviction might partly be based on a methods' results, and it is therefore vital to state with how much confidence these may be taken into account.

Cumulative sum charts (CUSUM) were accepted in court as expert evidence, despite them being criticized severely by the research community (Stamatatos 2009), who considered the method to be unreliable. These are "simply line graphs representing the relative frequencies of supposedly 'unconscious' and 'habitual' writing traits like sentence length or words that start with vowels (Clark 2011) and thus seem comparable to the technique put forward in Mendenhall 1887.

One of the issues with most statistical methods is that they are more suited to text analysis than forensic linguistics, where data is more scarce. Linguist expert opinion on matters of authorship is also scarcely used in court, which tends to rely on individuals close to the defendant (Clark 2011).

### 2.2 CHARACTERISTICS OF STYLE ANALYSIS

In the realm of text classification, authorship attribution somewhat differs from the *normal* text classification strategies. The usual objective in information retrieval is to separate a text collection into subsets according to the topics by promoting content words not frequent over the whole collection and thus more indicative of certain topics. Function words are largely ignored, since most of them do not vary considerably across topically different documents and would therefore not assist separation (Koppel et al. 2009). Here, the documents themselves are the subject of interest, while their individual authors are given less consideration.

In contrast, for the task of authorship attribution, where the object is to reveal common characteristics of an author, one collects only examples of specific authors and the documents themselves may rather be considered as observations of a random variable, namely the author's individual style.

#### 2.2.1 Frequent Word Features

The benefit of using the more frequent words in a language for the task was already identified from very early on. The reasons for their popularity are that they are frequent and thus provide more reliable evidence, more independent of context and less subject to conscious control by the writer (Mosteller and Wallace 2008). Nowadays, there exists a general consensus about the merit of function words in this particular application, since it has been shown repeatedly that the frequent words (mostly function words) in a text are better suited to the task.

However, the issue is far from being irrevocably settled and the notion is still occasionally addressed, e.g. recently in Vickers 2011, where it was claimed that rarer n-grams distinguish

better than common word n-grams. This in turn was challenged by David L. Hoover (Hoover 2012), who argued that since there are so many rare n-grams, there will most certainly be some unique correlation found between an anonymous sample and a candidate author sample.

#### The Shape of Frequent Features

For the present study, we concentrate on frequent word features and therefore describe their properties more closely in the following. High frequency words in a language mostly consist of function words and the more frequent content words, that are less dependent on context, as for instance "innovation" (Mosteller and Wallace 2008) and in research often the 500 - 4,000 most frequent words are considered. Function words are supposed to be more representative of the somewhat inherent style of the author and their discriminatory power lies in the fact that the author may be less aware of the way and rate he uses them. Function words have the further advantage of being mainly a closed class group and thus less invariant over time, unlike content words, such as verbs or nouns that can freely admit new members.

As already indicated, stylometry is concerned with identifying distinctive markers of a particular author. In order to qualify as being discriminatory for an author, these features have to display a marked difference, in regular and consistent appearance or absence, when compared to appropriate other authors' texts. Thus, discriminators can be both positive and negative, where positive discriminators are noticeable by a marked or striking appearance, generally more than mere chance occurrence would suggest, given an appropriate reference, and correspondingly negative discriminators are conspicuous by a marked absence (Tabata 2012). Generally, frequent features come in different shapes, such as character features (character n-grams), word features or syntactic/semantic features, where the choice is also application-dependent, as well as language-specific (Stamatatos 2009).

Earlier approaches to feature selection included *average number of syllables/letters per word, average sentence length*, but these proved mostly inadequate for the task, while morphological features might be primarily relevant for languages rich in those features (Koppel et al. 2009). Usually for analysis, one item is created for all lexical items that share the same spelling, which leads to some ambiguity of the resulting combination. Depending on the language, for example in English, this means combining some nouns and verbs (if frequent), such as *the water*<sub>noun</sub> and *to water*<sub>verb</sub>.

## 2.2.2 Obstacles in Style Analysis

Given the undoubtedly challenging task of finding discriminatory markers for an author seeing that the answer is unknown and evaluation more of a *relative quality* measure, there are certain additional complications rooted inherently in language and the nature of the task. We consider a setting, where we desire to find discriminatory words for two different authors and for want of imagination, we take Charles Dickens and Wilkie Collins (see Tabata 2012).

#### Choosing the Parameters

The task is to find characteristic terms for both Dickens and Collins separately, where the first step is to choose appropriate training data. Unfortunately, an author, assuming he wrote over a longer period of time, is bound to develop in his style and his writings might therefore display some differences depending on when the piece was written.

Thus, the inevitable question arises, which exact text samples are most representative of the author, although this might be reasonably approximated by the application. If we choose to look at whether Dickens' style changed over time, obviously both his early and late works should be present in the set. The right method for the task depends invariably on the classification task or the specific authors compared, as was also shown in (Mosteller and Wallace 2008), where average sentence length (even though successful elsewhere) turned out to be absolutely non-discriminatory for Hamilton and Madison.

Comparing only two authors, such as Dickens and Collins, might yield discriminators, that more or less only discriminate those two writer. These features need not be discriminatory for the two authors in general and a different reference set might return quite different results (see section 2.3.3). The final *Damocles-sword* question remains: are the markers identified really discriminatory overall or only appropriate for a specific application (He and Rasheed 2004).

#### Facing Feature Dilemmas

General decisions that have to be considered in regard to preprocessing steps are lemmatization, which may help to overcome dialogue vs. past tense narration style variation, but causes loss of stylistic variation of endings, as for instance -"ing" - a possible indicator of movement in Dickens. Often, personal pronouns, such as *he*, *she*, *I* (not possessive ones) are also removed from the word list, as narration style tends to exert influence over pronoun frequency (first person vs. third person), but distinguishing information may also be lost through this exclusion. Taking more words as discriminators tends to lessen the effects of small errors, although large lists are only appropriate for large texts and these are not always available.

In order to capture only variation in style, other confounding factors, such as genre or time period have to be eliminated at least in principle. For this reason, one usually resorts to comparing authors from the same time period, since language and general style undergo change over time and if one aims at detecting special characteristics of a particular author, one has to compare him to contemporaries, otherwise there is the risk of detecting elements characteristic of a certain time period rather than individual authors.

Ideally, comparisons should also be on the same text type, since one author's collection of poems opposed to another author's novels might show dissimilarities that would not have arisen if the genre had been the same, as genre distinctly influences the distribution of function and content words (Burrows 2007). Poems, for instance, respond less well to frequent word analysis and a change of topic distorts middle range word frequencies.

#### Independence of Discriminators

In the search for characteristic markers of two authors, ideally those markers are each primarily frequent for only one of the two writers in question. In the *Federalist* study (Mosteller and Wallace 2008), two markers were identified *while* – *whilst* (quasi-synonymous), that each seem to be particularly close to one of Madison or Hamilton.

However, these *clear* cases are somewhat rare, since the use of function words is not completely arbitrary and their employment is subject to a language's grammar. One may also not always find real synonymous pairs, because language in general has the tendency to suppress redundancy and this will apply even more to function words than content words, which tend to have more different word senses. The ideal one might hope for is a good approximation to terms an author uses more frequently than he would normally *need to* and those he tends to avoid more than he would be *expected to* otherwise.

Thus, one possibility, as already noted above, is to not rely on a single word or a few words for reliable authorship identification, but many words in unison to create an

"overwhelming" evidence, that no clue on its own would be able to provide likewise (Mosteller and Wallace 2008, p. 10).

## 2.3 DICKENS' STYLE ANALYSIS

Charles Dickens is perceived to have a somewhat unique style that sets his pieces apart from his contemporary authors (Mahlberg 2007). It also renders him a good candidate for style analysis, as there are likely to be features that distinguish him from his peers. Since the present study of authorship attribution is concerned specifically with Dickens's style, this section is devoted entirely to reviewing several independent studies of Dickens' style, not all of which are statistically motivated.

In section 2.3.1, we look at a *corpus stylistics* approach, that investigates meaningful word clusters. Section 2.3.2 describes the attribution of a disputed piece as Dickensian and section 2.3.3 relates a study into Dickens' style using Random Forests and which is incidentally the main work to which we are comparing in the present study.

#### 2.3.1 Corpus Linguistics' Approach to Dickens' Style

Although, we are concentrating on statistical approaches to authorship attribution, the analysis is also centred around Dickens, a literary writer, and one can therefore draw on results of other disciplines and in this way place one's own results in a better perspective.

The application of corpus methodology to the study of literary texts is known as *corpus stylistics*, which investigates the relationship between meaning and form. The study presented in Mahlberg 2007 describes a work to augment the descriptive inventory of literary stylistics by employing corpus linguistics methods to extract key word clusters (sequences of words), that can be interpreted as pointers to more general functions. The study focuses on 23 texts by Dickens in comparison to a 19th century reference corpus, containing 29 texts by various authors and thus a sample of contemporary writing.

Similar to stylometry, there also exist positive and negative key clusters for an author in the sense that they occur either more or less frequent in Dickens than would have otherwise been expected by chance in comparison with the reference corpus of the 19th century. Focusing on 5-word clusters consisting mainly of function words, 5 local functions grouping word clusters are identified.

According to Mahlberg, Dickens shows a particular affinity for using *Body Part* clusters: e.g. "his hands in his pockets", which is an example of Dickens' individualisation of his characters. Although this use in general is not unusual for the time, his rate is significant, as Dickens, for instance, links a particular bodily action to a character more than average for the 19th century. The phrase 'his hands in his pockets", for instance, occurs ninety times and in twenty texts of Dickens, compared to thirteen times and eight texts in the 19th century reference corpus.

The *Body Part* function often simply adds contextual information, that embeds another activity more central to the story, which supports ongoing characterisation that will not strike the reader as unusual:

- (1) "with his hand to his chin"  $\rightarrow$  thinking
- (2) "laying his hand upon his" [shoulder]  $\rightarrow$  supporting

Mahlberg concludes, that the identification of *Body Part* clusters provides further evidence of the importance of body language in Dickens. As already noted in (Tabata 2012), if *Body* 

*Part* clusters are more specific to Dickens, characteristic marker terms should also include body parts.

Thus, frequent clusters can be an indication of what function (/content) words are likely to be or not be among Dickens' discriminators, in this case, we would expect there to be examples of body parts, such as *face*, *eyes*, *hands*...

#### 2.3.2 Attributing Dickens' "Temperance"

Recently, the issue of unattributed articles in periodicals under Dickens' editorship has been readdressed (Craig and Drew 2011). A small article, *Temperate Temperance*, published anonymously on 18 April 1863 in the weekly magazine All the Year Round (AYR) (1859-70) was assessed using computational stylistics in combination with internal clues. Contrary to other journals under Dickens' editorship, a complete record of author attribution for the individual articles in AYR has not survived and over two-third of the AYR articles are still unidentified.

The controversy in regard to this specific piece arose due to the negative verdict for Dickens' authorship by an early Dickensian scholar, acting on external evidence, which might not be completely reliable, especially in the light of several practical reasons that indicate this article to be one of Dickens (Craig and Drew 2011).

The authors use "Burrows method" (to identify the authorial signature) to investigate authorship of *Temperate Temperance* using a control group of likely candidates contributing to the journal or collaborating with Dickens on articles at that time, one among them is Wilkie Collins. Marker words are chosen for their ability to separate the training set and are then applied to the test set and the mystery article. When compared to each other author individually, *Temperate Temperance* clustered significantly with the Dickens segments rather than with the segments of the other author. However, in order to raise a substantial claim for Dickens authorship, it was felt that Dickens needed to be compared to a larger, more representative set. Cross-validation on the data shows, that Dickens test segments generally score higher on Dickens markers from the training set (84%), than non-Dickens markers.

The authors conclude that the method was able to distinguish a general Dickens' style and and on this basis classified the disputed article with the Dickens samples, although it remains a relative measure and in theory there could be a signature more fitting than that of Dickens. Unfortunately, the discriminatory markers are not listed in the study, which renders a direct comparison of results impossible. However, the sample might be used as a test piece for the final validity check of the model.

#### 2.3.3 Approaching Dickens' Style through Random Forests

In regard to a particularly relevant application in terms of comparison, we consider Tabata 2012, where Tomoji Tabata applied the machine-learning technique *Random Forests* (*RF*) in order to extract stylistic markers of the author Charles Dickens that would be able to distinguish his work from both Wilkie Collins and a larger reference corpus.

*Random Forests (RF)* is a classification algorithm based on ensemble learning from a large number of classification trees randomly generated from a dataset with the advantage of being able to handle a high number of input variables. Tabata also reports a consistent high accuracy of the technique (96-100%), when applied to distinguish Dickens from a control set. RF identifies proximities between pairs of cases and also highlights those items contributing the most for classification.

The two authors Dickens and Collins were consequently analysed using RF and clusters were visualised by a multidimensional scaling diagram. Dickens' and Collins' texts were grouped in two distinct clusters, with two more unusual pieces (*Antonina* (1850) and *Rambles beyond Railways* (1851)) appearing as outliers. RF found discriminatory terms that are consistently more frequent in one author than the other and are thus stylistic markers of Dickens when compared to Collins and vice versa. Table 2.3.1 and 2.3.2 show the discriminatory terms for respectively each author.

Table 2.3.1: Dickens' markers, when compared to Collins according to Tabata's work using Random Forests.

## Dickens' markers

very, many, upon, being, much, and, so, with, a, such, indeed, air, off, but, would, down, great, there, up, or, were, head, they, into, better, quite, brought, said, returned, rather, good, who, came, having, never, always, ever, replied,boy, where this, sir, well, gone, looking, dear, himself, through, should, too, together, these, like, an, how, though, then, long, going, its

# Table 2.3.2: Collins' markers, when compared to Dickens according to Tabata's work using Random Forests

#### Collins' markers

first, words, only, end, left, moment, room, last, letter, to, enough, back, answer, leave, still, place, since, heard, answered, time, looked, person, mind, on, woman, at, told, she, own, under, just, ask, once, speak, found, passed, her, which, had, me, felt, from, asked, after, can, side, present, turned, life, next, word, new, went, say, over, while, far, london, don't, your, tell, now, before

CONTRASTING DICKENS WITH A CONTEMPORARY REFERENCE CORPUS However, in order to arrive at some stylistic features of Dickens' in a wider perspective, the second part of the study compares the 24 Dickens' texts to a larger reference corpus consisting of 24 eighteenth-century texts and 31 nineteenth-century texts (a small subset of which is from Wilkie Collins). Apart from one outlier text, *A Child's History of England* (1851), Dickens' texts again form one distinct cluster.

Table 2.3.3 shows the Dickensian markers, the positive and the negative ones. Tabata concludes that Dickens' markers show a predominance of words related to description of actions, in particular typical bodily actions, or postures of characters and lack terms denoting abstract concepts.

Table 2.3.3: Dickens' markers, when compared to the 18th/19th century reference corpus according to Tabata's work using Random Forests

#### Positive Dickens' markers

eyes, hands, again, are, these, under, right, yes, up, sir, child, looked, together, here, back, it, at, am, long, quite, day, better, mean, why, turned, where, do, face, new, there, dear, people, they, door, cried, in, you, very, way, man

#### Negative Dickens' markers

lady, poor, less, of, things, leave, love, not, from, should, can, last, saw, now, next, my, having, began, our, letter, had, I, money, tell, such, to, nothing, person, be, would, those, far, miss, life, called, found, wish, how, must, more, herself, well, did, but, much, make, other, whose, as, own, take, go, no, gave, shall, some, against, wife, since, first, them, word

## A closer look at the results

Comparing the second set of markers to the first result, one can observe that certain characteristic markers for Dickens remained the same when compared to only Collins and to the complete reference corpus, also including other authors.<sup>1</sup> The markers for **Dickens** appearing in **both** sets given here, include:

## (3) these, up, sir, together, long, quite, better, where, dear, they, very

Similarly, one can observe certain terms appearing **both** in **Collins set** and **Dickens' nega-tive set**, which may also mark them as a bit more reliable as negative markers for Dickens:

(4) *leave, from, can, last, now, next, letter, had, tell, to, person, far, life, found, own, since, first, word* 

However, the fact that these terms seem to be more consistent for Dickens may also be attributed to the possibility that they are less consistent in the reference set and vice versa. In contrast, when we look at the second analysis of Dickens' markers, there are terms that were not in the first set for Dickens, but are now in the second set as well as the first for Collins, when contrasted with Dickens on his own:

## (5) *under, looked, back, at, turned, new*

Those terms seemed to be discriminatory for Collins, when comparing Dickens and Collins directly, but seem to be positive for Dickens when the reference set includes a larger set. There are also a couple of terms that appeared in the first (positive) analysis for Dickens, but also in the negative set in the second analysis:

## (6) *should, having, such, would, how, well, but, much*

This slight display of arbitrariness of discriminatory terms in different analysis implies that at least to a certain extent, discriminatory negative and positive markers are influenced by the opposing set of documents. Since the second analysis was conducted against a more representative set, the stylistic markers obtained there are probably more reliable.

An interesting, but in the end rather futile question is, to what extent it would be possible to determine true Dickens' markers.

<sup>&</sup>lt;sup>1</sup> Since we are not given the entire list of ranked discriminators, there obviously could be more terms that follow this scheme.

## STATISTICAL ANALYSIS OF DICKENS' TEXTS

In this chapter, we explore two different statistical methods for characteristic term extraction and subsequent building of author profiles.

However, in section 3.1 we begin by describing the different data sets that form the basis for experiments and evaluation in this work, in particular by explaining preprocessing and the weighting scheme used to construct document-by-term matrices from the data sets. Then, in section 3.2, we introduce *Independent Component Analysis* in its native environment of blind source separation and then turn to its more specific interpretation in the field of text classification and particularly authorship attribution. Section 3.3 presents *Representativeness & Distinctiveness* feature selection in the area of *dialectrometry* and continues with its application to authorship attribution. Given these two statistical methods, section 3.4 defines three different models yielding characteristic terms for subsequent evaluation. The first two models consist of respectively *Independent Component Analysis* and *Representativeness & Distinctiveness* in isolation and the third model combines the two methods into one distinct model.

#### 3.1 AUTHORSHIP DATA SETS

For all preliminary experiments as well as evaluation, we collected or were given data sets based on documents of Charles Dickens and Wilkie Collins or a larger reference set. Generally, for experiments and cross-validation evaluation, we consider three different term-by-document matrices that are described in more detail in the following part.

Section 3.1.1 gives an overview of the Dickens/Collins set also used in another previous work (Tabata 2012). Section 3.1.2 describes our own Dickens and Collins data set that differs slightly from the previous one and section 3.1.3 then turns to the Dickens vs. 18th/19th century comparison set. With the exception of the data set in section 3.1.1, all data was prepared and preprocessed according to the description in section 3.1.4. All data was collected from the *Gutenberg project*<sup>1</sup>.

#### 3.1.1 Dickens and Collins Comparison 1

In a previous study (Tabata 2012), the same search for discriminatory markers of Dickens has been conducted, comparing Dickens to his contemporary Wilkie Collins. For the purpose of comparing to this work, we consider the same input matrix build of the document sets of Dickens and Collins shown in table 3.1.1 and table 3.1.2.<sup>2</sup> The document-term matrix ( $47 \times 4999$ ) contains 47 documents (23 of Dickens and 24 of Collins) and is already preprocessed and weighted, so unlike the following sets, it is not subjected to the preprocessing and weighting described in section 3.1.4. The abbreviations shown in the tables are used as identifier for the exact document and full document labels are not used any more hereafter. In the following, we refer to this set as the "DickensCollinsSet1".

<sup>&</sup>lt;sup>1</sup> http://www.gutenberg.org/

<sup>&</sup>lt;sup>2</sup> I would like to thank Tomoji Tabata for providing the input data and the description tables shown here.

| No. | Texts                        | Abbr.          | Category           | Date         | Word-tokens     |
|-----|------------------------------|----------------|--------------------|--------------|-----------------|
| 1   | Sketches by Boz              | (D33_SB)       | Sketches           | 1833-6       | 187,474         |
| 2   | The Pickwick Papers          | (D36_PP)       | Serial Fiction     | 1836-7       | 298,887         |
| 3   | Other Early Papers           | (D37a_OEP)     | Sketches           | 1837-40      | 66,939          |
| 4   | Oliver Twist                 | (D37b_OT)      | Serial Fiction     | 1837–9       | 156,869         |
| 5   | Nicholas Nickleby            | (D38_NN)       | Serial Fiction     | 1838–9       | 321,094         |
| 6   | Master Humphrey's Clock      | (D40a_MHC)     | Miscellany         | 1840 - 1     | 45,831          |
| 7   | The Old Curiosity Shop       | (D40b_OCS)     | Serial Fiction     | 1840-1       | 217,375         |
| 8   | Barnaby Rudge                | (D41_BR)       | Serial Fiction     | 1841         | 253,979         |
| 9   | American Notes               | (D42_AN)       | Sketches           | 1842         | 101,623         |
| 10  | Martin Chuzzlewit            | (D43_MC)       | Serial Fiction     | 1843-4       | 335,462         |
| 11  | Christmas Books              | (D43b_CB)      | Fiction            | 1843-8       | 154,410         |
| 12  | Pictures from Italy          | (D46a_PFI)     | Sketches           | 1846         | 72,497          |
| 13  | Dombey and Son               | (D46b_DS)      | Serial Fiction     | 1846-8       | 341,947         |
| 14  | David Copperfield            | (D49_DC)       | Serial Fiction     | 1849-50      | 355,714         |
| 15  | A Child's History of England | (D51_CHE)      | History            | 1851-3       | 162,883         |
| 16  | Bleak House                  | (D52_BH)       | Serial Fiction     | 1852-3       | 354,061         |
| 17  | Hard Times                   | (D54_HT)       | Serial Fiction     | 1854         | 103,263         |
| 18  | Little Dorrit                | (D55_LD)       | Serial Fiction     | 1855-7       | 338,076         |
| 19  | Reprinted Pieces             | (D56_RP)       | Sketches           | 1850-6       | 91,468          |
| 20  | A Tale of Two Cities         | (D59_TTC)      | Serial Fiction     | 1859         | 136,031         |
| 21  | The Uncommercial Traveller   | (D60a_UT)      | Sketches           | 1860–9       | 142,773         |
| 22  | The Great Expectations       | (D60b_GE)      | Serial Fiction     | 1860-1       | 184,776         |
| 23  | Our Mutual Friend            | (D64_OMF)      | Serial Fiction     | 1864-5       | 324,891         |
| 24  | The Mystery of Edwin Drood   | (D70_ED)       | Serial Fiction     | 1870         | 94,014          |
|     |                              | Sum of word-to | okens in the set o | of Dickens t | exts: 4,842,337 |

Figure 3.1.1: Dickens' documents in Tabata's Dickens/Collins comparison as part of *DickensCollinsSet1*.

Figure 3.1.2: Collins' documents in Tabata's Dickens/Collins comparison as part of *DickensCollinsSet1*.

| No. | Texts                         | Abbr.            | Category           | Date         | Word-tokens     |
|-----|-------------------------------|------------------|--------------------|--------------|-----------------|
| 1   | Antonina, or the Fall of Rome | (C50_Ant(onina)) | Historical         | 1850         | 166,627         |
| 2   | Rambles Beyond Railways       | (C51_RBR)        | Sketches           | 1851         | 61,290          |
| 3   | Basil                         | (C52_Basil)      | Fiction            | 1852         | 115,235         |
| 4   | Hide and Seek                 | (C54_HS)         | Fiction            | 1854         | 159,048         |
| 5   | After the Dark                | (C56_AD)         | Short stories      | 1856         | 136,356         |
| 6   | A Rogue's Life                | (C57_ARL)        | Serial Fiction     | 1856-7       | 47,639          |
| 7   | The Queen of Hearts           | (C59_QOH)        | Fiction            | 1869         | 145,350         |
| 8   | The Woman in White            | (C60_WIW)        | Serial Fiction     | 1860         | 246,916         |
| 9   | No Name                       | (C62_NN)         | Serial Fiction     | 1862         | 264,858         |
| 10  | Armadale                      | (C66_Armadale)   | Serial Fiction     | 1866         | 298,135         |
| 11  | The Moonstone                 | (C68_MS)         | Serial Fiction     | 1868         | 196,493         |
| 12  | Man and Wife                  | (C70_MW)         | Fiction            | 1870         | 229,376         |
| 13  | Poor Miss Finch               | (C72_PMF)        | Serial Fiction     | 1872         | 162,989         |
| 14  | The New Magdalen              | (C73_TNM)        | Serial Fiction     | 1873         | 101,967         |
| 15  | The Law and the Lady          | (C75_LL)         | Serial Fiction     | 1875         | 140,788         |
| 16  | The Two Destinies             | (C76_TD)         | Serial Fiction     | 1876         | 89,420          |
| 17  | The Haunted Hotel             | (C78_HH)         | Serial Fiction     | 1878         | 62,662          |
| 18  | The Fallen Leaves             | (C79_FL)         | Serial Fiction     | 1879         | 133,047         |
| 19  | Jezebel's Daughter            | (C80_JD)         | Fiction            | 1880         | 101,815         |
| 20  | The Black Robe                | (C81_BR)         | Fiction            | 1881         | 107,748         |
| 21  | I Say No                      | (C84_ISN)        | Fiction            | 1884         | 119,626         |
| 22  | The Evil Genius               | (C86_EG)         | Fiction            | 1886         | 110,618         |
| 23  | Little Novels                 | (C87_LN)         | Fiction            | 1887         | 148,585         |
| 24  | The Legacy of Cain            | (C89_LOC)        | Fiction            | 1888         | 119,568         |
|     |                               | Sum of word-to   | okens in the set o | of Collins t | exts: 3,466,156 |

## 3.1.2 Dickens and Collins: Augmented

Despite the fact that we already have a data set for comparing Dickens and Collins, we created a new set for each author, as shown in table A.1.1 and table A.1.2. Both sets are based on the ones in Tabata's study presented in section 3.1.1 and additionally include

some more unusual samples. Thus, Dickens's set also contains a collaboration between Dickens and Collins (*DC1423*) and two of a set of authors (*Dal...*). In experiments, these documents were occasionally misclassified, so in terms of stylistic analysis, these might be interesting.

For correspondence to the previous set, we list the previous labels alongside our own identifiers. The set contains 45 documents of Dickens and 29 of Wilkie Collins. Constructing a combined matrix from this set yields a  $74 \times 51244$  document-term matrix with 85% sparsity, that we reduce to  $74 \times 4870$  with 15% sparsity. Hereafter, this set is referred to as the "*DickensCollinsSet2*".

### 3.1.3 Dickens vs. World set

If author-pair comparisons have one disadvantage, it might be an overemphasis of the comparison between those two authors and especially using supervised methods, this will tend to pick out discriminatory features that help separating the two sets, but which are not necessarily the most representative of the author. For this purpose, it is sensible to test Dickens against a larger reference set comprised of various contemporary authors, so as to detect terms Dickens tends to use more or less than would be considered average for his time. In order to reconstruct a similar experiment to Tabata 2012, we collected the same reference set to oppose the 24 Dickens documents used in section 3.1.1. This reference set, rather than representing a single author serves as an example of that time period and in unison would correspond to something like the average writing style of that time.

Table A.2.1 and table A.2.2 show the 18th century and 19th century components of the world reference corpus to oppose Dickens. As already indicated, single authors' identity is disregarded here and all authors are collectively indexed by a "W" (for "World") in the beginning. The reference set consists of 55 documents and Dickens set contains 24 documents. These 79 documents combined yield a  $79 \times 77499$  document-term matrix with a sparsity level of 87%. We reduce this to  $79 \times 4895$  and a sparsity level of 18%. In the following, we refer to this set as the "*DickensWorldSet*".

#### 3.1.4 Data Collection and Preparation

The document sets described in the previous two sections, section 3.1.2, section 3.1.3 all originated from the *Gutenberg Project*. This requires some preparation to remove *Gutenberg*-specific entries in each file, that may otherwise create noise if left in the document. Thus, prior weighting, the following items were removed from each text file.<sup>3</sup>

#### ITEMS REMOVED FROM EACH TEXT FILE

- Gutenberg header and footer
- Table of contents
- Preface/introduction written by others
- Footnotes by editor/publisher
- Notes about names/locations of illustrations
- Limited markup employed by transcribers

<sup>&</sup>lt;sup>3</sup> I would like to thank Çağri Çöltekin for providing the prepared data for Dickens and Collins.

#### Preprocessing and Term Weighting

Before applying our models to the data, it needs to be preprocessed and weighted appropriately. All documents collected for this study are preprocessed and weighted in the same way.

**PREPROCESSING** Before converting the data sets to document-term matrices, we remove all punctuation, numbers and convert all words to lowercase. This removes some finer distinctions, but one would assume that if there is a significant effect of some terms in the data this would show up nevertheless.

TERM WEIGHTING All of our data collected is weighted using relative frequency of the simple term frequencies. In addition, we use *Laplace* smoothing to assign some probability to terms not observed in a document (Jurafsky and Martin 2009, p. 132). In this setting, observed frequencies are assumed to be underestimates of the theoretical corpus size. Given an observed frequency for a term t in a document  $d_i$  the new weight w(t) corresponds to eq. 3.1.1.

$$w(t) = \frac{obs. freq.(t) + 1}{1 \times |word \ types| + \sum_{t} obs. freq.}$$
(3.1.1)

#### 3.2 INDEPENDENT COMPONENT ANALYSIS FOR CHARACTERISTIC TERM SELECTION

In this section, we consider *Independent Component Analysis* (ICA) in more detail. Since it was originally developed in the field of blind source separation, we begin by introducing it on its original ground and then shift to text classification and authorship analysis. To our knowledge, ICA has not been applied to the authorship attribution problem yet, although related feature extraction method principal component analysis (PCA) has had a long established tradition in authorship studies (Burrows 1992). Despite the fact that ICA partly relies on PCA for convergence (as discussed in section 3.2.2), the two methods make very different assumptions about the structure of the underlying data distribution. For this reason, we also consider an application of PCA to one of our datasets. Section 3.2.3 offers a deeper analysis of independent components with respect to text documents and section 3.2.4 presents the general model of ICA for extracting characteristic terms of an author.

#### 3.2.1 Independent Component Analysis

*Independent Component Analysis* first put in an appearance in 1986 at a conference on Neural Networks for Computing. In their research paper "*Space or time adaptive signal processing by neural network models*" (Herault and Jutten 1986), Jeanny Herault and Christian Jutten claimed to have found a learning algorithm that was able to blindly separate mixtures of independent signals. The concept of independent components was presented more explicitly in 1994 by Pierre Comon, who also stated additional constraints with respect to the assumed underlying probability distribution of the components (Comon 1994).

Thus, the original motivation for *Independent Component Analysis* was blind source separation, as for instance the separation of speech signals, which is commonly known as the *cocktail-party problem*. Two microphones are located in different positions in a room and two different people are speaking simultaneously. The result of these two recorded signals are the mixed signals  $x_1(t)$  and  $x_2(t)$ , which consist of  $x_1$  and  $x_2$  as amplitudes, and t, the time index specifying the time of recording (Hyvärinen and Oja 2000). Each recorded signal

is a weighted sum of the original speech signals of the two speakers denoted by  $s_1(t)$  and  $s_2(t)$ . At each point in time t,  $s_1(t)$  and  $s_2(t)$  are assumed to be statistically independent. The maximum number of sources that can be retrieved equals the number of samples, i.e. per mixed signal one can extract one independent component. The concept can be expressed in a linear equation, as shown in eq. 3.2.1 and eq. 3.2.2.

$$x_1(t) = a_{11}s_1 + a_{12}s_2 \tag{3.2.1}$$

$$x_2(t) = a_{21}s_1 + a_{22}s_2 \tag{3.2.2}$$

with  $a_{11}$ ,  $a_{12}$ ,  $a_{21}$ , and  $a_{22}$  as some parameters that depend on the distances of the microphones from the speakers (Hyvärinen and Oja 2000). Given only the recorded signals  $x_1(t)$ and  $x_2(t)$ , it would be useful to be able to estimate the two original speech signals  $s_1(t)$ and  $s_2(t)$  based only on the assumption of mutual independence of the source signals.

#### ICA Model

For want of a more general definition of the ICA model, the time index t is dropped and it is assumed that each mixture  $x_j$  as well as each independent component  $s_k$  is a random variable instead of a proper time signal. The statistical *latent variables* model is defined as follows (Hyvärinen and Oja 2000): Assume that we observe n linear mixtures  $x_1, \ldots, x_n$  of correspondingly n independent components, where the observed values  $x_j(t)$  are a sample of this random variable.

$$x_j = a_{j1}s_1 + a_{j2}s_2 + \dots + a_{jn}s_n, \text{ for all } j$$
(3.2.3)

For clarity, these sums can be converted to a vector-matrix notation (with **x** and **s** being column vectors):

$$x = As \tag{3.2.4}$$

where  $x = (x_1, x_2...x_n)^T$  is a vector of observed random variables and  $s = (s_1, s_2...s_n)^T$  the vector of the latent variables (the *independent components*). *A* is the unknown constant matrix, the *'mixing matrix' A*. Both the mixture variables and the independent components are assumed to have zero mean. In order to retrieve the original sources or independent components **s**, the ICA algorithm tries to estimate the inverse *W* of the mixing matrix *A*, as in eq. 3.2.5.

$$s = Wx = A^{-1}x (3.2.5)$$

AMBIGUITIES OF ICA Due to the fact that both the *mixing matrix* A and the source signals s are unknown, there are certain ambiguities related to the ICA model in eq. 3.2.4. Neither the variances (energies) of the independent components nor their order can be determined (Hyvärinen and Oja 2000). Since both A and s are unknown, the variances cannot be resolved as any multiple scalar of one of the sources  $s_i$  could be cancelled by dividing the corresponding column in A by the same scalar, so often components are assumed to have unit variance:  $E\{s_i^2 = 1\}$ . The ambiguity of the sign remains: a component can be multiplied by -1 without affecting the model, which is fortunately insignificant in most applications. For the same reason, i.e. A and s being unknown, the order of the

components is arbitrary, since the terms in the sum in eq. 3.2.6 can be changed freely and any can be the "first" component.

$$x = \sum_{i=1}^{n} a_i s_i$$
 (3.2.6)

#### ICA Algorithm

In order to estimate the independent components, ICA relies on the assumption of pairwise statistical independence between all components. Conceptually, statistical independence of two random variables  $y_1, y_2$  implies that their joint *probability density function (pdf)* is factorisable and thus the probability of both variables occurring together equals multiplying their single probabilities.

$$p(y_1, y_2) = p(y_1)p(y_2).$$
 (3.2.7)

Another basic assumption is non-gaussianity of the independent components and if in fact more than one component is gaussian, the mixing matrix *A* cannot be estimated (Hyvärinen and Oja 2000). According to the *Central Limit Theorem*, the distribution of a sum of independent random variables tends towards a gaussian distribution and thus usually has a distribution that is closer to gaussian than any of the two original random variables. Practically, non-gaussianity can be estimated by higher-order statistics, such as *kurtosis*, *negentropy* or *minimization of mutual information*.

Before applying ICA, the variables are decorrelated or whitened to help convergence using a second-order technique, such as principal component analysis or singular value decomposition (SVD) (see section 3.2.2). After the whitening of the data, ICA simply adds a rotation to achieve statistical independence. The *unmixing* matrix  $W = A^{-1}$  and *mixing* matrix A can be estimated all at once (symmetric approach) or one at a time (deflation approach), where after each iteration, with W's weights usually being initialised randomly, the newly-estimated row vector (for the later creation of one component) has to be decorrelated with the previously estimated weight vectors to ensure that it does not converge to any of the previous ones.<sup>4</sup> The independent components are then obtained by multiplying the mixed signal matrix x by W, as shown in eq. 3.2.8.

$$s = W \times x$$
  

$$s = W \times A \times s, \text{ where } W = A^{-1}$$
  

$$s = I \times s, \text{ with I = Identity matrix}$$
(3.2.8)

ICA uses higher-order statistics and is in this respect superior to other feature extraction methods, such as principal component analysis that only remove second-order correlations (Väyrynen et al. 2007). However, ICA relies on PCA/SVD as a preprocessing step and for this reason we discuss this in more detail.

#### 3.2.2 Preprocessing in Independent Component Analysis

Whitening of the data is a preprocessing step that helps ICA to converge, and if dimensionality reduction is desired, it can also be performed at this step. Both principal component analysis (PCA) and singular value decomposition (SVD) can be used to perform whitening and in the following, we describe how their respective application to a document-term

<sup>&</sup>lt;sup>4</sup> Examples of ICA Implementations are: FASTICA., Infomax, JADE.

matrix yields a new data representation of mutually decorrelated variables. Since text classification is the topic under discussion, we aim at defining and interpreting formulas with respect to terms and documents.

#### Preliminaries: Mean & Variance

For the following calculations, we need the concepts of mean over a variable x, as defined in eq. 3.2.9 and variance within one variable  $x_k$ , as defined eq. 3.2.10.

$$\mu = \frac{1}{n} \sum_{k=1}^{n} x_k, \text{ with } n \text{ being the number of samples}$$
(3.2.9)

$$\sigma^2 = \frac{1}{n} \sum_{k=1}^n (x_k - \mu)^2, \text{ with } \mu \text{ being the mean over all } n \text{ samples}$$
(3.2.10)

Further, we employ covariance between two different variables *x* and *y* as in eq. 3.2.11, where  $x_k$  and  $y_k$  are the  $k_{th}$  samples of two different variables with  $\mu_x$  and  $\mu_y$  as their respective variable means.

$$\sigma_{xy} = \frac{1}{n} \sum_{k=1}^{n} (x_k - \mu_x) (y_k - \mu_y)$$
(3.2.11)

The sample covariance matrix given a term-by-document matrix x is shown in matrix 3.2.12 Elements along the diagonal show variances within each term and the elements off-diagonal display the covariance between different terms. Since covariance between two variables is symmetric the elements off-diagonal are mirrored over the diagonal.

$$\sigma_{x} = \frac{term_{1}}{term_{2}} \begin{pmatrix} \sigma_{term_{1}}^{2} & \sigma_{term_{1},term_{2}} & \cdots & \cdots \\ \sigma_{term_{1}} & \sigma_{term_{1},term_{2}}^{2} & \cdots & \cdots \\ \sigma_{term_{1},term_{2}} & \sigma_{term_{2}}^{2} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{term_{n},term_{1}} & \cdots & \cdots & \sigma_{term_{n}}^{2} \end{pmatrix}$$
(3.2.12)

Decorrelation of terms results in a joined covariance matrix that is diagonal, having only entries on the diagonal for the variance within a term and zero covariance between the terms (off - diagonal), as shown in matrix 3.2.13.

$$\sigma^{2} = \begin{cases} term_{1} & term_{2} & \dots & term_{n} \\ term_{2} & \sigma_{term_{1}}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{term_{2}}^{2} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \sigma_{term_{n}}^{2} \end{pmatrix}$$
(3.2.13)

PCA ALGORITHM SVD and PCA are related provided SVD is done on mean-normalized data, meaning that before applying either technique, the matrix x has to be centred or

mean-normalized by calculating the mean of each term  $\mu_i$  and subtracting it for each document, as shown in matrix 3.2.14.

Classic principal component analysis is performed via eigenvalue-eigenvector decomposition (EVD). An *eigenvector* is a non-zero vector  $\vec{v}$  that satisfies  $A\vec{v} = \lambda\vec{v}$ , where A is a square matrix and  $\lambda$  a scalar and also the *eigenvalue* (Baker 2005). Eigenvectors are vectors of a matrix that are projected on a multiple of themselves without changing direction. The eigenvalue belonging to an eigenvector affects the projection and is also a measure of the vector's magnitude. For PCA, the eigenvectors and eigenvalues are used to evaluate the principal directions and dynamics of the data. Eigenvectors and eigenvalues are extracted from the covariance matrix of the term-by-document matrix. In the present case, where the data is already centred, the formulas for variance and covariance reduce to eq. 3.2.15 and eq. 3.2.16 respectively.

$$\sigma^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k)^2 \tag{3.2.15}$$

$$\sigma_{xy} = \frac{1}{n} \sum_{k=1}^{n} (x_k)(y_k)$$
(3.2.16)

The next step is the decomposition of covariance matrix  $\sigma_x$ , which is now a square  $k \times k$  matrix, we call A, with  $A \equiv xx^T$ . A can be decomposed into  $A = EDE^T$ , where D is a diagonal matrix containing the eigenvalues of A, and E being the matrix of eigenvectors arranged as columns (Shlens 2005).

Matrix *Z*, the whitening matrix in eq. 3.2.17, should be ordered according to the largest eigenvalues. The largest eigenvalue corresponds to the vector along which direction the data set has maximum variance and thus for dimensionality reduction, one can discard those eigenvectors with the correspondingly lowest eigenvalues. As a last step, we need to project the data matrix x along these new dimensions to obtain the decorrelated new representation or the whitened matrix  $\tilde{x}$ , as shown in eq. 3.2.18.

$$Z = D^{-\frac{1}{2}} E^T \tag{3.2.17}$$

$$\tilde{x} = Zx \tag{3.2.18}$$

SVD ALGORITHM Singular value decomposition is a more stable solution to obtain the eigenvectors and can be performed on any matrix, be it square, non-square, non-singular or even singular, which also makes it a more powerful decomposition technique. The decomposition of a matrix *A* (*document x term* matrix *x*) is defined in eq. 3.2.19 (Shlens 2005). The matrix *A* decomposes into  $USV^T$ , where *S* is the diagonal matrix of singular values of  $n \times m$  matrix *A*, *U* contains the left singular orthogonal eigenvectors and *V* contains the right singular orthogonal eigenvectors.

$$A_{mn} = U_{mm}S_{mn}V_{nn}^{T}$$

$$U = A \times A^{T}$$

$$V = A^{T} \times A$$
(3.2.19)

The connection to the previous eigendecomposition is by multiplying the matrix A by  $A^{T}$  as shown in eq. 3.2.20, where the columns of U contain the eigenvectors  $AA^{T}$  and the eigenvalues of  $AA^{T}$  are the squares of S.

$$AA^{T} = USV^{T} | \times A^{T}$$
  
=  $USV^{T}(USV^{T})^{T}$   
=  $USV^{T}(VSU^{T})$ , where  $V^{T}V = I$  (Identity matrix)  
=  $US^{2}U^{T}$   
(3.2.20)

Dimensionality can be reduced by selecting the largest values in *S* and their corresponding values in *V*. Similar to before, the whitening matrix *Z* for *x* is retrieved as in eq. 3.2.21 and the whitened matrix  $\tilde{x}$  in eq. 3.2.22.

$$Z = S^{-\frac{1}{2}} V^T \tag{3.2.21}$$

$$\tilde{x} = Zx \tag{3.2.22}$$

In conclusion, finding the principal components amounts to finding an orthonormal basis that spans the column space of the data matrix *A* (Shlens 2005). Singular value decomposition is a more powerful method of deriving the required values, as eigenvectors and eigenvalues are directly and accurately estimated from *A*, instead of extracting them from the covariance matrix.

## Differences PCA and ICA

*Principal Component Analysis* and *Independent Component Analysis* are deeply related, as became already apparent through the fact that ICA relies on PCA for preprocessing. However, PCA and ICA make opposite assumptions about the underlying data distribution of their to-be-retrieved components. PCA assumes a gaussian distribution and uses the measures of  $\mu$  and  $\sigma^2$  to estimate the new directions of maximal variance in the data. Thus, the method is only able to remove second-order correlations, whereas ICA resorts to higher-order statistics, such as *negentropy* or *kurtosis* to achieve statistical independence (Väyrynen et al. 2007). While *statistical independence* implies *uncorrelatedness*, the reverse condition is not necessarily true: *uncorrelatedness* does not imply *statistical independence* (Hyvärinen and Oja 2000). Another difference concerns orthogonality of the components, which is a necessary condition for PCA, but not for ICA, where components can be orthogonal, but do not need to be.

However, although superior in some respects, *Independent Component Analysis* is not always the better choice, especially when a gaussian distribution assumption is more suitable for the data, as for instance in (Baek et al. 2002), where PCA outperformed ICA on a face recognition task. Since PCA is the "simpler" of the two techniques, one should ensure that PCA is not suited to the task, before applying a computationally more expensive algorithm, such as ICA.

APPLYING PCA TO AUTHORSHIP DATA For the purpose of testing *Principal Component Analysis* on our data, we consider an example application to a two-author dataset. The input data is a  $74 \times 4870$  document-by-term matrix, where are 45 documents by Dickens and 29 by Collins, weighted with relative frequencies using *Laplace* smoothing, as described in more detail in section 3.1). The principal components are computed with pre-centering of the data.<sup>5</sup> The results provide information about each component-proportion of variance ratio, i.e. to what extent a component explains the variance in the data as well as the partitioning of terms into the new components, i.e. which original features are joined into new feature combinations.

Table 3.2.1 shows the proportion of variance of the first six principal components representing the new decorrelated features. For dimensionality reduction, one usually aims at retaining about 70% of the variance. The first two principal components pc1 and pc2 account for about 60% of the variance, while the remainder is spread out over the other 72 components. In this case, choosing pc1 to pc4 would account for about 70%, although pc1 and pc2's contribution to explanation of variance is far more substantial than the other two components.

Table 3.2.1: Proportion of variance of first principal components when applied to Dickens-Collins dataset.

| Principal component no. | pc1  | pc2  | pc3  | pc4  | pc5  | pc6  | pc   |
|-------------------------|------|------|------|------|------|------|------|
| Proportion of variance  | 0.32 | 0.29 | 0.06 | 0.05 | 0.05 | 0.03 | •••• |

Table 3.2.2 and table 3.2.3 show the highest positively and negatively associated terms for the first two components respectively. If a term is positive for pc1, such as *and*, *but* and *that*, it means that if a document is positively associated with that component those terms, are also positive for it. Conversely, if there is a negative association between a component and a term, e.g. *her* or *she* for pc1, these are also negative for a positively associated document. Generally, there appears to be a complementary distribution for the terms and the components, i.e. if a term is positively linked to pc1, it has a negative association with pc2, however a term can also be associated with the same sign and two different components, such as the term *the*, which is linked negatively with both first principal components. Considering the type of terms with a high weight, one can observe that these are almost exclusively function words and also seem to somewhat correspond to the terms with the highest relative frequency in the input *document* × *term* matrix. There are only few content words or verbs among the highest associated terms.

Table 3.2.2: Highest negatively and positively associated terms for principal component 1.

| Term          | and  | but  | that | upon | very | the   | her   | she   | you   |
|---------------|------|------|------|------|------|-------|-------|-------|-------|
| Weight in pc1 | 0.57 | 0.11 | 0.09 | 0.08 | 0.67 | -0.22 | -0.19 | -0.19 | -0.09 |

Table 3.2.3: Highest negatively and positively associated terms for principal component 2.

| Term          | you  | her  | she  | said | what | the    | and    | their  | they   |
|---------------|------|------|------|------|------|--------|--------|--------|--------|
| Weight in pc2 | 0.33 | 0.31 | 0.25 | 0.09 | 0.08 | -0.650 | -0.420 | -0.083 | -0.070 |

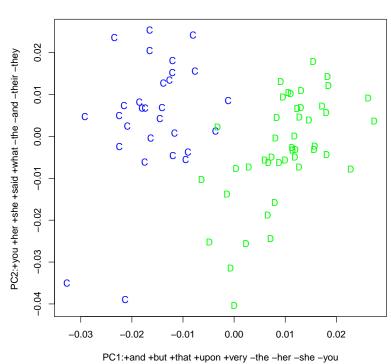
Figure 3.2.1 shows the new projection of the documents onto the first two principal components, listing the highest associated terms for each component at each axis. The

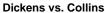
<sup>&</sup>lt;sup>5</sup> The principal components are computed in R: *prcomp(document-term\_matrix, center= TRUE)*, which uses singular value decomposition for estimation.

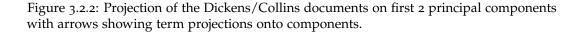
document sets of the two authors do intersect to some extent and fail to form distinct clusters or associate clearly with a negative or positive part of a component. Figure 3.2.2 shows the same projection of the documents onto the components with additionally indicating the term projections onto the components. Most terms are hidden in the cloud in the middle, since their connection with both components is rather low and thus their association with documents strongly linked to a component is also low.

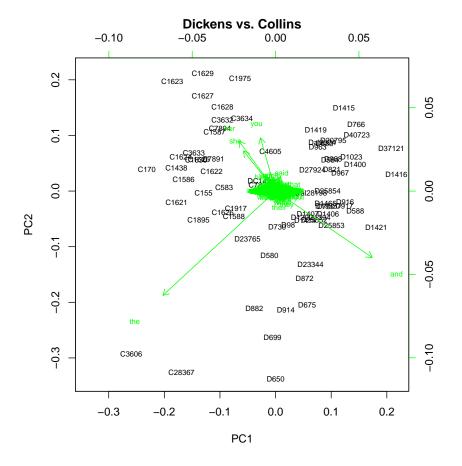
From this example, we conclude that although this experiment is no guarantee for successful application of ICA to the data, it is at least worthwhile investigating whether the higher-order method is able to capture more interesting latent variables indicative of more conclusive links for authorship analysis.

Figure 3.2.1: Projection of the Dickens (D)/Collins (C) documents on first 2 principal components showing the most positive(+) and most negative(-) terms on each axis.









## 3.2.3 Independent Component Analysis in Text Classification

Independent component analysis has been applied to text classification on numerous occasions, such as in Honkela and Hyvärinen 2004, where ICA was applied to a termcontext matrix with the result of ICA identifying components relating to distinct syntactic concepts, such as adjectives or nouns. Using a more restricted context allowed for more detailed and condensed components.

For the purpose of authorship attribution, we consider term-by-document matrices of two joined author sets. Given the ICA model:  $\mathbf{x} = \mathbf{As}$ , where the input matrix is assumed to separate into independent components  $\mathbf{s}$  and mixing matrix  $\mathbf{A}$ , with neither A nor s known, there are certain ambiguities related to the output components that have to be interpreted in relation to the input features.

#### **Component Interpretation**

Given an input matrix, such as a term-by-document matrix, using ICA feature extraction, there are potentially two dimensions of separation, i.e. one can try to separate both:

1. terms into latent concepts (term-by-document input)

$$X_{term \times document} = A_{term \times concept} \times S_{concept \times document}$$
(3.2.23)

2. documents (document-by-term input)

$$X_{document \times term} = A_{document \times concept} \times S_{concept \times term}$$
(3.2.24)

In the case where we are attempting to separate authors, both directions are possible, although they may differ in results. The interpretation of the first is, that documents are mixtures of latent concepts grouping terms and conversely for the second approach, terms are mixtures of latent concepts grouping documents. The first option emphasizes a hierarchical structure, whereby *terms*  $\subset$  *concepts*  $\subset$  *documents*. Given a set of term-document relations, we are looking for a new data representation that groups terms into latent concepts and assigns a weight of those concepts in the documents. Consequently, the importance of the *term<sub>j</sub>* with respect to a *document<sub>i</sub>* is reflected by the weight of all *concept<sub>c</sub>* in *document<sub>i</sub>* (with *term<sub>j</sub>*  $\in$  *concept<sub>c</sub>*) and the weight of *term<sub>j</sub>* in *concept<sub>c</sub>*.

Using a document-by-term input to ICA focuses on estimating the weights of latent concepts in terms, and documents then encode the concepts. Overall, it seems that the two approaches differ slightly in regard to their implications. For this study, we concentrate on the first approach of using a term-by-document input.

#### Looking for Characteristic Deviations

The interpretation of the output matrices A and s is dependent on the weighting of the original input features. <sup>6</sup> We take a term-by-document matrix x (Figure 3.2.3) with relative frequency weighting and center the values are as part of the preprocessing, which leaves only the standard deviation of the relative frequency for each term in each document. Given the output matrices,  $A_{term \times concept}$  (Figure 3.2.4) and  $S_{concept \times document}$  (Figure 3.2.5), the mixing matrix A encodes a set of concepts consisting of characteristic joint deviations from the mean frequencies.  $S_{concept \times document}$  then assigns a measure of how relevant a concept is given a particular document.

| Figure 3.2.3: | Term-documen | t matrix x, the input to | the ICA algorithm. |
|---------------|--------------|--------------------------|--------------------|
|---------------|--------------|--------------------------|--------------------|

|             |            | D1023    | D1392  | D1394  | D1400  | D1406  |      |
|-------------|------------|----------|--------|--------|--------|--------|------|
|             | able       | / 0.0004 | 0.0004 | 0.0002 | 0.0002 | 0.0005 | \    |
|             | about      | 0.0032   | 0.0015 | 0.0034 | 0.0002 | 0.0003 | ]    |
|             | above      | 0.0002   | 0.0004 | 0.0005 | 0.0002 | 0.0004 |      |
| r =         | abroad     | 0.0001   | 0.0003 | 0.0001 | 0.0000 | 0.0001 |      |
| $\lambda =$ | absence    | 0.0001   | 0.0001 | 0.0001 | 0.0001 | 0.0001 |      |
|             | absolutely | 0.0000   | 0.0001 | 0.0001 | 0.0001 | 0.0001 |      |
|             | :          | ( :      | :      | :      | :      | :      | ·. ) |

Weights can be both positive and negative and have to be interpreted depending on the polarity of the input weight. In the case, that the input is positive, a positive weight for  $term_j$  in  $concept_c$  should be interpreted as a positive association. Generally, higher weights regardless of sign indicate more relevance. In the present example, where the input is positive, e.g. a high negative weight for a component in a document indicates increased

<sup>&</sup>lt;sup>6</sup> I would like to thank Jason Palmer from the University of California, San Diego for his insightful explanations of ICA with respect to weight interpretation.

Figure 3.2.4: Term-concept matrix A, the *mixing* matrix returned by ICA.

|     |            | c1       | <i>c</i> 2 | с3      | <i>c</i> 4 | <i>c</i> 5 |      |
|-----|------------|----------|------------|---------|------------|------------|------|
|     | able       | / 0.0761 | -0.0146    | -0.1073 | -0.0915    | -0.0712    | \    |
|     | about      | 0.1689   | -0.0131    | -0.0494 | -0.0454    | -0.0676    |      |
|     | above      | -0.0878  | -0.0259    | 0.0522  | -0.0023    | -0.0181    |      |
| A = | abroad     | -0.1415  | 0.0204     | 0.0775  | -0.0401    | 0.0003     |      |
| 21  | absence    | -0.0024  | -0.1343    | 0.0498  | 0.1406     | -0.1017    |      |
|     | absolutely | 0.0028   | -0.0041    | -0.0183 | 0.0477     | -0.0910    |      |
|     |            |          | :          | :       | :          | :          | ·. ) |

Figure 3.2.5: Concept-document matrix S, the source matrix returned by ICA.

|            | D1023                                                        | D1392   | D1394   | D1400   | D1406   |      |
|------------|--------------------------------------------------------------|---------|---------|---------|---------|------|
| <i>c</i> 1 | $\begin{pmatrix} 1.0000 \\ -1.0688 \\ -1.0007 \end{pmatrix}$ | -1.0000 | 1.0000  | 1.0000  | 1.0000  | \    |
| <i>c</i> 2 | -1.0688                                                      | -1.0269 | 0.9187  | -1.0688 | -1.0688 | ]    |
| с3         | -1.0007                                                      | -0.9531 | 0.9558  | 1.0025  | -1.0006 |      |
| s = c4     | -1.0386                                                      | -0.8975 | 0.8958  | -1.1518 | 0.9906  |      |
| <i>c</i> 5 | -0.9303                                                      | 0.9171  | -0.9577 | 1.1641  | 0.1081  |      |
| :          | :                                                            | :       | :       | :       | :       | ·. ] |
| •          | \ ·                                                          | •       | •       | •       | •       | • /  |

negative correlation. Values near zero whether positively or negatively signed hint at overall insignificance. Since, the overall aim is to extract discriminatory or characteristic terms for each author also the highly negatively weighted terms for each author could be used for analysis. Consequently, based on the  $A_{term \times concept}$  matrix, for each concept, we build two term lists: one for positive keywords and one for negative ones.

There are two possible ways a term is listed among the positive(/negative) keywords for a given document. The first and principal way is if  $term_j$  has a positive weight in  $concept_c$ , which again has a positive weight in  $document_i$ . For illustration, we can look at the term *able* in the *A* matrix above, that is weighted with 0.076 for concept  $c_1$ . In matrix *s*,  $c_1$  itself is weighted with 1.00 for document *D1023*. In this setting, this is an entirely positive association for *able*. The second possibility might be through negative association. Again, looking at the term *able* which has a negative association (-0.11) with concept  $c_3$ . When considering matrix *s* and the same document as before (*D1023*),  $c_3$  has a high negative association (-1.00). Since *able* has a negative association with  $c_3$ , that has a negative association with *D1023*, this should somehow also positively contribute to its overall weight in *D1023*.

Mixed cases are those where a term has a negative weight in a concept that itself has a positive weight in a document:  $-term \in (+concept \in document)$  or the reverse:  $+term \in (-concept \in document)$ , which always results in a negative association for the term in a document overall.

#### In-depth Component Interpretation

In order to understand the *concepts* formed out of terms by independent component analysis, we explore the distributions of terms within components. For this purpose, we consider a  $74 \times 1500$  document-by-term matrix, containing 45 documents by Charles Dickens and 29 by Wilkie Collins and weighted using relative frequency (this is described in more detail in section 3.1).

On this basis, we computed and extracted 73 independent components, which all have different weights for each document. For analysis, we retain those components for a document with a weight above their own average weight over all documents. Similarly, we retain those terms for a component that also lie above their average weight for that specific component (These thresholds are explained in more detail in the next section 3.2.4).

There do not appear to be "author-exclusive" components, i.e. components only strong for one specific author, so the differences appear to be more subtle. After having thus discarded of components less important for each individual document, we search for components that seem to predominate for an author's documents. We identify two components, component three appears in a large number of Dickens' documents and component 20 is frequent for Collins' documents.

Table 3.2.4 shows the 30 highest negatively and positively associated terms for those two components ordered according to importance. A concept is formed through the positive terms in the component, e.g. in component 3: *wrong, ignorant trial, doubt,* and a marked absence of the negative terms, e.g. *over, empty* and *wall*. Although, an obvious concept may fail to be found here, component 3 contains some terms relating to a court situation, e.g. *trial, justice, written, pen* and possibly associated emotions, such as *doubt, weakness, confidence, promise* and *hesitation*. The negative terms for this component are more prosaic, such as *wall, sofa* and *gentlemen* This component ranks high in documents, such as *David Copperfield, Great Expectations* and *The Perils of English Prisoners*.

Component 20 contains some terms related to possibly the theatre and travelling: *stage*, *play*, *parts*, *post*, *town* and *country* and a marked absence of emotions and senses, such as *distrust*, *afraid* and *look*, or *heard*. The component does not rank very high in Collins' documents, but features in a large number of them, it is, however, more prevalent for *Man and Wife* and *After Dark*.

We tentatively conclude, that there do not seem to be exclusive components for authors, but that their weight in a specific document is rather sensitive to the topic within. The answer with respect to characteristic terms for an author does therefore not seem to have a straightforward answer, but may be approximated through a more cumulative effect of collecting the positive and negative terms in important components over an author's documents in the hope that characteristic ones will also show a high overall effect. Thus, we continue by discussing the thresholding methods to discard less important components for documents and the less important terms for concepts, as well as the final weight combination of terms in documents and terms for author profiles.

#### 3.2.4 ICA General Model

Since every term in a component and every component in document receives a weight even if it is very close to zero, some pre-selection may be appropriate to select those terms and components more relevant for separation.

TERM-COMPONENT THRESHOLD For this purpose, we use an unsupervised approach to term selection and define individual term thresholds based on all weights of a term over all components. In this way, we capture the mean activity for a term and on this basis can decide in which components it is more active than others. This activity may be positive or negative and in order to ascertain the mean activity of a term we take absolute values of term weights  $x_j$  in all n components to compute the mean for the term, which then becomes the threshold for that term  $\delta_{term}$  (eq. 3.2.25). Thus, if the absolute weight  $|w_{ij}|$  for

Table 3.2.4: 30 highest negatively and positively associated terms for two components, C3 and C20. Each one being important for separately Dickens or Collins by appearing a number of their respective documents.

| Terms | Predominant Dic | kens Component: C3 | Predominant ( | Collins Component: C20 |
|-------|-----------------|--------------------|---------------|------------------------|
| 1     | wrong           | -over              | two           | -look                  |
| 2     | ignorant        | -empty             | stage         | -distrust              |
| 3     | page            | -lips              | description   | -wonder                |
| 4     | certainly       | -wall              | forth         | -answered              |
| 5     | besides         | -previous          | fine          | -loss                  |
| 6     | easily          | -sofa              | post          | -daughter              |
| 7     | written         | -shoes             | george        | -sorry                 |
| 8     | too             | -does              | months        | -face                  |
| 9     | useful          | -gentlemen         | round         | -remember              |
| 10    | months          | -strength          | order         | -forgive               |
| 11    | remembrance     | -wind              | november      | -expression            |
| 12    | trial           | -beyond            | play          | -yes                   |
| 13    | doubt           | -period            | parts         | -upstairs              |
| 14    | weakness        | -light             | town          | -person                |
| 15    | cross           | -man               | forward       | -try                   |
| 16    | promise         | -bed               | scene         | -how                   |
| 17    | friend          | -nephew            | large         | -thought               |
| 18    | confidence      | -uncle             | appears       | -heard                 |
| 19    | justice         | -outside           | north         | -poor                  |
| 20    | pen             | -inn               | party         | -ask                   |
| 22    | happiness       | -looks             | off           | -sense                 |
| 23    | help            | -dark              | country       | -perhaps               |
| 24    | hesitation      | -mouth             | year          | -innocent              |
| 25    | beginning       | -sir               | monday        | -remarked              |
| 26    | fear            | -society           | three         | -suggested             |
| 27    | betrayed        | -without           | forty         | -returned              |
| 28    | caused          | -eyes              | morrow        | -forget                |
| 29    | distrust        | -top               | twelve        | -creature              |
| 30    | need            | -rooms             | land          | -afraid                |

term  $t_j$  in component  $c_i$  is below its individual threshold  $\delta_{term}$ , term  $t_j$  does not belong to the set of prevalent terms for component  $c_i$ .

$$\delta_{term} = \frac{1}{n} \sum_{j=1}^{n} |x_j|$$
(3.2.25)

COMPONENT-DOCUMENT WEIGHTING Similarly, in order to select discriminatory components for each document, we define individual thresholds for each component, since the overall activity of components may differ. For each component *comp*, we compute its activity threshold  $\delta_{comp}$  from its mean activity over all *n* documents. As usual, we are interested in both highly relevant positive and negative components, so we take absolute values of all weights of the component in all document to compute  $\delta_{comp}$  (eq. 3.2.26). If then the absolute weight  $|w_{ij}|$  for component  $c_i$  in document  $d_j$  is below its  $\delta_{comp}$ , component  $c_i$ does not belong to the set of prevalent components for document  $d_j$ .

$$\delta_{comp} = \frac{1}{n} \sum_{j=1}^{n} |c_j|$$
(3.2.26)

Another option is the selection of components according to class labels, as for instance with the *Representativeness & Distinctiveness* feature selection method (see section 3.3). Choosing appropriate components is then on the level of the complete author set, i.e. we retain components more consistent in the set and discard those more inconsistent with respect to the complete set. Employing *Representativeness & Distinctiveness* feature selection would involve choosing components with similar weights over all of, for instance Dickens' documents, but which are at the same time less consistent or very different in weight over all of Collins' document set. The representative and distinctive components are usually

chosen by taking the mean over all corresponding values, although this is also dependent on the number of original components.

Instead of having an individual component set for each document, as in the simple average threshold, all documents of one author have the same set of components with only the respective weight being different for each single document. Thus, there is the component set  $cs_1$  for the author-document set  $ds_1$  and component set  $cs_2$  for author-document set  $ds_2$ . Both methods of using a threshold or selecting components for documents on the basis of class result in a selected set of components for each document in an authors' set.

WEIGHT COMBINATION INTO TERM-DOCUMENT REPRESENTATIONS In order to obtain a single term weight for a document from the above separated representations, all weights for one term are joined to form an overall weight in a document. Each term may feature in more than one component, which is the reason why we collect all weights for a term if they are above its  $\delta_{term}$ .

We start from the matrix  $S_{concept \times document}$  and consider all components that were retained either through thresholding or specific component selection by taking all components  $cs_1$ for author 1 ( $/cs_2$  for author 2). Important is the weight for the component  $c_i$  in a document  $d_j$ , which we denote as  $\alpha_{ij}$ . We now iterate over all components  $c_i$  and collect all terms  $t_k$  for each component in the set, whose weight is above their individual term threshold  $\delta_{term}$  for that component. This we denote as  $\beta_{ik}$  referring to the the weight of a term  $t_k$  in a component  $c_i$ .

The final weight  $w_{t_k,d_j}$  of term  $t_k$  in document  $d_j$  is then computed by taking the weight of the corresponding component,  $\alpha_{ij}$ , and multiplying it by  $\beta_{ik}$  the weight of the term in the component. For each term  $t_k$  for each document  $d_j$ , we iterate over its *n* remaining components after pre-selection and sum over the weights (eq. 3.2.27).

$$w_{t_k,d_j} = \sum_{i=1}^n \alpha_{ij} * \beta_{ik}$$
(3.2.27)

Thus, if the term appears in more than one component for document *j* with a value above its threshold  $\delta_{term}$ , the corresponding weights are added. According to the definitions above, a positive  $\alpha_{ij}$  and a positive  $\beta_{ik}$  give a positive weight for the term in the document. A negative  $\alpha_{ij}$  and a negative  $\beta_{ik}$  also give a positive weight. Any combination of negative and positive  $\alpha_{ij}$  and  $\beta_{ik}$  returns a negative overall weight for that term in a document.

FROM TERM-DOCUMENT WEIGHTS TO AUTHOR PROFILES For the final abstraction from document-term collections of one author to a list of positive and negative discriminators, we can take the mean value of a term t over all of the author's documents n, as its representative profile P weight (eq. 3.2.28) as the representative value for the term in the authors' document set and select the highest absolute terms as positive and negative discriminators.

$$P(t) = \frac{1}{n} \sum_{j=1}^{n} x_j$$
(3.2.28)

The combination of individual term-document weights into a weight for an author profile is another approximation, since a term is sometimes positive for a document of an author and sometimes negative. By taking taking the average over all documents, we take into account all information, Since this is rather an exploratory study than presenting a final and ideal solution to weight thresholding and combination, this aspect is not discussed here any further and left for future work. The final terms for the author profiles are chosen by computing a threshold  $\delta_{profile}$  computed from the mean and standard deviation over all terms in the profile and adding them, as shown in eq. 3.2.29. By including the standard deviation, we counterbalance the effect of very small weights on the mean. Additionally, we multiply by some scalar  $\alpha$  depending on the number of input terms.

$$\delta_{profile} = (\overline{terms} + sd(terms)) \times \alpha \tag{3.2.29}$$

INTERSECTING AUTHOR PROFILES Having completed the arduous task of combination of term-concept and concept-document weights into the final combination into two distinct author profiles, there are some curious properties to be observed. Using the same example input as earlier in this section, we derived two author profiles from 45 documents by Dickens and 29 by Collins. For the final profiles, we only retain the highest weighted terms for each profile. Dickens' profile contains 137 terms and Collins' profile 139 terms. If we intersect the two profiles in the search for common terms of both authors and consider the corresponding weight each of the common term has in each profile in table 3.2.4, we can observe, that for the terms both authors share, if Dickens has a positive weight for a term, Collins has a negative weight for the same term and vice versa. This is surprising, since all terms for components and components for documents were chosen in an unsupervised fashion with no relation to the class labels. Thus ICA might be in fact detecting properties relating to authorship through cumulative effect over terms in concept and concepts in documents.

However, with respect to this example, there is of course a bias, since only the two authors are compared and the method would strive to detect characteristic deviations. If Dickens and Collins do not differ substantially for the usage of some terms this is also not likely to reflect in components. Theoretically, Dickens and Collins could share unusual properties with respect to usage of terms, and even if these might be rendered a little less discriminatory through this sharing, they should not be regarded as completely invalid, since they might still be contributing to overall discrimination for the author.

|             | 5                         | 2                          |
|-------------|---------------------------|----------------------------|
| Common Term | Weight in Collins Profile | Weight in Dickens' Profile |
| enough      | 0.64                      | -0.53                      |
| words       | 0.67                      | -0.49                      |
| feel        | 0.61                      | -0.46                      |
| produced    | 0.64                      | -0.48                      |
| later       | 0.58                      | -0.61                      |
| discovered  | 0.61                      | -0.57                      |
| wait        | 0.61                      | -0.67                      |
| met         | 0.68                      | -0.63                      |
| since       | 0.63                      | -0.47                      |
| interval    | 0.51                      | -0.45                      |
| advice      | 0.58                      | -0.49                      |
| speak       | 0.66                      | -0.51                      |
| motive      | 0.54                      | -0.52                      |
| answered    | 0.67                      | -0.43                      |
| meet        | 0.53                      | -0.43                      |
| absence     | 0.58                      | -0.52                      |
| speaking    | 0.71                      | -0.44                      |
| heard       | 0.56                      | -0.57                      |
| asked       | 0.56                      | -0.48                      |
| though      | -0.74                     | 0.47                       |
| heaven      | -0.56                     | 0.44                       |
| deal        | -0.69                     | 0.50                       |
| always      | -0.60                     | 0.45                       |
| down        | -0.85                     | 0.51                       |
| person      | 0.54                      | -0.49                      |
| such        | -0.57                     | 0.53                       |
| off         | -0.60                     | 0.46                       |
| upon        | -0.84                     | 0.57                       |
| many        | -0.71                     | 0.48                       |
| great       | -0.52                     | 0.50                       |
| much        | -0.65                     | 0.63                       |
| head        | -0.61                     | 0.46                       |
| being       | -0.69                     | 0.45                       |

Table 3.2.5: 32 common Terms of Dickens' profile and Collins' profile showing opposite signed weights yielded by ICA analysis.

#### 3.3 REPRESENTATIVENESS AND DISTINCTIVENESS

In this section, we introduce *Representativeness & Distinctiveness* by first considering its original application in the field of dialectrometry and then interpreting its application to authorship attribution and the purpose of building author profiles.

Section 3.3.1 contains the general introduction to representative and distinctive features and explains its application to dialect data. In section 3.3.2, we transfer to representative and distinctive terms for authorship attribution and section 3.3.3 describes the general model that is used in this work and the motivation for concentrating on certain representative and distinctive features for different types of evaluation.

#### 3.3.1 Representativeness and Distinctiveness for Dialectrometry

*Representativeness & Distinctiveness* (Prokić et al. 2012) was originally applied in the realm of dialectrometry, a study of dialect differences between different sites within a language area with respect to a choice of lexical items. The degree of difference between two sites is characterised by the aggregate differences of comparisons of all lexical items collected at each site. In the context of dialectrometry, *Representativeness & Distinctiveness* is a measure to detect characteristic features (lexical items), that differ little within a group of sites and considerably more outside that group. Characteristic features are chosen with respect to one group *g* of sites |g| within a larger group of interest *G*, where |G| includes the sites *s* both within and outside *g* (Prokić et al. 2012).

#### Representativeness

The degree of *Representativeness* of feature f of the group g is then defined as the mean difference of all site comparisons  $d_f(s, s')$  (using an appropriate distance function for the comparison between two sites. Consequently,  $\overline{d_f^g} \to 0$ , as the values of the features approach a constant value for all  $s \in g$  as defined in 3.3.1.

$$\overline{d_f^g} = \frac{2}{|g|^2 - |g|} \sum_{s,s' \in g, s \neq s'} d_f(s,s')$$
(3.3.1)

Thus, for each feature, the *Representativeness* measure compares all values within the group |g| and collects the pairwise differences, which are then normalized by the number of comparisons. In this way, the less the value for that feature varies within the group, the smaller  $\overline{d}_f^g$  becomes, which indicates that the feature is more representative of the whole group.

### Distinctiveness

Similarly, *Distinctiveness* of a feature measures the mean difference between the group and elements outside the group.  $\overline{d_f^g} \to \infty$ ,  $s \in g, s' \notin g$  as the feature f become more distinctive for group g, as defined in 3.3.2.

$$\overline{d_f^{g'}} = \frac{1}{|g|(|G| - |g|)} \sum_{s \in g, s' \notin g} d_f(s, s')$$
(3.3.2)

The comparison is performed for each feature with respect to the elements outside the group |g|, but within the larger group of interest |G|. For each feature, the values of that feature within |g| are compared to those outside. In contrast to *Representativeness*, if the values are ranging greatly, the feature is more distinct or different for both groups. For *Distinctiveness*, we prefer features that have very different values in each of the two sets. Characteristic features are those with relatively large differences between  $\overline{d_f^{g'}}$  and  $\overline{d_f^{g}}$ . To overcome comparability difficulties in regard to missing features or different distributions,  $\overline{d_f^{g}}$  and  $\overline{d_f^{g'}}$  are standardized and compared based on these z-scores. Standardization is calculated for every feature f separately, with  $d_f$  referring to all accumulated distance values with respect to feature f (eq. 3.3.3).

$$\frac{\overline{d_f^{g'}} - \overline{d_f}}{sd(d_f)} - \frac{\overline{d_f^g} - \overline{d_f}}{sd(d_f)}$$
(3.3.3)

#### 3.3.2 Representative & Distinctive Terms for Authorship Attribution

In the following, we interpret *Representativeness & Distinctiveness (RD)* for detection of characteristic features of an author, given some of his document samples and samples by a different source. The group D(g) comprises all of his documents d (*the sites s*) and *DS* is the union of all documents  $d \in D$  and the documents by other authors. The distance function in this case is the absolute difference between the logarithm of the relative frequencies of f with respect to two documents d and d'. The usual input are relative frequencies of the original term frequency weighting, which provide a better picture between the ratio of term frequency and document size. The logarithm lessens the effect of rather high frequencies.

Thus, the distance  $d_f$  between document d and d' with respect to feature f, is set as the absolute difference between the logarithm of the relative frequency of their respective input values (eq. 3.3.4)

$$d_f(d,d') = |log(relFreq(f) - log(relFreq(f'))|$$
(3.3.4)

*Representativeness* of a feature f for document set D is then defined in eq. 3.3.5

$$\overline{d_f^D} = \frac{2}{|D|^2 - |D|} \sum_{d, d' \in D, d \neq d'} d_f(d, d')$$
(3.3.5)

The *Distinctiveness* measure for comparing to outside documents corresponds to eq. 3.3.6

$$\overline{d_f^{D'}} = \frac{1}{|D|(|DS| - |D|)} \sum_{d \in D, d' \notin D} d_f(d, d')$$
(3.3.6)

 $\overline{d_f^{D'}}$  and  $\overline{d_f^D}$  are standardized by using all distance values calculated for feature f to yield the degree of representativeness and distinctiveness for term dt in D with respect to DS as defined in eq. 3.3.7.

$$dt = \frac{\overline{d_f^{D'}} - \overline{d_f}}{sd(d_f)} - \frac{\overline{d_f^D} - \overline{d_f}}{sd(d_f)}$$
(3.3.7)

Having performed this process for all features yields an ordered dt list, where the highest values are the most representative and distinctive and thus desirable for separating the two sets.

### 3.3.3 The Representativeness-Distinctiveness' General Model

Given that the above process has been performed, the highest terms of those lists to be included in the respective author profile still have to be chosen. For selecting the highest rated features of the standardized features, we define threshold  $\delta_{dt}$  as  $\alpha$  times the mean over all characteristic features plus their standard deviation, as in eq. 3.3.8. Depending on the number of input features, the profiles tend to admit more terms than a simple mean threshold could restrict. Additionally, the mean is also lowered considerably if less representative and distinctive items are admitted. Adding the standard deviation should account for some large differences in values and  $\alpha$  can be adjusted according to input term size. Generally,  $\delta_{dt}$  still remains subject to individual experimentation given specific input to yield enough but not an interminable number of terms.

$$\delta_{dt} = \left(\frac{1}{n}\sum_{k=1}^{n} dt^{k} + sd(dt)\right) \times \alpha \text{ (with } \alpha > 0) \tag{3.3.8}$$

Although *Distinctiveness* is a comparative method and symmetric for the author's set and the comparison set, *Representativeness* relies solely on the author's set *D* and probably differs for the other set. Consequently, the differences between representative and distinctive terms might be different as well. For this reason, we compute characteristic features from both perspectives, the author's and the comparison set's. In the following, we explain the different subsets of the chosen discriminatory terms that we use for evaluation.

#### Comparing Authors on the basis of Representative Features

In order to evaluate how well the chosen terms do separate the two authors, we motivate the choice of only selecting representative features from both author profiles. The issue in connection with using all discriminatory terms lies in the calculation of the *Distinctiveness* measure. If we calculate representative and distinctive features for an author, we can be sure that the values for those terms are consistently similar for that author, while being different for the outside set. There are consequently two different scenarios with respect to a term *being different* in the other author's set.

1. The term  $t_i$  is consistent in set D with a high frequency. The same term  $t_i$  is consistent in the opposing author's set nD (for *nonDickens*) with a low frequency. Thus, the term is representative and distinctive for both sets, even though we did not consider the *Representativeness* for set nD. Obviously, the converse could also be true: a consistently low frequency for set D and a consistently high frequency for the set nD. This first case does not produce any issues for measuring similarity, since on the basis of these features there is reliable similarity within sets and accentuated differences between the sets.

2. The second possibility is the one that may cause problems. Assuming a representative and distinctive term for set D, with a frequency of either high or low. However, the same term is not representative for set nD and values may fluctuate from high to low. Although this term is not representative for nD, it is distinctive from D to nD, because it is constant in D while not being so in nD. Clustering on the dataset on the basis of these terms may create noise, since it will not show similarities for documents within nD and may have occasional rather similar values to the ones in D that rate it closer to documents in D.

We consider an example: based on a 85 x 500 most-frequent-features matrix (relative frequency weighting), we perform the RD method for both author sets, in this case Dickens (54 documents) and Collins (31 documents) (see section 3.1). Two representative and distinctive term lists are returned ( $dt_D$  and  $dt_{nD}$ ), one for Dickens and one for Collins, which are then subjected to pre-selection at a level of  $\alpha = 1.2$  (see eq. 3.3.8).

Tables 3.3.1 and 3.3.2 show the representative and distinctive terms for Dickens and Collins respectively. Table 3.3.3 is the intersection of  $dt_D \cap dt_{nD}$  and thus the terms representative and distinctive for both Dickens and Collins. Table 3.3.4 shows those terms  $t_i \subset (dt_D \cup dt_{nD}) - dt_D \cap dt_{nD}$ . They are the residual of the intersection  $dt_D \cap dt_{nD}$  and consequently those features that are only representative for one set and either not representative or not highly representative for the other.

# Table 3.3.1: 127 ordered Dickens' representative and distinctive terms when compared to Collins on 500 most frequent terms.

### Dickens' markers

upon, but, though, much, many, indeed, and, only, often, several, down, being, off, great, nor, pretty, left, very, fire, first, then, deal, towards, pleasant, person, all, always, afterwards, company, fact, still, however, therefore, none, because, rather, wind, enough, youll, coming, letter, such, times, suit, within, boy, question, high, heard, where, they, sometimes, return, leave, moment, there, every, shaking, lord, own, words, eye, side, life, glad, couldnt, bright, change, answer, along, across, power, fellow, already, short, everything, husband, about, necessary, asked, dead, street, excuse, full, speak, mind, woman, back, sitting, returned, kind, long, end, head, whole, who, sense, things, case, ever, shop, was, spoke, each, small, course, three, herself, room, other, she, men, like, those, good, better, less, understand, feel, wouldnt, for, arms, whom, dare, whether, town, conversation

In the following, we show that the set in table 3.3.3 is more suitable for a clustering comparison than the set in table 3.3.4. We compute the dissimilarity between documents on the basis of the list of term values, using the *complete link* measure (For details on the clustering method and evaluation of clustering, see section 4.1.2.). The example used here is an exaggerated case, since a list of representative and distinctive features for one

# Table 3.3.2: 167 ordered Collins' representative and distinctive terms when compared to Dickens on 500 most frequent terms.

#### Collins' markers

upon, only, left, many, very, return, but, under, first, much, words, and, leave, down, letter, already, answer, being, since, though, returned, they, heard, indeed, feel, great, speak, enough, shaking, ask, full, air, end, still, brought, fire, place, has, were, observed, nor, her, moment, such, often, back, passed, spoke, question, stopped, looked, times, she, appearance, asked, off, interest, sat, next, bright, lost, told, their, object, its, circumstances,room, where, change, remember, new, then, mind, necessary, time, would, never, had, last, mentioned, herself, own, let, side, your, there, little, course, pleasant, which, open, letters, once, boy, turned, deal, can, always, felt, with, just, present, youll, couldnt, will, looking, received, several, one, like, sometimes, who, person, far, these, old, hands, into, without, itself, stood, cries, here, subject, cried, the, began, again, word, because, some, cold, within, come, darling, replied, house, use, woman, bring, having, large, corner, fine, friends, each, excuse, may, well, between, beautiful, was, why, secret, door, this, arms, hear, other, shall, part, truth, came, another, seems, duty, goes

# Table 3.3.3: 73 representative and distinctive terms for both Collins and Dickens when compared on 500 most frequent terms.

#### Both Collins' and Dickens' markers

and, was, but, she, there, very, they, who, upon, much, down, like, such, then, being, great, where, only, other, back, own, first, mind, still, though, woman, room, always, many, off, returned, left, because, heard, indeed, boy, enough, fire, course, asked, moment, speak, times, letter, words, person, often, leave, herself, side, arms, full, question, within, sometimes,end, deal, nor, each, bright, answer, necessary,spoke, feel, pleasant, several, shaking, youll, change, couldnt, excuse, return, already

Table 3.3.4: 148 joined individual representative and distinctive terms for both Collins (94 terms) and Dickens (54 terms) when compared on 500 most frequent terms, but not including the the terms in table 3.3.3.

## Both Collins' and Dickens' separate markers

under, since, ask, air, brought, place, has, were, observed, her, passed, stopped, looked, appearance, interest, sat, next, lost, told, their, object, its, circumstances,remember, new, time, would, never, had, last, mentioned, let, your, little, which, open, letters, once, turned, can, felt, with, just, present, will, looking, received, one, far, these, old, hands, into, without, itself, stood, cries, here, subject, cried, the, began, again, word, some, cold, come, darling, replied, house, use, bring, having, large, corner, fine, friends, may, well, between, beautiful, why, secret, door, this, hear, shall, part, truth, came, another, seems, duty, goes, pretty, towards, all, afterwards, company, fact, however, therefore, none, rather, wind, coming, suit, high, every, lord, eye, life, glad, along, across, power, fellow, short, everything, husband, about, dead, street, sitting, kind, long, head, whole, sense, things, case, ever, shop, small, three, men, those, good, better, less, understand, wouldnt, for, whom, dare, whether, town, conversation,

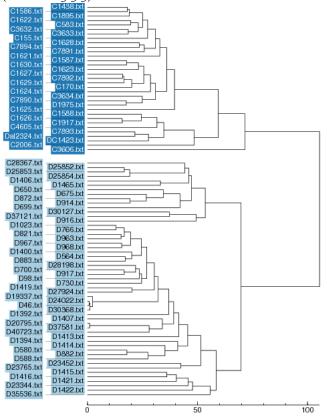
author set is to some extent also representative for the outside author set. However, we want to emphasize that those remaining non-shared features are less suited for clustering comparison and may introduce noise. The validity of their *Representativeness* for the individual set is not diminished and they are still regarded as coherent terms for that author.

The dendrograms in figure 3.3.1 and figure 3.3.2 show the clustering for both sets, the intersection of representative and distinctive features and the non-intersection set respectively. <sup>7</sup> In Figure 3.3.1, we can observe 3 misclassifications, one for Collins and two for Dickens.<sup>8</sup> The corresponding *adjusted Rand Index* (see section 4.1.2) given the ideal

<sup>&</sup>lt;sup>7</sup> All illustrative figures were created in Gabmap: http://www.gabmap.nl/.

<sup>&</sup>lt;sup>8</sup> All documents starting with a *D* refer to Dickens, all starting with a *C* refer to Collins' documents. Variations on this indicate collaborations between authors.

Figure 3.3.1: Dendrogram 'complete link' of dissimilarity Matrix on the basis of 73 both Dickens and Collins representative and distinctive terms for 500 most frequent input terms (see table 3.3.3).



separation is 0.82. Figure 3.3.2 shows 8 misclassifications for Dickens and 3 for Collins and the corresponding *adjusted Rand Index* is 0.018 and thus quite low.

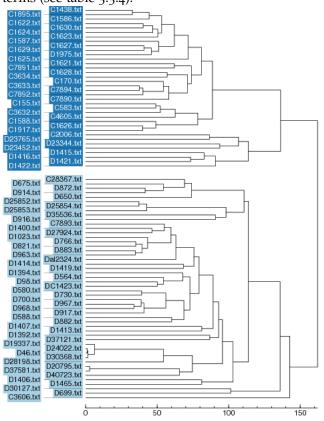
Naturally, the more terms lie in the intersection of both representative and distinctive terms for both sets, the higher their degree of *Representativeness & Distinctiveness* and the better the individual author's lists would perform, because the terms only representative for one author will have less influence in comparison. Since it is difficult to be sure of the exact distribution and also for the sake of consistency, for comparison and evaluation of discrimination ability, we choose only features representative and distinctive of both authors.

## Selecting Frequent Discriminatory Terms for Author Profiles

Another particularity that needs to be addressed is the meaning of the discriminatory term list that holds distinguishing terms for each author based on comparison to another set. The terms within could be either consistently frequent or consistently infrequent for that author, depending on the comparison context. If we aim at comparing histogram differences of an author's profile (see section 4.1.1) and an unseen document on the basis of the representative and distinctive features, the consistently frequent features for an author provide a better basis for this comparison, since the representative and distinctive score rewards consistent features of an author regardless of their frequency.

Thus, we imagine a world where a term is either frequent for an author, such as Dickens or infrequent, which makes it frequent for his opponent, e.g. Collins. In order to select

Figure 3.3.2: Dendrogram 'complete link' of dissimilarity Matrix on the basis of 148 separate representative and distinctive terms for Dickens and Collins for 500 most frequent input terms (see table 3.3.4).



terms that are more indicative for one author than the other, we refer back to the input document-by-term matrix, weighted with relative frequencies. For each author, for every term we sum over the frequency of that term in all his documents divided by n number of documents. For one author set, for each term  $t_i$ , we compute its overall document frequency  $d_{freq}$  as defined in eq. 3.3.9.

$$d_{freq}(t_i) = \frac{1}{n} \sum_{j=1}^{n} relFreq(t_j)$$
(3.3.9)

This returns a  $d_{freq}$  list of average weights for each term in the overall set of the author. Having computed a list for each author, we now compare the values for term  $t_i$  for both authors and assign the term to the author in whose  $d_{freq}$  list it was more frequent. Those then remain in the frequency list  $d_{freq}$  for that author. There are no shared terms and merging the two document frequency lists gives us all original terms in the input matrix. Under this scheme, terms that are only slightly more frequent on average for one author are also assigned to his list. However, since this is merely a reference list and those terms are not likely to be selected for discriminatory terms, this should not have too negative an effect.

Then, given the representative and distinctive term list dt for the author, we know, that each term is either more frequent/absent for him compared to the other author's set. We compare to the frequency list for that author ( $d_{freq}$ ) and only retain terms that are in the intersection of  $d_{freq} \cap dt$ .

We consider an example for the two-author set of Dickens and Collins. Having collected all mean term frequencies for each author, we observe that some terms are more frequent for one author than the other. There is one list for Dickens  $d_{Dfreq}$  and one for Collins  $d_{Cfreq}$ , while  $d_{Dfreq} \cap d_{Cfreq} = \emptyset$ , which is a necessary condition. Given a *dt* list for Dickens of 74 terms (after having applied the feature selection), we intersect those terms with his  $d_{Dfreq}$ .

Table 3.3.5 shows those markers that remain, when we retain only those of his dt features where he is likely to have more frequent scores than Collins. For the remaining 26 terms that are not in this list, Collins seemed to have a higher mean frequencies in his input documents, which is why those terms were allocated to Collins' list ( $d_{Cfrea}$ ).

Although, this solution is somewhat heuristic, it nevertheless seems a reasonable approximation to identifying frequent/infrequent markers of an author. *Representativeness & Distinctiveness* alone primarily identifies characteristic terms that are consistently *different* for two authors without telling us which author consistently avoided or frequented certain terms. In this case, one possibility for selecting the negatively-associated terms for Dickens would be to extract those terms representative and distinctive for both authors, but only *frequent* for Collins.

Table 3.3.5: 48 representative & likely to be frequent features for Dickens. Dickens' frequent representative and distinctive markers

and, was, but, all, there, very, they, who, upon, about, much, down, like, good, such, then, being, great, where, head, ever, long, though, always, many, off, every, returned, those, because, indeed, boy, whole, fire, three, things, coming, rather, kind, times, towards, everything, often, high, pretty, full, eye, short

## 3.4 MODEL SCENARIOS FOR CHARACTERISTIC TERM SELECTION

In the following section, we present three different models for creating author profiles, where section 3.4.1 describes the first model: separate *Representativeness & Distinctiveness*. Section 3.4.2 discusses the simple ICA model and section 3.4.3 considers the combined model of both ICA and *Representativeness & Distinctiveness*. Given two document sets of both Dickens and another author or reference set, each model is meant to yield an author profile consisting of both positively associated as well as negatively associated terms with some weight as an indication of how consistent the term is for that author. For each model, we exemplify the selection process and for all examples we use Charles Dickens and as opposing author Wilkie Collins. Input to all models is a *document* × *term* matrix constructed from a document set of Dickens and Collins and weighted with relative frequency.

### 3.4.1 Model 1: Separate Representativeness - Distinctiveness

The first model considers characteristic term selection using the *Representativeness & Distinctiveness* measure in isolation. Since this has been described in detail in section 3.3, we only give an overview of the process here.

CHARACTERISTIC TERM SELECTION FOR DICKENS AND COLLINS Figure 3.4.1 shows the the general selection of representative and distinctive features for both authors. Characteristic terms are then obtained by retaining all terms with weights over the mean plus the standard deviation of the complete weight list.

Figure 3.4.1: Characteristic Term Selection Process in *Representativeness & Distinctiveness* for Dickens and Collins

**REPRESENTATIVE FEATURES FOR CLUSTERING** The terms we retain for clustering evaluation consist of the intersection of the two author profiles,  $P_D$  and  $P_C$ . Thus, we obtain terms that are consistent for both author sets.

(1) 
$$Dickens_{rep} \& Collins_{rep} = P_D \cap P_C$$

SELECTING FREQUENT FEATURES FOR AUTHOR PROFILES In order to select only the most frequent features of an author for histogram comparison, we compute mean term frequencies on the basis of the *document* × *term* matrix for all terms for each author and divide terms into  $d_{Dfreq}$  and  $d_{Cfreq}$  for Dickens' frequent items and Collins' frequent items respectively, so that  $d_{Dfreq} \cap d_{Cfreq} = \emptyset$ . The respective profiles are then compared to the frequency lists and we retain only those terms for which an author is likely to have been more frequent than the opposing author.

- (2)  $P_{Dfreg} = d_{Dfreg} \cap P_D$
- $(3) \qquad P_{Cfreq} = d_{Cfreq} \cap P_C$

## 3.4.2 Model 2: Separate Independent Component Analysis

Similarly to before, since the simple model of ICA for characteristic term selection is described in detail in section 3.2.4, we only briefly depict the general process here.

- 1. From the *document* × *term*  $\Rightarrow$  estimation of  $A_{document \times component}$  and  $S_{component \times term}$
- 2. A: for each term  $t_k$ , compute its threshold  $\delta_{t_k}$  given all its values and retain its presence in components, where  $w(t_k) > \delta_{t_k}$
- 3. *S*: for each component  $c_i$ , compute its threshold  $\delta_{c_i}$  given all its weights and retain it for documents, where  $w(c_i) > \delta_{c_i}$
- 4. Reconstruct a reduced *document* × *term* matrix by combining term-component weights and component-document weights:

$$w_{t_k,d_j} = \sum_{i=1}^n \alpha_{ij} * \beta_{ik}$$

5. *Dickens' Profile*: for each term in Dickens' documents, compute *μ* over all weights and keep terms with highest absolute weight, as this yields positive and negative terms

 Collins' Profile: for each term in Collins' documents, compute μ over all weights and keep terms with highest absolute weight

## 3.4.3 Model 3: ICA & Representative and Distinctive Components

The third model combines both techniques by first using ICA to compute A and S and then reducing S by selecting the most representative and distinct components for each author's set.

- 1. From the *document* × *term*  $\Rightarrow$  estimation of  $A_{document \times component}$  and  $S_{component \times term}$ .
- 2. A: for each term  $t_k$ , compute its threshold  $\delta_{t_k}$  given all its values and retain its presents in components, where  $w(t_k) > \delta_{t_k}$
- 3. S: using *Representativeness & Distinctiveness* select components most representative and distinctive for each author  $\Rightarrow cs_1, cs_2$ : set of components for Dickens and Collins respectively. This is a supervised selection of components according to their discrimination ability of the two author sets.
- 4. Reconstruct a reduced *document*  $\times$  *term* matrix by combining term-component weights and component-document weights, according to  $cs_1$ ,  $cs_2$ :

$$w_{t_k,d_j} = \sum_{i=1}^n \alpha_{ij} * \beta_{ik}$$

- 5. *Dickens' Profile*: for each term in Dickens' documents, compute *μ* over all weights and retain terms with highest absolute weight
- Collins' Profile: for each term in Collins' documents, compute μ over all weights and retain terms with highest absolute weight

## EVALUATING DICKENS' CHARACTERISTIC TERMS

In this chapter, we evaluate the contribution of this work, in particular the appropriateness of the characteristic term selection models proposed in the previous chapter. The quality of each model is evaluated with respect to the discrimination ability and consistency of its choice of characteristic terms for an author's document set in comparison to another author or reference set comprising different authors. Since there is no gold standard that defines the relative importance of a given term for an author, evaluation of a ranked characteristic term list and consequently also a specific model that produced this list is based mainly on the ability to identify unseen documents of the author, on degree of clustering ability and consistency in term selection given different training sets.

Thus, in section 4.1, we describe general evaluation methods that should help determine the validity of the chosen characteristic terms as well as the corresponding model. All methods are generally applicable to all model scenarios with some adjustments allowing for basic differences between *Representativeness & Distinctiveness* and ICA weighting. This should also allow us to compare between models and determine whether the two separate methods are to be preferred to the combined approach.

In section 4.2, we evaluate the results of the different models on the data sets and compare between the different models as well as to results of the previous studies of Dickens' style.

## 4.1 EVALUATION METHODS

In this section, we explain how characteristic terms are evaluated according to different criteria, such as relative closeness of an author profile to an unseen document, consistency of term selection when different subsets of the training corpus are chosen and separation ability in clustering. For all experiments, we consider different measures of correctness, given certain desirable characteristics of the results as stated in the following. Considering a discriminatory term list of a set of *Dickens'* documents as opposed to a set of document not by *Dickens*, referred to here as *nonDickens*, the following criteria should be met:

- 1. Cross-validation: performance of discriminatory term lists / author profile
  - Unseen Dickens histograms should be closer to *Dickens'* profile histograms than the *nonDickens'* profile histograms
  - Unseen nonDickens histograms should not be close
- 2. Clustering based on characteristic terms should discriminate
- 3. Consistency of term lists/profiles over different iterations

Each of these three criteria is addressed in one separate section and thus section 4.1.1 explains how cross-validation is performed and how on the basis of a set of ranked characteristic terms, one can obtain an author profile and test a profile's closeness to an unseen document. Section 4.1.2 explains and exemplifies clustering on the basis of characteristic terms of two author sets and section 4.1.3 addresses the consistency of term selection for different subsets of an author's document collection.

#### 4.1.1 Relative Histogram Differences of Author Profiles

For the first requirement of estimating author profile closeness, we test for the average distance between an unseen document (Dickens or other) and an author's profile based on the terms in that profile. Generally, an unseen document is always compared to both the *Dickens* and the *nonDickens* profile. A good author's profile should always have a lower distance for unseen documents belonging to that author than for those belonging to the *opposing* set.

Having applied a model for characteristic term selection on a training document-by-term matrix x, we obtain profiles  $P_D$  and  $P_{nD}$ , (for the Dickens and non-Dickens set respectively) each containing a set of terms that are considered discriminatory for the individual author set. For testing generalization ability, these profiles have to be evaluated against documents in the set of  $\cup_{Test_D}$  or  $\cup_{Test_{nD}}$  documents, but not in the training set  $\cup_{Train_D}$  or  $\cup_{Train_{nD}}$  that formed the basis for the document-by-term matrix x used in training.

Given an author profile *P* containing a set of chosen discriminatory terms *t*, we would like to know the relative importance of each term in the profile in relation to all other terms in the profile. For this purpose, we compute the relative frequency histograms over the profiles  $P_D$  and  $P_{nD}$ , where e.g. for any profile *P*, the histogram value  $rt_j$  of the weight for term  $w(t_j)$  in profile *P* is defined by eq. 4.1.1.

$$rt_{j} = \frac{w(t_{j})}{\sum_{i=1}^{n} w(t_{n})}, \text{ where } n = no. \text{ of terms in the profile}$$
(4.1.1)

For comparison, we choose an unseen document  $d_{test}$  that was not part of the training set and compare each profile separately to the unseen document. Each profile *P* is compared to  $d_{test}$  on the basis of the relative frequency distribution over the terms in *P*, which follows the assumption that if an unseen document belongs to a certain author and the terms in the author's profile are representative for that author, the distributions over those terms in both profile and unseen document should be very similar and more similar than when comparing to another author's profile. For creating a document vector of  $d_{test}$ , the same preprocessing and weighting as for the training set has to be used to make comparisons valid.

Thus, for both profiles  $P_D$  and  $P_{nD}$ , the following steps are performed separately: given a profile P, the  $d_{test}$  vector is reduced to only the terms t in the profile. The relative frequency histograms are computed for both the profile P and reduced  $d_{test}$  as described above. In order to determine how much the two histograms differ, the difference between  $rt_j$  of all terms  $t_j$  in  $d_{test}$  and P is compared using the *Manhattan* distance or absolute distance. Consequently,  $dist(P, d_{test}, rt_j)$  refers to comparing P and  $d_{test}$  with respect to  $rt_j$ as in eq. 4.1.2

$$dist(P, d_{test}, rt_j) = |P_{rt_j} - d_{rt_j}|$$

$$(4.1.2)$$

To obtain the mean difference between a profile P and the test document  $d_{test}$ , we take the mean over all distances, as defined in eq. 4.1.3. This also accounts for differences in profile length of the two author profiles compared.

$$mdist(P, d_{test}) = \frac{1}{n} \sum_{j=1}^{n} dist(P, d_{test}, rt_j)$$
(4.1.3)

After the above steps have been performed for both profiles  $P_D$  and  $P_{nD}$ , the mean distances  $mdist(P_D, d_{test})$  and  $mdist(P_{nD}, d_{test})$  are compared. If the document has been one of  $\cup_{Test_D}$ , a discriminatory profile  $P_D$  should have a lower value for  $mdist(P_D, d_{test})$  than profile  $P_{nD}$  for  $mdist(P_{nD}, d_{test})$  and conversely, if the document has been in  $\cup_{Test_{nD}}$ ,

 $mdist(P_{nD}, d_{test})$  should be lower. Documents in  $\cup_{Test_{nD}}$  can be tested for a negative match and reveal general issues with the profile selection method, although a good profile for Dickens should rather be chosen on the basis of similarity to an unseen Dickens document.

CROSS-VALIDATION: CHOOSING THE BEST KEYWORD LIST In order to choose the best profile, we can use cross-validation on the training set using the method proposed in this section for comparison. For document vector  $d_i$  in  $\bigcup_{Train_D, Train_{nD}}$  (for  $i \in 1...n$  documents), we remove  $d_i$  from the training set, train the remaining n - 1 document vectors and test each resulting  $P_D/P_{nD}$  on  $d_i$ . The best model profile for Dickens has the smallest distance for an unseen Dickens document and respectively for *nonDickens*, we choose the smallest distance for an unseen *nonDickens* document. Cross-validation can be done with leaving out only one document, which uses all resources (*Leave-one-out* validation), but is computationally expensive or by leaving out more than one (e.g. *Leave-five-out* validation). For all of our experiments, we use the latter option of removing five new documents on each iteration.

DISTRIBUTIONS OF AUTHOR PROFILE DISTANCES Thus, after each iteration in crossvalidation, we measure the distance of an author profile to an unseen document based on the relative frequency histogram distribution of the terms in the given author profile. Generally, we would like unseen Dickens documents to be closer to the *Dickens* profile than the *nonDickens* profile. Additionally, it would also be preferable if the individual distances of the two author profiles to the unseen document are likely to originate from two different distributions, meaning that their distribution mean is not likely to be the same.

For this purpose, we also consider an *Independent Sample T-Test* on the two distributions of individual distances between author profile and unseen document. Essentially, this is testing how confident we are that a single document belongs to a certain author. If the mean difference between the two samples is high and significant, the current model is more confident about its choice. For this, we take the distribution consisting of the list of individual distances between Dickens' profile and the unseen document:  $dist(P_D, d_{test}, rt_j)$  for all  $t_j$  in profile  $P_D$  and the distribution consisting of the list of individual distances for *nonDickens:*  $dist(P_{nD}, d_{test}, rt_j)$  for all  $t_j$  in profile  $P_{nD}$ .

For illustration, we consider an example of evaluating two different author profiles using *Leave-five-out* cross-validation. The t-test was computed using *Welch's* test with different sample sizes (two term lists seldom have the same length) at an  $\alpha$  significance level of 0.05.<sup>1</sup> Depending on the type of test document, we assume one group mean to be greater than the other, e.g. if a Dickens' document is tested, the assumption is that the *nonDickens* profile has a larger mean distance to the test document.

Table 4.1.1 shows the results for testing *Dickens* and *Collins* profiles on 23 Dickens test documents. The profiles were computed using the separate ICA model on a 47 Dickens/Collins document set, which is described in more detail in section 3.1.1.

The mean distances between the *Dickens/Collins* profile and the respective test document are displayed in column two and three under *Dist.D.* and *Dist.C.* respectively. Column four computes the difference between *Dickens* and *Collins* distances, i.e. how much closer Dickens' profile is to the document. Since here we are testing for unseen Dickens documents, the assumption is, that Dickens should always have a lower distance to the unseen document. Consequently, for each iteration the distance for *Dickens* is deducted from the one of *Collins* and deducting a smaller value from a larger one should always be positive.

Further, column five shows the p-value given the alternative hypothesis that the sample means of *Collins* has a greater mean than that of Dickens. Since in all cases shown here, p

<sup>&</sup>lt;sup>1</sup> This was computed in R using: t.test(*dist*(*doc* - *prof*<sub>D</sub>), *dist*(*doc* - *prof*<sub>C</sub>), alternative="greater")

< 0.05, we can reject the null hypothesis that the sample means are equal, which means that there does seem to be a significant difference between the two samples for all of Dickens' test documents. At a confidence level of 95%, it is assumed that the difference between the sample means lies in the interval displayed in column six. All intervals are positive, meaning that the mean difference is unlikely to ever be zero. With respect to our author profiles, this indicates that the profiles constructed for Dickens are appropriate in so far as to seemingly recognize Dickensian test documents.

Table 4.1.1: ICA on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to the test document.

|           |                      |         | Aut     | hor Profile Compa | rison   |                                   |
|-----------|----------------------|---------|---------|-------------------|---------|-----------------------------------|
| Iteration | Test Doc.            | Dist.D. | Dist.C. | (Dist.C-Dist.D)   | p-value | conf.interval (lower/upper bound) |
| 1         | D33_SB               | 0.0107  | 0.0157  | 0.0050            | 0.00    | 0.0027 Inf                        |
|           | D <sub>36</sub> _PP  | 0.0107  | 0.0160  | 0.0054            | 0.02    | 0.0011 Inf                        |
|           | D37a_OEP             | 0.0099  | 0.0155  | 0.0056            | 0.00    | 0.0023 Inf                        |
|           | D37b_OT              | 0.0086  | 0.0150  | 0.0064            | 0.00    | 0.0038 Inf                        |
|           | D38_NN               | 0.0076  | 0.0158  | 0.0083            | 0.00    | 0.0058 Inf                        |
| 2         | D40a_MHC             | 0.0086  | 0.0166  | 0.0079            | 0.00    | 0.0051 Inf                        |
|           | D40b_OCS             | 0.0066  | 0.0168  | 0.0102            | 0.00    | 0.0074 Inf                        |
|           | D41_BR               | 0.0065  | 0.0170  | 0.0105            | 0.00    | 0.0081 Inf                        |
|           | D42_AN               | 0.0083  | 0.0160  | 0.0076            | 0.00    | 0.0052 Inf                        |
|           | D43_MC               | 0.0064  | 0.0175  | 0.0111            | 0.00    | 0.0078 Inf                        |
| 3         | D46a_PFI             | 0.0089  | 0.0161  | 0.0072            | 0.00    | 0.0046 Inf                        |
| -         | D46b_DS              | 0.0061  | 0.0166  | 0.0105            | 0.00    | 0.0082 Inf                        |
|           | D49_DC               | 0.0077  | 0.0154  | 0.0077            | 0.00    | 0.0056 Inf                        |
|           | D <sub>51</sub> _CHE | 0.0107  | 0.0158  | 0.0051            | 0.02    | 0.0010 Inf                        |
|           | D52_BH               | 0.0076  | 0.0165  | 0.0089            | 0.00    | 0.0064 Inf                        |
| 4         | D54_HT               | 0.0090  | 0.0161  | 0.0070            | 0.00    | 0.0038 Inf                        |
|           | D55_LD               | 0.0072  | 0.0164  | 0.0092            | 0.00    | 0.0070 Inf                        |
|           | D56_RP               | 0.0085  | 0.0170  | 0.0085            | 0.00    | 0.0064 Inf                        |
|           | D59_TTC              | 0.0095  | 0.0152  | 0.0057            | 0.00    | 0.0034 Inf                        |
|           | D60a_UT              | 0.0084  | 0.0168  | 0.0084            | 0.00    | 0.0064 Inf                        |
| 5         | D6ob_GE              | 0.0110  | 0.0153  | 0.0044            | 0.00    | 0.0018 Inf                        |
| -         | D64_OMF              | 0.0108  | 0.0151  | 0.0043            | 0.00    | 0.0016 Inf                        |
|           | D70_ED               | 0.0100  | 0.0161  | 0.0061            | 0.00    | 0.0035 Inf                        |
|           | mean                 | 0.0087  | 0.0161  | 0.0074            |         |                                   |
|           | sd                   | 0.0015  | 0.0007  | 0.0020            |         |                                   |
|           | SE                   | 0.0003  | 0.0001  | 0.0004            |         |                                   |

Additionally, a paired t-test can be performed on the mean distances of all test instances in cross-validation, which compares the samples  $mdist(P_D, d_{test})$  and  $mdist(P_C, d_{test})$  over all test documents. Globally, this corresponds to model evaluation, i.e. how well a profile recognizes the correct test documents. For this purpose, we construct two samples: one containing all mean distances for Dickens (column one in table 4.1.1) and the second sample containing all mean distances for Collins (column two in table 4.1.1). The paired t-test confirms model validity with a p-value of 0.02 and a positive confidence interval of 0.002 to Inf, meaning that Dickensian documents are reliably classified as such ones. A second trial using Collins' test documents is then also performed to ensure Collins' profiles validity and the ability of Dickens' profiles to also reject foreign author profiles.

## 4.1.2 Clustering Dissimilarity of Author Sets

Given a list of discriminatory terms for two different author sets, we would like to ascertain to what extent the collection of terms is able to highlight differences between the sets and identify distinct clusters grouping the documents of different authors. As has been shown before, the terms used for discrimination ability should be selected according to separation ability for both author sets. Ideally, frequencies with respect to all terms should be consistent and fairly complementary between two author sets, e.g. Dickens uses *upon* consistently and frequently and Collins uses the term consistently and infrequently. In order to test discrimination ability of a discriminatory term list for two authors, we build a dissimilarity matrix comparing all documents in the complete training set.

## Dissimilarity Matrix

A dissimilarity matrix (or distance matrix)  $D_M$  describes pairwise distances for M objects, which results in a square symmetrical MxM matrix, where the  $ij_{th}$  entry is equal to the value of a chosen measure of distinction d between the  $i_{th}$  and the  $j_{th}$  object. The diagonal elements, comparing an object to itself are not considered or are usually equal to zero. A sample dissimilarity matrix is shown in matrix 4.1.4. Thus, in our case each document pair in  $Dickens \cup nonDickens$  is compared based on the differences of  $term_i$  in a given term list. A common measure of distinction d would be Manhattan or Euclidean distance.

$$D_M = \begin{pmatrix} 0 & d_{12} & \dots & d_{1j} \\ d_{21} & 0 & & \vdots \\ \vdots & & \ddots & \vdots \\ d_{j1} & \dots & & 0 \end{pmatrix}$$
(4.1.4)

Clustering on the basis of dissimilarity between objects, in this case documents can be done via hierarchical clustering. Agglomerative hierarchical clustering, for instance is an iterative clustering process, whereby cluster objects are joined together based on a distance measure between the elements within the clusters. All elements begin in their own clusters and and are joined until the desired number of output clusters has been reached. A common distance measure for joining clusters together is the *complete link* method, which assesses closeness on the basis of the most distant elements in two clusters *X* and *Y*, in order to avoid the merging of two clusters based on only two single elements from each set being close. The distance D(X, Y) between clusters *X* and *Y* is defined in eq. 4.1.5, where *X* and *Y* are two sets of elements or clusters and d(x, y) is the distance between elements  $x \in X$  and  $y \in Y$ .

$$D(X,Y) = \max_{x \in X, y \in Y} d(x,y)$$
(4.1.5)

## Adjusted Rand Index for Evaluation of Clustering

In addition to visual clustering that gives more of an intuition of separation between two sets, a clustering result can be evaluated by comparing two different partitions of a finite set of objects, namely the clustering obtained and the ideal clustering. For this purpose, we can employ the *adjusted Rand Index* (Hubert and Arabie 1985), which is the corrected-for-chance version of the *Rand Index*. Given a set *S* of *n* elements, and two clusterings of these points, *U* and *V*, defined as  $U = \{U_1, U_2, \ldots, U_r\}$  and  $V = \{V_1, V_2, \ldots, V_s\}$  with  $a_i$  and  $b_i$  as the number of objects in cluster  $U_i$  and  $V_i$  respectively. The overlap between U and V can

be summarized in a contingency table 4.1.6. where each entry  $n_{ij}$  denotes the number of objects in common between  $U_i$  and  $V_j : n_{ij} = |U_i \cap V_j|$ .

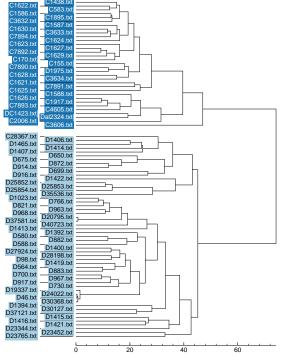
$$\begin{bmatrix} U V & V_1 & V_2 & \dots & V_s & Sums \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_1 & & & \\ U_r & & \\ Sums & & \\ Sums & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_1 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & & \\ U_2 & & & \\ U_1 & & \\$$

The adjusted form of the *Rand Index* is defined in eq. 4.1.7 and more specifically given the contingency table 4.1.6 in eq. 4.1.8, where  $n_{ij}$ ,  $a_i$ ,  $b_j$  are values from the contingency table.

$$AdjustedIndex = \frac{Index - ExpectedIndex}{MaxIndex - ExpectedIndex}$$
(4.1.7)

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] / \binom{n}{2}}{\frac{1}{2} [\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}] - [\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}] / \binom{n}{2}}$$
(4.1.8)

Figure 4.1.1: Dendrogram 'complete link' of dissimilarity Matrix on the basis of 300 input terms of Dickens and Collins.



The index is bounded between [-1,1], with 0 being the expected value and 1 the highest positive correlation between two different clusterings. For illustration of using the two methods presented above, we consider an example of pairwise comparison of documents of a dataset of  $Dickens \cup Collins$ , with 55 documents belonging to Dickens and 31 to Collins. This yields a 86 x 86 dissimilarity matrix containing all pairwise comparisons of documents in the set. Figure 4.1.1 depicts an example dendrogram showing clustering

based on a dissimilarity matrix with distances computed using the *complete link* measure. The *adjusted Rand Index* corresponding to the clustering in figure 4.1.1 is 0.82, so very close to the ideal separation, which is also confirmed, when we consider the small number of misclassifications (3 for Dickens and 1 for Collins).

## 4.1.3 Profile Consistency

Since characteristic terms of an author should be fairly consistent and independent of the exact sample of his documents, we expect a sound method for characteristic term selection to be able to return a substantial overlap of terms on each iteration of cross-validation. For this purpose, we monitor individual cross-validation profiles, i.e. given that a particular document is removed from the training corpus, we keep the exact list of terms identified on the basis of the new training set that is basis for that iterations' author profile. The assumption here is that leaving out different documents of an author should not lead to a vast difference in the term list if the method under investigation is in fact able to detect distinct stylistic elements of an author.

If the terms selected after each iteration differed due to choice of a different author sample, the method would not detect distinct terms of an author and the process would be rather unstable and validity of the characteristic terms in general would be questionable. In order to test for consistency of term choice between iterations, we keep track of all author's profiles and compute their intersection. Despite our previous pre-selection, as for instance in the case of *representative* and *distinctive* terms, here we use the complete set for each author, since consistency is solely based on the intersection of all profiles given different iterations in cross-validation. Thus, we compute the overall intersection of all profiles given *n* number of cross-validation iterations as defined in eq. 4.1.9.

However, using this method, we are not measuring the degree of agreement with respect to profile length and number of intersections. The more terms each list holds and the more individual lists are intersected, the less likely becomes a high degree of agreement. Although should there be in fact a high consensus among individual profiles, even a large number of intersections should retain a substantial number of common terms.

$$\cap Profile = Profile_1 \cap Profile_2 \cap \dots \cap Profile_n \tag{4.1.9}$$

Table 4.1.2 shows an example of intersecting individual profiles of Dickens for 13 iterations. Column two lists the simple length of each list regardless of the number of terms intersecting and column three then shows how many common terms are left after the intersection with the previous iterations' lists. Since single documents do differ with regard to the frequency of terms, slight deviations are to be expected. In this example, the length varies about 1-2 terms per list. Considering the high number of terms left after each intersection, the changes are very slight.

|           | 1            |                |                          |
|-----------|--------------|----------------|--------------------------|
| iteration | Doc. removed | Profile length | Terms after intersection |
| 1         | D1023        | 52             | 52                       |
| 2         | D1392        | 53             | 51                       |
| 3         | D1394        | 50             | 50                       |
| 4         | D1400        | 51             | 50                       |
| 5         | D1406        | 53             | 50                       |
| 6         | D1407        | 52             | 50                       |
| 7         | D1413        | 52             | 50                       |
| 8         | D1414        | 49             | 49                       |
| 9         | D1415        | 55             | 49                       |
| 10        | D1416        | 53             | 49                       |
| 11        | D1419        | 52             | 49                       |
| 12        | D1421        | 52             | 49                       |
| 13        | D1422        | 52             | 49                       |
| mean      |              | 52             | 49                       |
| sd        |              | 1.5            | 1.0                      |

Table 4.1.2: Testing profile consistency by intersecting each new profile of an author by the intersection of the previous ones.

#### 4.2 EVALUATION OF DICKENS' TERMS

In this section, we evaluate the three different models proposed earlier on our datasets. In order to ensure comparability between models, we aim to take the same input terms, when possible.

Section 4.2.1 recounts some findings of earlier experiments that influence our choice in parameters for the main evaluation, further in section 4.2.2 we explain differences in evaluation of author profiles of the two methods employed. In section 4.2.3, we consider the first dataset, *DickensCollinsSet1*, and the second dataset, *DickensCollinsSet2*, for all three models. In section 4.2.4, we then attend to the third dataset of *DickenWorldSet*. Finally, in section 4.3, we discuss our results in comparison to the previous work on Dickens' style and close with a general overview of contribution and future work.

## 4.2.1 Characteristic Term Experiments

In order to better comprehend how the different parameters, such as term input size or number of terms in profiles affect the model performance and results, we consider these influences on our methods and with respect to our different models. Generally, for each profile, we would like a substantial number of discriminatory terms, e.g. about 50-100 to make estimation reliable for later interpretation.

However, since all our models return ranked profiles, the more terms we extract the less discriminating the profile becomes, so that results may deteriorate. This dilemma is especially relevant for the first model of *Representativeness & Distinctiveness* with respect to comparing profiles, as we generally need to extract more terms to ensure that we obtain sufficiently frequent ones.

#### Factors Influencing Representative and Distinctive Terms

Judging from previous experiments, the joined value representing the degree of *Representativeness & Distinctiveness* mainly relies on the sample of documents for the author and the opposing set. After having estimated the representativeness of a term, highly representative terms are chosen from this pool depending on the distinctiveness of the term, which depends on the comparison set. Given that the document set is large enough,

leaving out some documents should not have a considerable effect on the highest ranked terms, since the measure places a lot of emphasis on consistency.

In contrast, increasing the number of input terms does not change the degree of *Representativeness & Distinctiveness* of individual terms, but has an impact on the ranking, as previously higher ranked terms are occasionally shifted downwards and elements are inserted if they are more representative and distinctive. Increasing the input size should improve the terms in the profile regarding discrimination ability, as more terms are tested for potential suitability.

However, this presents an issue with respect to testing author profiles on the basis of frequency, since the more infrequent terms are considered, the more infrequent terms are likely to be included in the final profile.

## Factors Influencing Characteristic Terms of ICA Models

The effects of the sample of input terms to the ICA models is more subtle, as ICA tries to find common characteristic deviations over terms in the different documents and then build concepts accordingly. In addition, ICA is restricted by the term-document ratio and the number of document samples directly determines the number of possible input terms. If the ratio grows too large the matrix becomes singular and components cannot longer be estimated.

Previous experiments have shown that estimation of components given a document set size of 47 to 80 documents performs best with about 1500 input terms. Additional experiments on different frequency strata indicated that removing the 50-70 most frequent terms of the 1500 most frequent terms positively influences both estimation and later profile performance. The exact number of terms to be removed should be subject to closer experiments, since obviously we would like to retain as many very frequent terms as possible. We attribute the better performance to the fact that for the input terms to ICA models, we use only relative frequency weighting as opposed to smoothing over larger frequencies using logarithm. Were we to use logarithm additionally, interpretation of the ICA results would be considerably complicated.

Also, we found that keeping the number of to-be-extracted components at about 47-55 components even with a larger document size substantially improves performance, which might be attributed to the fact that on increasing document size the number of theoretical concepts stays relatively stable. Due to time constraints, we have not exhausted all experiments with respect to combinations of factors and how they influence the final result. The following evaluation is based on approximations satisfying most of the current criteria.

#### 4.2.2 Differences in Evaluation of Representativeness & Distinctiveness vs. ICA

The two methods employed here, *Representativeness & Distinctiveness* and *Independent Component Analysis* differ in one basis characteristic, being supervised and using class labels for term selection opposed to being unsupervised without reference to information about class membership. This property causes differences in the way we perform the evaluation of author profile histograms of each method.

EVALUATION OF TERMS IN ICA Since *Independent Component Analysis* is unsupervised and does not take class labels into account for determining the distribution of terms over components, evaluation can be done on ICA weights directly. For cross-validation, we first compute the independent components for the complete set. Then, depending on the type of cross-validation, for each iteration we remove one or more documents from the document-component matrix, compute author profiles on the basis of the training set and then evaluate on the test documents. This has the advantage, that we compare ICA weights directly to ICA weights and profile distance evaluation should be valid.

EVALUATION OF REPRESENTATIVE AND DISTINCTIVE TERMS The choice of representative and distinctive terms is on the basis of the class labels, which renders an approach like the previous one for ICA impossible. Instead, we use the ranked list of representative and distinctive values for terms as basis for relative histogram comparison. This solution is far from being ideal, because these scores do not necessarily correspond to the relative frequencies of the respective terms, but rather consistency in term weights over a document set. A term could have a lower frequency, but still be awarded a high representative and distinctive value, simply because it is constant over many documents, while being inconsistent or consistent with a different frequency for the comparison set.

To some extent, this issue is alleviated by our excluding infrequent terms for an author, but there still might be irregularities resulting from this issue and evaluation for *Representativeness & Distinctiveness* on the basis of profile distances should be regarded with caution. Another aspect is that by removing the infrequent items, we may also remove highly representative and distinctive items, which are replaced by terms less discriminatory but more frequent.

## 4.2.3 Characteristic Terms of Dickens and Collins (1) and (2)

For the first experiment, we consider the *DickensCollinsSet1*, a 47 x 4999 document-by-term matrix that was introduced in section 3.1.1.

In order to be able to compare directly to the results in Tabata 2012, we consider the same input and use all terms as input when possible. For the first model of *Representativeness & Distinctiveness*, we use the full input feature set.

Since both ICA-based models are restricted by the document-term ratio, we cannot use all input features, but only a subset of 1500 terms to make estimation of components still valid. Thus, for strict comparison based on the sample of input features, only the first model is directly comparable to the results in Tabata 2012. The type of cross-validation is leave-five-out, so at each iteration, we remove five new documents from the set for testing the profiles.

In addition, we also briefly report on the results using the *DickensCollinsSet2*, that differs with respect to the data set and weighting scheme. Since results were not substantially different and also for reason of succinctness, we do not report on them in the same level of detail. However, all results are referenced alongside the ones conducted on the *DickensCollinsSet1*. For all experiments on the *DickensCollinsSet2*, the number of input terms was reduced to the 1500 most frequent terms, while removing the 70 most frequent terms.

### Representative & Distinctive Terms of Dickens vs. Collins

In order to compute the representative and distinctive terms for the *DickensCollinsSet1* matrix, we choose all 4999 input terms and set  $\alpha$  to 1.3. In experiments, this threshold was found to yield a sufficient number of terms in each profile. Thus, we discard all terms with scores  $< 1.3 \times (\mu + sd)$ , where  $\mu$  is the mean over all term values and *sd* is the standard deviation over the term values. For the second set of *DickensCollinsSet2*, due to using fewer input terms,  $\alpha$  is also lowered to 1.1.

Table 4.2.1 shows the results for testing both Dickens' and Collins' profile on Dickens' documents. Each iteration relates to a different profile for each author based on the current training set, given that five test documents of Dickens have been removed. *Dist.D.* and

*Dist.C.* respectively show the mean differences for the profiles of Dickens and Collins to the current test document on the basis of the terms contained in their individual profiles.

Consequently, all documents in one iteration are compared on the basis of same profile. Further, *Dist.C-Dist.D* computes the difference between the two mean differences given one test document. In this case, where test documents are Dickensian, we would like the difference to be positive based on the assumption that all Collins profiles should have a larger distance to an unseen Dickens document. The remaining values are the p-values from the t-test over the individual histogram differences from each profile to the test document and corresponding confidence intervals. Ideally, we would like the two histograms of profile-test differences to originate from two different distributions as a consolidation of choosing the correct closest profile.

With respect to the present results, these are not favourable, since the Collins profiles are consistently rated closer to all of Dickens' test documents. Correspondingly, all p-values are not significant, so there is no significant difference in mean.

Additionally, we compute a paired, one-tailed t-test over all mean differences from each profile for all test documents, i.e. comparing all values in *Dist.D.* to the ones in *Dist.C.*. The t-test over the mean differences yields a p-value of 1 (with a confidence interval of -0.0134 to *Inf*), thus given the null hypothesis that sample means are equal, obtaining a mean of the differences of -0.012 or greater is almost certain. These results in isolation strongly indicate a very unsuitable selection of terms in the profiles.

Our original assumption with respect to the profile comparisons was that we select the most characteristic terms for each author and on the basis of his best terms determine an unseen document's closeness. However, in this case one might suspect that closeness is not in fact accurately measured, which is the reason why we take a closer look at the comparisons. We argue that the terms in Dickens' profile are appropriate, but that their representative and distinctive value is simply less close to the relative frequency distribution than the terms in Collins' profile.

For this purpose, we compare the unseen Dickensian document to both Dickens and Collins as before, but do two comparisons using the same terms for both authors each time. Thus, we compare the unseen document to Dickens and Collins both on the basis of Collins' highest terms and on the basis of Dickens' highest terms, although on the basis of their respective representative and distinctive values for those terms. Comparing the mean distances for both authors to the unseen Dickens document on the basis of Collins' terms returns mean distances of 0.015 and 0.015 and similarly, the mean distances on the basis of Collins' terms is 0.029 and 0.029.

If Collins' profile was truly closer to the unseen Dickens' document, Dickens should still not be competitive using the same terms. This strongly indicates, that successful terms are rather influenced by a representative and distinctive value close to the general relative frequency rather than true similarity. It leads us to believe that the current evaluation scheme is not measuring authorship accurately.

With regard to the Collins' test documents, the results are slightly more favourable, as shown in table 4.2.2, which is also supporting our previous analysis. All test documents are rated closer to the Collins' profiles, which is confirmed by significant p-values indicating a true difference in mean between all profile-test instances in favour of Collins. The model evaluation using a paired t-test comparing profile mean differences to the test document is also significant with a p-value less than 0.001. The evaluation on the basis of the *DickensCollinsSet2* in table B.1.1 and table B.1.2 shows a very similar result with respect to author profile comparisons.

However, if we consider the last column showing the *adjusted Rand Index*, the results for all iterations are rather positive and thus inconsistent with the earlier findings of unsuitable characteristic markers of Dickens. The clustering is performed on the basis of representative

Table 4.2.1: Representativeness & Distinctiveness on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles.

| Clustering  | Author Profile Comparison         |         |                 |         |         |                       |                     |  |
|-------------|-----------------------------------|---------|-----------------|---------|---------|-----------------------|---------------------|--|
| adjust.Rand | conf.interval (lower/upper bound) | p-value | (Dist.C-Dist.D) | Dist.C. | Dist.D. | Test Doc.             | Iteration Test Doc. |  |
| 0.8         | -0.0300 Inf                       | 0.94    | -0.0145         | 0.0145  | 0.0291  | D <sub>33</sub> _SB   | 1                   |  |
|             | -0.0280 Inf                       | 0.94    | -0.0137         | 0.0145  | 0.0282  | D <sub>36</sub> _PP   |                     |  |
|             | -0.0280 Inf                       | 0.93    | -0.0131         | 0.0150  | 0.0281  | D <sub>37</sub> a_OEP |                     |  |
|             | -0.0271 Inf                       | 0.94    | -0.0131         | 0.0142  | 0.0273  | D <sub>37</sub> b_OT  |                     |  |
|             | -0.0269 Inf                       | 0.93    | -0.0129         | 0.0145  | 0.0273  | D38_NN                |                     |  |
| 0.8         | -0.0268 Inf                       | 0.94    | -0.0130         | 0.0136  | 0.0266  | D40a_MHC              | 2                   |  |
|             | -0.0271 Inf                       | 0.94    | -0.0133         | 0.0135  | 0.0267  | D40b_OCS              |                     |  |
|             | -0.0266 Inf                       | 0.94    | -0.0128         | 0.0135  | 0.0263  | D <sub>41</sub> _BR   |                     |  |
|             | -0.0268 Inf                       | 0.92    | -0.0125         | 0.0142  | 0.0267  | D <sub>42</sub> AN    |                     |  |
|             | -0.0252 Inf                       | 0.95    | -0.0125         | 0.0138  | 0.0263  | D <sub>43</sub> _MC   |                     |  |
| 0.8         | -0.0148 Inf                       | 0.66    | -0.0030         | 0.0177  | 0.0207  | D46a PFI              | 3                   |  |
|             | -0.0146 Inf                       | 0.68    | -0.0032         | 0.0168  | 0.0200  | D46b DS               | 5                   |  |
|             | -0.0145 Inf                       | 0.69    | -0.0033         | 0.0168  | 0.0201  | D <sub>49</sub> _DC   |                     |  |
|             | -0.0151 Inf                       | 0.69    | -0.0034         | 0.0171  | 0.0206  | D <sub>51</sub> CHE   |                     |  |
|             | -0.0148 Inf                       | 0.68    | -0.0033         | 0.0169  | 0.0202  | D52_BH                |                     |  |
| 0.9         | -0.0256 Inf                       | 0.94    | -0.0125         | 0.0145  | 0.0270  | D54_HT                | 4                   |  |
|             | -0.0260 Inf                       | 0.94    | -0.0128         | 0.0144  | 0.0273  | D55 LD                |                     |  |
|             | -0.0277 Inf                       | 0.93    | -0.0133         | 0.0147  | 0.0279  | D <sub>5</sub> 6_RP   |                     |  |
|             | -0.0280 Inf                       | 0.95    | -0.0140         | 0.0142  | 0.0282  | D <sub>59</sub> _TTC  |                     |  |
| 0.8         | -0.0275 Inf                       | 0.93    | -0.0131         | 0.0149  | 0.0280  | D6oa UT               |                     |  |
|             | -0.0332 Inf                       | 0.98    | -0.0186         | 0.0119  | 0.0305  | D6ob GE               | 5                   |  |
|             | -0.0321 Inf                       | 0.99    | -0.0183         | 0.0118  | 0.0301  | D64_OMF               | 5                   |  |
|             | -0.0318 Inf                       | 0.98    | -0.0179         | 0.0119  | 0.0298  | D70_ED                |                     |  |
|             |                                   |         | -0.0117         | 0.0145  | 0.0262  | mean                  |                     |  |
|             |                                   |         | 0.0049          | 0.0016  | 0.0034  | sd                    |                     |  |
|             |                                   |         | 0.0010          | 0.0003  | 0.0007  | SE                    |                     |  |

and distinctive terms of both author profiles, but based on the original relative frequency input matrix, which makes all weights comparable. Since clustering also indicates that separation ability of the two author sets on the basis of terms in both profiles is high, one may consider, whether the current evaluation actually correctly measures author profile distances.

In figure 4.2.1, we can observe the dendrogram computed on the basis of representative and distinctive terms of the 4th iteration for both authors, which shows no misclassifications and figure B.1.1 shows the dendrogram for *DickensCollinsSet2* also showing only one misclassified Collins document.

As a third measure, we consider profile consistency of both profiles over all iterations to evaluate how much agreement exists between different profiles of one author's set. Table 4.2.3 indicate a fair agreement for Dickens with a mean profile length of 354 terms and a profile intersection of 244 terms over 9 iterations. Table 4.2.4 reports a mean length of Collins of 336 terms, while profile agreement is on 209 terms.

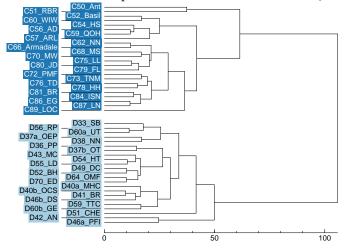
Profile consistency of the *DickensCollinsSet2* is shown in tables 4.2.5 and 4.2.6 and also here, agreement over both author profiles seems fair. The intersecting terms over all profiles are representative and and distinctive for the respective author, but not all of them are also frequent. This can also be observed in the fact, that both authors share a number of terms, such as *upon*, *first*, *such*, where there are probably large differences, either high frequency for a term in one author and low frequency for the other or vice versa.

If we consider the representative and distinctive and frequent terms for each author that form the basis for the profile evaluation, we observe a discrepancy with respect to the

Table 4.2.2: Representativeness & Distinctiveness on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles.

|           | Author Profile Comparison |         |         |                 |         |                                   |             |
|-----------|---------------------------|---------|---------|-----------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc.                 | Dist.D. | Dist.C. | (Dist.C-Dist.D) | p-value | conf.interval (lower/upper bound) | adjust.Rand |
|           | C50_Ant                   | 0.0332  | 0.0118  | -0.0214         | 0.02    | 0.0046 Inf                        |             |
|           | C51_RBR                   | 0.0320  | 0.0122  | -0.0198         | 0.02    | 0.0037 Inf                        |             |
| 6         | C52_Basil                 | 0.0284  | 0.0110  | -0.0174         | 0.02    | 0.0034 Inf                        | 0.8         |
|           | C <sub>54</sub> _HS       | 0.0282  | 0.0114  | -0.0168         | 0.02    | 0.0033 Inf                        |             |
|           | C56_AD                    | 0.0285  | 0.0110  | -0.0175         | 0.02    | 0.0035 Inf                        |             |
|           | C <sub>57</sub> _ARL      | 0.0289  | 0.0113  | -0.0176         | 0.02    | 0.0035 Inf                        |             |
|           | C <sub>59</sub> _QOH      | 0.0287  | 0.0110  | -0.0177         | 0.02    | 0.0037 Inf                        |             |
| 7         | C6o_WIW                   | 0.0260  | 0.0138  | -0.0122         | 0.06    | -0.0010 Inf                       | 0.91        |
|           | C62_NN                    | 0.0266  | 0.0136  | -0.0130         | 0.05    | -0.0001 Inf                       |             |
|           | C66_Armadale              | 0.0265  | 0.0138  | -0.0128         | 0.06    | -0.0004 Inf                       |             |
|           | C68_MS                    | 0.0254  | 0.0143  | -0.0110         | 0.07    | -0.0016 Inf                       |             |
|           | C70_MW                    | 0.0265  | 0.0142  | -0.0123         | 0.06    | -0.0009 Inf                       |             |
| 8         | C72_PMF                   | 0.0362  | 0.0144  | -0.0218         | 0.02    | 0.0038 Inf                        | 0.83        |
|           | C73_TNM                   | 0.0375  | 0.0143  | -0.0232         | 0.02    | 0.0046 Inf                        |             |
|           | C <sub>75</sub> _LL       | 0.0368  | 0.0145  | -0.0223         | 0.03    | 0.0036 Inf                        |             |
|           | C76_TD                    | 0.0378  | 0.0140  | -0.0237         | 0.02    | 0.0046 Inf                        |             |
|           | C <sub>7</sub> 8_HH       | 0.0369  | 0.0144  | -0.0225         | 0.02    | 0.0043 Inf                        |             |
| 9         | C79_FL                    | 0.0359  | 0.0154  | -0.0205         | 0.03    | 0.0022 Inf                        | 0.8         |
|           | C8o_JD                    | 0.0359  | 0.0153  | -0.0206         | 0.03    | 0.0024 Inf                        |             |
|           | C81_BR                    | 0.0372  | 0.0150  | -0.0223         | 0.02    | 0.0040 Inf                        |             |
|           | C84_ISN                   | 0.0368  | 0.0152  | -0.0216         | 0.03    | 0.0031 Inf                        |             |
|           | C86_EG                    | 0.0366  | 0.0153  | -0.0213         | 0.03    | 0.0024 Inf                        |             |
|           | mean                      | 0.0321  | 0.0135  | -0.0186         |         |                                   |             |
|           | sd                        | 0.0047  | 0.0016  | 0.0040          |         |                                   |             |
|           | SE                        | 0.0010  | 0.0003  | 0.0009          |         |                                   |             |

Figure 4.2.1: *DickensCollinsSet1*. Clustering on representative and distinctive terms of 4th iteration with "complete link" method based on the 4th iteration.



separation of the terms. Both authors have *upon* as a high ranking term in their profiles, where for Collins the weight is 1.8 and for Dickens it is 1.5.

Even though *upon* is more representative for Collins it is allocated to Dickens' profile, because the term is generally more frequent for Dickens and we presume that a number of words follow this scheme. Additionally, the number of base terms in each profile is quite

Table 4.2.3: Profile consistency over nine iterations and 56 of the 244 intersecting representative and distinctive terms for Dickens based on the *DickensCollinsSet1*.

| Dickens' most prominent markers                |           |                |                          |
|------------------------------------------------|-----------|----------------|--------------------------|
| 1                                              | Iteration | Profile length | Terms after intersection |
| +upon, being, but, much, so, though, such, and |           |                |                          |
| -first, discovered, produced, only,            | 1         | 350            | 350                      |
| left, resolution, future,                      | 2         | 355            | 281                      |
| letter, words, attempt,                        | 3         | 353            | 264                      |
| return, end, serious,                          | 4         | 347            | 256                      |
| followed, wait, events, suddenly,              | 5         | 346            | 252                      |
| later, news, lines, advice,                    | 6         | 362            | 250                      |
| absence, chance, written,                      | 7         | 354            | 246                      |
| position, happened, placed,                    | 8         | 350            | 244                      |
| enough, second, failed,                        | 9         | 365            | 244                      |
| waited, hesitated, opened,                     | mean      | 354            | 265                      |
| patience, questions, met, risk,                | std.      | 6              | 34                       |
| moment, result, offered, conduct,              |           | -              |                          |
| inquiries, heard, entirely, speaking,          | SE        | 2              | 11                       |
| 1 , 1 0                                        |           |                |                          |
| waiting, useless, discover                     |           |                |                          |

Table 4.2.4: Profile consistency over nine iterations and 56 of the 249 intersecting representative and distinctive terms for Collins based on the *DickensCollinsSet1*.

| Collins' most prominent markers                     |           |                |                          |
|-----------------------------------------------------|-----------|----------------|--------------------------|
| +first, only, discovered, left, produced, followed, | Iteration | Profile length | Terms after intersection |
| placed, return, words, resolution, end, second, to, | 1         | 343            | 343                      |
| enough, attempt, suddenly                           | 2         | 338            | 289                      |
| -upon, so, being,                                   | 3         | 341            | 265                      |
| such, very, much, many,                             | 4         | 344            | 254                      |
| though, air, presently,                             | 5         | 351            | 232                      |
| difficult, fire, leaning, but,                      | 6         | 330            | 222                      |
| shaking, indeed, and, returned,                     | 7         | 322            | 218                      |
| a, looking, indifferent,                            | 8         | 329            | 213                      |
| would, busy, particularly,                          | 9         | 328            | 209                      |
| brought, greater, beside, down,<br>pair, or, with,  | mean      | 336            | 249                      |
| bless, great, strong,                               | std.      | 9              | 44                       |
| grown, usually, pretty, carried,                    | SE        | 3              | 15                       |
| observed, like                                      |           |                |                          |

large, because only a few will be rated as frequent for an author compared to the opposing set and for a reliable profile evaluation a list of at least 40 terms is advisable. Therefore, we have to retrieve enough general terms to have sufficient terms for profile histogram evaluation, as otherwise it might not be a reliable result.

In this case, unfortunately, the lower ranked but more frequent terms will be given preference and ascend in the ranking, but these have not the same validity as more representative and distinctive though more infrequent terms. For this reason, the evaluation on the basis of representative and distinctive scores is unlikely to be an accurate measure of the *Representativeness & Distinctiveness* method and alternatives should be explored.

## ICA on Dickens vs. Collins

Previous experiments showed that ICA performed better and more consistently, if the most frequent terms were excluded from the input terms, which motivated us to remove

| 1<br>2<br>3<br>4 | 180<br>185<br>192                                                      | 180<br>160                                                                                                               |
|------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 3                | 2                                                                      |                                                                                                                          |
| •                | 192                                                                    |                                                                                                                          |
| 4                |                                                                        | 152                                                                                                                      |
| 4                | 194                                                                    | 150                                                                                                                      |
| 5                | 171                                                                    | 148                                                                                                                      |
| 6                | 172                                                                    | 145                                                                                                                      |
| 7                | 169                                                                    | 145                                                                                                                      |
| 8                | 171                                                                    | 145                                                                                                                      |
| 9                | 167                                                                    | 144                                                                                                                      |
| 10               | 182                                                                    | 143                                                                                                                      |
| 11               | 170                                                                    | 139                                                                                                                      |
| 12               | 187                                                                    | 139                                                                                                                      |
| 13               | 169                                                                    | 139                                                                                                                      |
| 14               | 180                                                                    | 139                                                                                                                      |
| mean             | 178                                                                    | 148                                                                                                                      |
|                  |                                                                        | 140                                                                                                                      |
| SE               | 9<br>2                                                                 | 3                                                                                                                        |
|                  | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>mean<br>sd | 4 194<br>5 171<br>6 172<br>7 169<br>8 171<br>9 167<br>10 182<br>11 170<br>12 187<br>13 169<br>14 180<br>mean 178<br>sd 9 |

Table 4.2.5: Profile consistency over 14 iterations and 56 of the 139 intersecting representative and distinctive terms for Dickens on *DickensCollinsSet2*.

Table 4.2.6: Profile consistency over 14 iterations and 56 of the 127 intersecting representative and distinctive terms for Collins on *DickensCollinsSet2*.

|                                                | Iteration | Profile length | Terms after intersection |
|------------------------------------------------|-----------|----------------|--------------------------|
|                                                | 1         | 209            | 209                      |
|                                                | 2         | 199            | 184                      |
| Collins' prominent markers                     | 3         | 207            | 179                      |
| +followed, return, wait, under, attempt        | 4         | 207            | 167                      |
| produced, answer, since, longer, discovered,   | 5         | 221            | 162                      |
| leave, place, heard, already, hesitated,       | 6         | 205            | 155                      |
| follow, possessed, placed, words, moment       | 7         | 212            | 154                      |
| -upon, many, much, very, down,                 | 8         | 209            | 154                      |
| indeed, such, being, great, though,            | 9         | 209            | 154                      |
| heaven, deal, off, often, bless,               | 10        | 200            | 143                      |
| like, always, fire, times, brought,            | 11        | 201            | 134                      |
| air, company, , returned, carried, looking,    | 12        | 197            | 130                      |
| full, wear, glad, hot, shoes,                  | 13        | 211            | 128                      |
| fact, observed, nor, although, bright, comfort | 14        | 205            | 127                      |
|                                                | mean      | 207            | 156                      |
|                                                | sd        | 6              | 24                       |
|                                                | SE        | 2              | 6                        |

the first 70 terms and compute the profiles on the remaining 1430 terms. The number of to-be-estimated components is set to 47 for the *DickensCollinsSet1*.

Components for documents are chosen by computing the mean activity of a component over all documents and retaining its contribution only in those documents where its activity is above its own mean. Similarly, we retain a term for a component when its activity in that component is higher than its mean activity over all components. The weights are combined and terms are retained for a profile, when they lie above  $1.1 \times (\mu + sd)$ , where mean and standard deviation is over the unrestricted profile. For the *DickensCollinsSet2*, we set the number of to-be-estimated components to 50 and discard terms in the original profile at a level of 1.0.

Tables B.2.1 and B.2.2 show the results for testing on Dickens' and on Collins' documents respectively. All of Dickens' documents are consistently rated closer to the Dickens' profile and significant p-values indicating a difference in individual profile means additionally support these findings. The paired t-test confirms model validity with a p-value of 0.02 and a positive confidence interval of 0.002 to *Inf*, that reliably recognizes Dickensian documents. Regarding Collins' test documents, except for two cases, all are correctly identified as belonging to Collins. In three cases, there is no significant difference in mean of the two individual profile distributions. Interestingly, the two misclassified cases  $C_{50Ant}$  and  $C_{51_{RBR}}$  are exactly those that seemed to be outliers in the previous study of comparing Dickens and Collins (Tabata 2012). The overall model evaluation is favourable with a p-value of 0.02 and confidence interval of 0.0027 to *Inf*.

Table B.2.3 and table B.2.4 show the results for testing on the second dataset of Collins and Dickens, where testing on Dickens yields correct classifications with overall significant differences to the Collins profile in all except three cases, *D23344*, *D23765* and *DC1423*, which are two maybe slightly more unusual pieces of Dickens, namely *The Magic Fishbone* and *Captain Boldheart & the Latin-Grammar Master* and the shared Dickens and Collins piece, *No Thoroughfare*. Testing on unseen Collins pieces returns the same two misclassifications, *C238367* (*Rambles Beyond Railways*) and *C3606* (*Antonina*), but the paired t-test on the overall model performance yields significant values for both types of test documents.

Profile consistency over the different profiles are shown in table 4.2.7 and table 4.2.8, where Dickens' profiles have a mean length of 108 and agree on 55 terms over the nine iterations, while Collins' profiles have a mean length of 111 with 62 common terms.

|                                                     | Iteration | Profile length | Terms after intersection |
|-----------------------------------------------------|-----------|----------------|--------------------------|
| Dickens 'positive and negative markers              | 1         | 109            | 109                      |
| +upon, its, down, great, much, being,               | 2         | 122            | 87                       |
| come, such, though, like, then, many,               | 3         | 112            | 75                       |
| old, where, says, never, returned, head,            | 4         | 108            | 65                       |
| always, off, here, well, indeed                     | 5         | 100            | 55                       |
| -question, mind, position, us, end, place, herself, | 6         | 104            | 55                       |
| looked, enough, way, before, still, tell,           | 7         | 104            | 55                       |
| can, doctor, heard, answered, last, words,          | 8         | 104            | 55                       |
| moment, next., asked, back, lucilla,oscar,          | 9         | 106            | 55                       |
| own, left, letter, room, only, emily,<br>first      | mean      | 108            | 68                       |
| liist                                               | std.      | 6              | 19                       |

Table 4.2.7: ICA. Profile consistency over nine iterations, showing 55 negative and positive features shared by all of Dickens profiles on *DickensCollinsSet1*.

Table 4.2.9 and table 4.2.10 show profile consistency for Dickens and Collins on the *DickensCollinsSet2*. With respect to the previous analysis of representative and distinctive terms, it is notable that certain terms continue to crop up in the two author profiles in both analyses, such as *upon*, *first* and *such*. *Upon*, for instance is also rated frequent for Dickens and infrequent for Collins, as it has been done previously in the analyses of representative and distinctive terms.

Clustering is consistently at 0.83 for all iterations regardless of test document type. Figure 4.2.2 shows the dendrogram for clustering, which has two misclassifications and most fittingly these are the two Collins documents already conspicuous during profile evaluation. Figure B.2.1 shows the dendrogram for clustering on the basis of shared terms of iteration one for the second set with two misclassifications *C*238367 and *DC*1423, that also appeared in profile evaluation. Clustering for the second set is less stable, but has

Table 4.2.8: ICA. Profile consistency over nine iterations and showing 62 negative and positive features shared by all Collins profiles on *DickensCollinsSet*1.

| Collins 'positive and negative markers                                          | Iteration | Profile length | Terms after intersection |
|---------------------------------------------------------------------------------|-----------|----------------|--------------------------|
| +first, letter, only, asked, woman, room,                                       | 1         | 115            | 115                      |
| looked, words, own, back, answered,left,                                        | 2         | 110            | 108                      |
| still, moment, tell, myself, enough, can,                                       | 3         | 109            | 103                      |
| husband, again, wife, door, mind, life,                                         | 4         | 108            | 98                       |
| toward, spoke, heard, let, speak, answer,                                       | 5         | 104            | 87                       |
| leave, marriage                                                                 | 6         | 102            | 74                       |
| –any, martin, returned, people,                                                 | 7         | 115            | 68                       |
| indeed, pecksniff, quite, good, off, every,                                     | 8         | 120            | 64                       |
| where, like, tom, never, many, though,                                          | 9         | 114            | 62                       |
| then, young, some, these, gentleman, such,<br>much, its, sir, being, down, old, | mean      | 111            | 87                       |
| great, upon                                                                     | std.      | 6              | 20                       |

Table 4.2.9: ICA. Profile consistency over 14 iterations, showing 56 of 103 negative and positive features shared by all of Dickens profiles on *DickensCollinsSet2*.

|                                                                                | Iteration | Profile length | Terms after intersection |
|--------------------------------------------------------------------------------|-----------|----------------|--------------------------|
| Dickens 'positive and negative markers                                         | 1         | 234            | 234                      |
| +many, upon, often, though,<br>such, very, indeed, down,                       | 2         | 257            | 187                      |
| ago, much, round, heaven,                                                      | 3         | 253            | 149                      |
| bless, deal, off, bear,                                                        | 4         | 270            | 130                      |
| warm                                                                           | 5         | 260            | 118                      |
| -surprise, longer, possession,                                                 | 6         | 250            | 108                      |
| marriage, life, return, inquiries,                                             | 7         | 258            | 106                      |
| turned, decided, excuse, entered,                                              | 8         | 254            | 104                      |
| once, sudden, placed, serious,                                                 | 9         | 255            | 103                      |
| informed, failed, offered, anxiety,                                            | 10<br>11  | 249            | 103                      |
| absence, feeling, servant, sense,                                              | 11<br>12  | 245<br>254     | 103<br>103               |
| impression, followed, feel, address,                                           | 13        | 248            | 103                      |
| interval, interview, influence, explanation, visit, suspicion, result, person, | 14        | 248            | 103                      |
| plainly, spoke, hesitated, addressed                                           | mean      | 252            | 125                      |
| · · ·                                                                          | sd        | 8              | 40                       |

occasionally almost perfect separation according to the *adjusted Rand Index*. Thus, all tests were favourable with respect to the appropriateness of the identified characteristic markers.

### ICA with Representative and Distinctive Components on Dickens vs. Collins

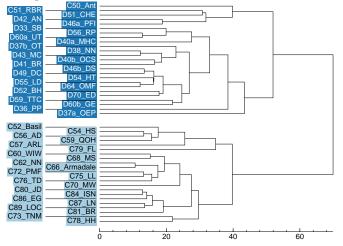
For the third model of ICA combined with *Representativeness & Distinctiveness*, we choose the same number of input terms, as for the previous ICA experiment, namely the 70 to 1500 most frequent features of the input matrix. Term selection for components also remains the same by selecting a term for a component if it lies above its individual mean activity over all components.

The selection of components for documents is different for this model, as we retain those components that are representative and distinctive for an author's set. The number of components are chosen according to a threshold multiplied by the mean over all representative and distinctive values over all components of a document set. This threshold is also dependent on the number of components, where extracting fewer components also

|                                                   | Iteration | Profile length | Terms after intersection |
|---------------------------------------------------|-----------|----------------|--------------------------|
|                                                   | 1         | 242            | 242                      |
| Collins 'positive and negative markers            | 2         | 246            | 239                      |
| +suddenly, wait, discovered, position, met,       | 3         | 240            | 231                      |
| attempt, already, words, waiting, produced,       | 4         | 243            | 230                      |
| enough, view, speaking, spoke, leave,             | 5         | 246            | 230                      |
| answer, heard, moment, resolution, led,           | 6         | 243            | 228                      |
| events, longer, later, motive, future,            | 7         | 247            | 228                      |
| speak, absence, still, waited, silence,           | 8         | 248            | 227                      |
| return, useless, suspicion, followed, possession, | 9         | 247            | 227                      |
| interests, stopped, discovery, placed, failed,    | 10        | 247            | 207                      |
| influence                                         | 11        | 227            | 177                      |
| -times, heaven, better, glad, though,             | 12        | 240            | 158                      |
| great, off, indeed, such, down,                   | 13        | 246            | 154                      |
| being, very, much, many, upon                     | 14        | 240            | 140                      |
|                                                   | mean      | 243            | 208                      |
|                                                   | sd        | 5              | 35                       |
|                                                   |           |                |                          |

Table 4.2.10: ICA. Profile consistency over 14 iterations, showing 56 of 140 negative and positive features shared by all of Collins profiles on *DickensCollinsSet2*.

Figure 4.2.2: *DickensCollinsSet1*. Clustering characteristic terms returned by ICA with "complete link" method based on the 4th iteration.



requires lowering the threshold. In this case, where we specify 47 components, we set the threshold to 1.0, which then effectively corresponds to the mean over all values.

For the second set, we chose 48 components, as previous tests showed this to yield good results and components are retained for each author set by at a level of  $0.4 \times$  the mean over the representative and distinctive values for the components of an author's set. For both datasets, we retain terms for each profile by taking the mean plus the standard deviation over the complete profile. Similar to before weights are combined to form unique profiles over the document sets and terms in profiles are retained if their absolute weight is above the mean over absolute activity plus the standard deviation over the profile multiplied by scalar 1.3.

Table B.3.1 and table B.3.2 show the results for testing on unseen Dickens documents and Collins documents respectively. For all Dickens test documents, all differences of Dickens' profile to the Collins' profile are significant, thus the Dickens' profile is comfortably winning

on all its documents. The t-test over mean differences is also highly significant with p < 0.00001 with a positive confidence interval of 0.0095 to *Inf*.

Regarding Collins' test documents in table B.3.2, we observe a similar development as in the previous ICA experiment. Two out of the three misclassified Collins documents are the documents,  $C_{50Ant}$  and  $C_{51RBR}$ . In these three cases, p-values are obviously not significant with respect to the greater mean assumption for the Dickens' profile. The t-test for model evaluation is still significant with a confidence interval of 0.0067 to *Inf*.

Table B.3.3 and table B.3.4 show the results for the second set, where results are quite similar as for using separate ICA on the same input matrix, where also  $D_{23344}$ ,  $D_{23765}$  and  $DC_{1423}$  were misclassified. For unseen Collins pieces, again  $C_{238367}$  and  $C_{3606}$  are misclassified, while all others are consistently closer to the correct profile. Model evaluation for both types of unseen documents using a paired t-test yield significant differences with p < 0.00001 and a confidence interval of 0.0029 to *Inf* for unseen Dickens mean differences and p < 0.0001 with an 0.0037 to *Inf* interval for unseen Collins mean differences.

Table 4.2.11: Combined ICA & RD. Profile consistency over nine iterations, showing 22 negative and positive features shared by all of Dickens profiles on *DickensCollinsSet1*.

|                                                                                                                                                                 | Iteration | Profile length | Terms after intersection |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------------------|
|                                                                                                                                                                 | 1         | 88             | 88                       |
|                                                                                                                                                                 | 2         | 89             | 53                       |
| Dickens 'positive and negative markers                                                                                                                          | 3         | 69             | 38                       |
| +upon, much, says, great, being, down,                                                                                                                          | 4         | 89             | 29                       |
| +upon, much, says, great, being, down,<br>then, boffin, off<br>–moment, door, words,<br>young, left, first, own, woman, only,<br>letter, looked, room, answered | 5         | 84             | 23                       |
|                                                                                                                                                                 | 6         | 92             | 23                       |
|                                                                                                                                                                 | 7         | 80             | 22                       |
|                                                                                                                                                                 | 8         | 82             | 22                       |
|                                                                                                                                                                 | 9         | 87             | 22                       |
|                                                                                                                                                                 | mean      | 84             | 36                       |
|                                                                                                                                                                 | std.      | 7              | 22                       |

Table 4.2.12: Combined ICA & RD. Profile consistency over nine iterations, showing 33 negative and positive features shared by all of Collins' profiles on *DickensCollinsSet1*.

| 1         |                                                   |                                                                                                                                                                                          |
|-----------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iteration | Profile length                                    | Terms after intersection                                                                                                                                                                 |
| 1         | 75                                                | 75                                                                                                                                                                                       |
| 2         | 80                                                | 65                                                                                                                                                                                       |
| 3         | 70                                                | 54                                                                                                                                                                                       |
| 4         | 84                                                | 52                                                                                                                                                                                       |
| 5         | 83                                                | 50                                                                                                                                                                                       |
| 6         | 85                                                | 46                                                                                                                                                                                       |
| 7         | 84                                                | 40                                                                                                                                                                                       |
| 8         | 83                                                | 36                                                                                                                                                                                       |
| 9         | 81                                                | 33                                                                                                                                                                                       |
| mean      | 81                                                | 50                                                                                                                                                                                       |
| std.      | 5                                                 | 14                                                                                                                                                                                       |
|           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>mean | 1       75         2       80         3       70         4       84         5       83         6       85         7       84         8       83         9       81         mean       81 |

Profile consistency for the profiles over different iterations are shown in table 4.2.11 and table 4.2.12. In this experiment, consistency is less for Dickens compared to the previous experiments, where of the mean profile length of 84 only 22 terms intersect on all profiles. Collins fares slightly better with a mean length of 81 and 50 intersecting terms. Tables 4.2.13

and 4.2.14 show profile consistency and intersecting terms for Dickens and Collins profile for the second set, where consistency is a little better.

| of 120 heguive and positive reduces shared by <u>an Diekens promes of Diekenseotimoterz</u> . |           |                |                          |  |
|-----------------------------------------------------------------------------------------------|-----------|----------------|--------------------------|--|
|                                                                                               | Iteration | Profile length | Terms after intersection |  |
|                                                                                               | 1         | 243            | 243                      |  |
| Dickens 'positive and negative markers                                                        | 2         | 252            | 192                      |  |
| +upon, many, such, much, being,                                                               | 3         | 245            | 169                      |  |
| deal, though, down, fact, nor,                                                                | 4         | 258            | 144                      |  |
| great, times, rather, half, short,                                                            | 5         | 246            | 142                      |  |
| glad, never, indeed, having, off,                                                             | 6         | 243            | 133                      |  |
| less, heaven                                                                                  | 7         | 258            | 130                      |  |
| –sense, marriage, feel,                                                                       | 8         | 250            | 128                      |  |
| silence, surprise, simply, approached, absence,                                               | 9         | 247            | 127                      |  |
| proved, addressed, life, spoken, servant,                                                     | 10        | 235            | 127                      |  |
| possession, sadly, information, placed, serious,                                              | 11        | 240            | 127                      |  |
| living, hesitation, seriously, second, customary,                                             | 12        | 246            | 127                      |  |
| curiosity, interval, event, entered, inquiries,                                               | 13        | 252            | 127                      |  |

14

mean

sd

245

247

6

126

146

34

| Table 4.2.13: Combined ICA & RD. Profile consistency over 14 iterations, and showing 56    |
|--------------------------------------------------------------------------------------------|
| of 126 negative and positive features shared by all Dickens profiles on DickensCollinsSet2 |

Table 4.2.14: Combined ICA & RD. Profile consistency over 14 iterations, showing 57 of 117 negative and positive features shared by all of Collins profiles on DickensCollinsSet1.

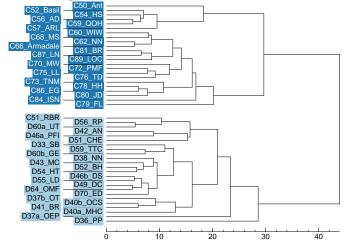
promise, control, opened, speak, decided,

discover

|                                              | Iteration | Profile length | Terms after intersection |
|----------------------------------------------|-----------|----------------|--------------------------|
|                                              | 1         | 250            | 250                      |
| Collins 'positive and negative markers       | 2         | 253            | 237                      |
| +position, wait, second, answered, leave,    | 3         | 238            | 189                      |
| leaving, advice, view, questions, met,       | 4         | 249            | 189                      |
| words, discovered, reached, later, question, | 5         | 246            | 180                      |
| answer, enough, offered, return, produced,   | 6         | 253            | 180                      |
| waiting, experience, asked, attempt, person, | 7         | 252            | 180                      |
| heard, speak, waited, language, end,         | 8         | 249            | 180                      |
| suddenly, chance, risk, led, customary       | 9         | 249            | 180                      |
| – deal, like, bless, great, off,             | 10        | 243            | 149                      |
| times, fact, whole, where, going,            | 11        | 242            | 129                      |
| always, rather, indeed, down, never,         | 12        | 243            | 127                      |
| though, being, glad, such, many              | 13        | 251            | 120                      |
| upon, much                                   | 14        | 246            | 117                      |
|                                              | mean      | 247            | 172                      |
|                                              | sd        | 5              | 41                       |

Notably, among the most characteristic reoccurring terms are again upon, first such, and many, which appeared also in previous experiments and thus seem to be good separators for the two authors. Clustering on the whole is occasionally slightly better than with using ICA separately. Figure 4.2.3 shows the dendrogram based on common terms of the 4th iteration, where one document of Collins is misclassified and ends up in the Dickens cluster. Figure B.3.1 shows the result of clustering on the 11th iteration for the second set, which shows one misclassified Dickensian document as belonging to Collins' documents, namely their shared piece, DC1423.

Figure 4.2.3: Clustering on combined ICA & RD characteristic terms on *DickensCollinsSet1* with "complete link" method on the 4th iteration.



As a preliminary conclusion to the Dickens vs. Collins comparison, we note that using different datasets and different models, there are certain terms that consistently appear with respect to comparing Dickens' and Collins' documents. The evaluation on profile distances for *Representativeness & Distinctiveness* was not successful and unlikely to be suitable in this particular setting.

With respect to our investigation into style, in particular whether there exists something distinctly measurable corresponding to a unique *fingerprint*, our results are encouraging, as different methods show considerable overlap in discriminatory terms. Our shared Dickens and Collins piece was conspicuous twice in clustering which might indicate overlaps in style that condemn it to reside at the border of the two author sets.

However, as we shall see in the following comparison using a larger reference set to oppose Dickens' set, the previous rather salient markers in comparing to Collins somewhat disappear, which confirms earlier assumptions, that the reference set exerts a considerable amount of influence over the characteristic markers that are chosen for an author.

## 4.2.4 Characteristic Terms of Dickens vs. World

In this part, we evaluate our models with respect to a wider document set and contrast Dickens with a reference corpus comprised of 18th and 19th century texts by different contemporary authors of that time. For all experiments, we take a subset of the original  $79 \times 4895$  matrix, namely again the first 1500 terms, leaving out the 70 most frequent ones.

#### Representative and Distinctive Terms of DickensWorldSet

For selecting representative and distinctive profiles using this larger document set, we choose representative and distinctive terms that lie above the threshold of mean + sd for each complete list. Table B.4.1 and B.4.2 show the results for profile and clustering evaluation. Unfortunately, the t-test failed due to too few frequent terms in the *World* profiles. Although, there are good discriminators found in the set, these are not frequent for the *World* set and since we only choose frequent representative and distinctive terms for profile evaluation, the comparison is not possible. This is undoubtedly also the reason why Dickens is rated closer to almost all test documents, the Dickensian ones and the *World set* ones.

Generally the *World set* agrees more on infrequent, discriminatory items with respect to Dickens than on frequent average ones, which might also be influenced by the input term sample. Clustering is slightly erratic with some higher ranked iterations, but on average it is rather low with about 0.44 for the *adjusted Rand Index*.

Table 4.2.15: Profile consistency over 15 iterations and 122 intersecting representative and distinctive terms for Dickens

| Dickens positive and negative markers               |           |                |                          |
|-----------------------------------------------------|-----------|----------------|--------------------------|
| +until, looking, quiet, air,window, corner,head,    |           |                |                          |
| round, being, state, presented, hard, remarkable,   |           |                |                          |
| off, expression, again, moment, anything, position, | Iteration | Profile length | Terms after intersection |
| night, shake, lighted, behind, holding,             | iteration | 0              |                          |
| house, sound, anybody, glance,back                  | 1         | 228            | 228                      |
| tight, eye, leaning                                 | 2         | 224            | 146                      |
| -given, use, till, return,                          | 3         | 230            | 137                      |
| able, determined, advice, than, give,               | 4         | 226            | 125                      |
| temper, entirely, nor, must,                        | 5         | 224            | 125                      |
| pleased, presence, only, things,                    | 6         | 239            | 123                      |
| visit, received, without, cannot,                   | 7         | 235            | 123                      |
| anxious, ashamed, therefore, however, judgment,     | 8         | 239            | 123                      |
| probably, affair, feel,                             | 9         | 234            | 123                      |
| promise, understanding, accept, hardly,             | 10        | 238            | 123                      |
| reason, longer, felt,neither, feeling,              | 11        | 221            | 122                      |
| did, advantage, stay, too,                          | 12        | 230            | 122                      |
| make, person, though, seeing,                       | 13        | 230            | 122                      |
| immediately, wishes, obliged, order,                | 14        | 232            | 122                      |
| can, disagreeable, yet,                             | 15        | 233            | 122                      |
| offer, fortune, nothing,                            | maan      | 201            | 100                      |
| proposal, distress, account, possible,              | mean      | 231            | 132                      |
| produced, wished, appear, expect, greatest,         | sd        | 6              | 27                       |
| own, talked, almost, thus, desire,                  | SE        | 1              | 7                        |
| necessity, need, confess, taste, discovered,        |           |                |                          |
| shall, talk, either, justice, also,                 |           |                |                          |
| condition, attended, husbands, thing,               |           |                |                          |

pain, pay,least, greatly, fit, possession

Dickens 'nositive and negative markers

When, considering profile consistency in table 4.2.15 and table 4.2.16, a curious phenomenon can be observed. Although Dickens' consistent terms do not include many body parts, they appear in plenty over the *World set*, e.g. *legs*, *faces*, *chin*, *face*, *heads*. However, consulting the list of frequent terms for both profiles, these are not frequent for the *World set* but still chosen for discrimination to the outside set, namely Dickens' set. The reason why they are not also listed for Dickens is that, even though single ones are highly rated on individual profiles, they do not appear among all of them, which is obviously a necessity to be among intersecting terms for an author.

## ICA on Dickens vs. World

For this single ICA experiment, we chose a lower number of components, since previous trials showed an improved performance on the larger reference set. Thus, we set the number of to-be-extracted components to 50 and discard terms in the profile at a level of 1.0. Tables B.5.1 and B.5.2 show the results for testing on unseen Dickens and Collins documents. Except for one document, *D699*, all of Dickens' test documents are rated closer to the Dickens profile. Using a paired t-test on the overall model performance yields

Table 4.2.16: Profile consistency over 15 iterations and 115 intersecting representative and distinctive terms for the World

## Worlds' positive and negative markers

-until, glancing, corner, head, smoking, legs, heavily, stopping, hat, dust, shaking, various, bar, staring, smoke, rubbing, tight, boys, lighted, faces, chin, state, glass, heres, returned, folded, chimney, remark, ashes, air, shining, pavement, heads, blue, staircase, mysterious, iron, red, boy, gloomy, shook, outside, gentleman, lying, ceiling, visitor, looking, window, crowd, inquired, streets, extent, floor, behind, asleep, whats, dark, devoted, reference, gradually, coat, spot, street, solitary, brick, roof, wall, bright, windows, gentlemen, arm, shadows, yard, door, cheerful, referred, knocked, visitors, breath, stairs, dull, softly, lights, hurried, wouldnt, pursued, sky, takes, round, through, repeated, beside, stopped, light, couldnt, expression, stare, thats, sits, clerks, shadow, breast, chair, hanging, night, hand, clock, asks, nod, leaves, office, chambers, awful, face, fire

| Iteration | Profile length | Terms after intersection |
|-----------|----------------|--------------------------|
| 1         | 165            | 165                      |
| 2         | 163            | 128                      |
| 3         | 186            | 122                      |
| 4         | 169            | 116                      |
| 5         | 195            | 116                      |
| 6         | 174            | 115                      |
| 7         | 185            | 115                      |
| 8         | 185            | 115                      |
| 9         | 181            | 115                      |
| 10        | 177            | 115                      |
| 11        | 172            | 115                      |
| 12        | 178            | 115                      |
| 13        | 174            | 115                      |
| 14        | 181            | 115                      |
| 15        | 176            | 115                      |
| mean      | 177            | 120                      |
| sd        | 9              | 13                       |
| SE        | 2              | 3                        |

significant results for unseen Dickens documents with p < 0.0001 and a confidence interval of 0.0036 to *Inf*.

Considering the reference set documents as test instances is less favourable, as 17 out of 55 are rated closer to Dickens' profile, but the overall model evaluation is still significant with p < 0.0001 and a 0.00093 to *Inf* confidence interval, which is shifting more towards a possibly zero difference in mean between the two samples.

Clustering is fairly high on all the Dickens test documents and on most iterations of the *World set*, while it is also occasionally very low for the *World set* and this could maybe be explained by the fact that leaving out certain documents upsets a certain balance and different, less discriminatory features are selected. Figure 4.2.4 then shows the clustering result based on the 14th iteration with only one document of Dickens misclassified.

Tables 4.2.17 and 4.2.18 show the consistency level and the consistent features for both author sets over the 15 iterations. Dickens' consistency is fair with a mean profile length of 245 terms and 109 intersecting terms. The *World set* on the other hand has a mean length of 240 terms per profile and only 74 of them are constant over all iterations.

Regarding the terms in Dickens' profile, we observe a number of body parts, e.g. *legs*, *faces*, *head*, *hands*, *chin*, *arm* and *hair*. In addition, there seem to be a large number of scene-setting terms, such as *smoking*, *glancing*, *looking* and *shaking*, that could be used in collocations describing the background situation, which were reported elsewhere as seemingly characteristic of Dickens' style (Mahlberg 2007). The *World set* has only a few positive terms, but a large number of infrequent terms, which correspond to some extent to Dickens' frequent terms. Thus, it seems that there is generally more agreement on what should be infrequent on average than frequent, which somewhat indicates that Dickens had an unusual style for his time. Generally, since we are comparing to Dickens' set, there

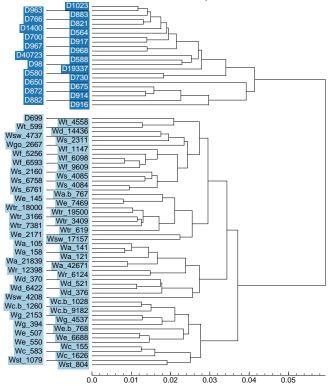


Figure 4.2.4: ICA on clustering on characteristic terms on *DickensWorldSet* with "complete link" method based on iteration 14.

is likely to be a strong correlation of Dickensian documents that dominate in concepts, because there is bound to be more overlap between his documents. Since the reference set is made up of individual documents, these are maybe unlikely to agree strongly on a lot of terms, but rather agree that they are not close to common Dickens concepts.

#### ICA with Representative and Distinctive Components on Dickens vs. World

For the last experiment using ICA with feature selection on components, we again lower the number of components to 55 from 79 possible ones, so concepts are less spread out and components for a document set are chosen at an  $\alpha$  level of 0.5. Again, we choose terms for profiles by taking the mean over the absolute values over the original profile and add the standard deviation.

Table B.6.1 and table B.6.2 show the results for testing on Dickens and *World* documents. The results are not as good as with the single ICA model, although the *World* test documents perform slightly better with only 14 out of 55 being misclassified. Both model evaluations using t-test are significant with p less than 0.0001 and a positive confidence interval of 0.0027 to *Inf* for Dickens' unseen documents and p less than 0.000 and a interval of 0.0011 to *Inf* for the *World* documents. However, clustering is highly irregular, even on Dickens' iterations, which were rather consistent with the ICA model. Figure 4.2.5 shows the clustering on the basis of one of the better profiles of iteration four, showing two misclassifications, namely *D699* and *D916*.

Considering consistency of terms over different iterations, using combined ICA and *Representativeness & Distinctiveness* seems also to perform slightly worse than the isolated ICA model. As shown in table 4.2.19, Dickens' mean profile length is 242 terms, but there

Table 4.2.17: ICA on *DickensWorldSet*. Feature Consistency over 15 iterations, showing 109 negative and positive features shared by all of Dickens profiles.

| Dickens 'positive and negative markers     |              |                  |                                    |
|--------------------------------------------|--------------|------------------|------------------------------------|
| +stopping, smoking, glancing, window,      |              |                  |                                    |
| legs, until, folded, head,                 |              |                  |                                    |
| glass, hat, various, bar,                  |              |                  |                                    |
| state, heavily, smoke, inquired,           |              |                  |                                    |
| faces, asleep, corner, boys,               | The sections | Des Classica ett | The second data in the second data |
| air, boy, breath, night,                   | Iteration    | Profile length   | Terms after intersection           |
| rubbing, referred, red, table,             | 1            | 246              | 246                                |
| behind, dust, remark, whispered,           | 2            | 225              | 150                                |
| knocked, hot, round, looking,              | 3            | 250              | 128                                |
| forth, ceiling, outside, floor,            | 4            | 240              | 111                                |
| heres, visitors, reference, stopped,       | 5            | 252              | 109                                |
| gloomy, hands, paper, key,                 | 6            | 250              | 109                                |
| again, lighted, breaking, chin,            | 7            | 247              | 109                                |
| existence, office, wall, dark,             | 8            | 244              | 109                                |
| arm, gradually, establishment, expression, | 9            | 250              | 109                                |
| staring, wet, softly, staircase,           | 10           | 244              | 109                                |
| chair, through, shook, shaking,            | 11           | 244              | 109                                |
| stars, lying, beside, hair,                | 12           | 247              | 109                                |
| looked, hard, wouldnt, brick,              | 13           | 245              | 109                                |
| bright, iron, bird, ashes,                 | 14           | 247              | 109                                |
| devoted, light, another, returned,         | 15           | 250              | 109                                |
| bottle                                     | mean         | 245              | 122                                |
| -however, desire, fortune,                 | sd           | 6                | 36                                 |
| only, obliged, ashamed, necessary,         |              | 0                | <u> </u>                           |
| did, visit, entirely, return,              |              |                  |                                    |
| receive, though, regard, own,              |              |                  |                                    |
| make, use, than, judgment,                 |              |                  |                                    |
| advice, longer, seeing, give,              |              |                  |                                    |
| given                                      |              |                  |                                    |

Table 4.2.18: ICA on *DickensWorldSet*. Feature Consistency over 15 iterations, showing 74 negative and positive features shared by all of World profiles.

|                                                                                 | Iteration | Profile length | Terms after intersection |
|---------------------------------------------------------------------------------|-----------|----------------|--------------------------|
| Worlds 'positive and negative markers                                           | 1         | 241            | 241                      |
| +given, give, return                                                            | 2         | 248            | 227                      |
| -opposite, inquired,                                                            | 3         | 243            | 225                      |
| boys, shining, yard, thats, outside,<br>through, drinking, shadow, blue, whats, | 4         | 240            | 219                      |
| lying, bottle, ceiling, softly, stare,                                          | 5         | 240            | 210                      |
| wall, lights, gloomy, gentleman, floor,                                         | 6         | 246            | 159                      |
| breath, chimney, glass, boy, asleep,                                            | 7         | 224            | 124                      |
| red, behind, eyed, repeated, remark,                                            | 8         | 244            | 111                      |
| spot, staircase, shook, forth, hair,                                            | 9         | 233            | 98                       |
| couldnt, shake, rubbing, state, various,                                        | 10        | 239            | 95                       |
| faces, upright, lighted, looking, folded,                                       | 11        | 249            | 90                       |
| mysterious,touching, smoke, chin, round,                                        | 12        | 230            | 87                       |
| wouldnt, window, glancing, hat, gradually,                                      | 13        | 246            | 81<br>                   |
| heres, arm, shaking, legs, air,                                                 | 14        | 245            | 78                       |
| bar, stopping, smoking, dust, staring,                                          | 15        | 239            | 74                       |
| corner, head, until, heavily                                                    | mean      | 240            | 141                      |
|                                                                                 | sd        | 7              | 65                       |

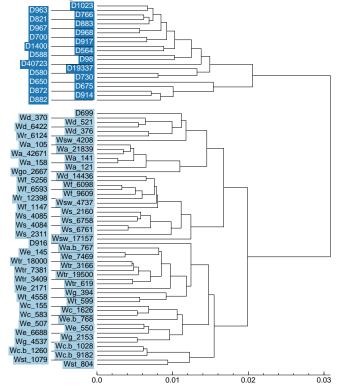


Figure 4.2.5: Clustering on combined ICA & RD characteristic terms on *DickensWorldSet* with "complete link" method based on iteration 4.

is only agreement on 84 of them. Table 4.2.20 shows that the *World* set has a mean length of 235 and with only 26 common terms. Regarding the shared and consistent terms, there is reasonable overlap with the previous two experiments considering body parts and scenic elements.

ICA models seem to do less well on mixed sets involving a variety of authors and seem to have difficulties in finding similarities in terms of joined characteristic deviations. Moreover, the set is ordered and documents of the same author are often extracted at the same time for testing. In order to investigate, whether this might be a factor, one could repeat the experiment with *leave-one-out* cross-validation. This second experiment using a larger reference set has clearly shown that the composition of the reference set is vital for detecting the *desirable* discriminatory elements of an author.

For Dickens, we obtain a large number of body parts, even in intersection of his profiles, as well as scenic elements that he might use for ongoing characterisation. For the *World set*, agreement is rather on average infrequent terms, i.e. absence of particular terms, such as body parts, than what is common for that time. However, since we we left out the 70 most frequent terms, this might influence the result as well in terms of size and which final terms are chosen for the *World set*.

In conclusion to this comparison, we tentatively note that isolated ICA performed best on the *World set*, although since we have not exhausted all parameter combinations, the combined model may also perform more consistently given another setting. Unfortunately, *representative & distinctive* terms could not be evaluated correctly here, but this last comparison finally confirmed the unsuitability of the current evaluation for *Representativeness* & *Distinctiveness* and identified the need to evaluate profile distances in a different way, which does not necessarily require frequent markers. There is considerable overlap in

| , 8 I 8 I I                                                                               |           |                |                          |
|-------------------------------------------------------------------------------------------|-----------|----------------|--------------------------|
|                                                                                           | Iteration | Profile length | Terms after intersection |
| Dickens 'positive and negative markers                                                    | 1         | 247            | 247                      |
| +legs, looking, until, stopping, head, dust,                                              | 2         | 227            | 136                      |
| arm, smoking, smoke, asleep, outside, glass,                                              | 3         | 241            | 108                      |
| slowly, folded, eyed, hat, round, heavily,                                                | 4         | 236            | 96                       |
| glancing, shaking, behind, bar, dark, window,                                             | 5         | 243            | 89                       |
| staring, roof, reference, through, heres, door,                                           | 6         | 238            | 86                       |
| couldnt, visitor, hands, knocked, lying, breath,                                          | 7         | 236            | 86                       |
|                                                                                           | 8         | 222            | 86                       |
| floor, wall, shoulder, staircase,faces, iron,<br>whats, wouldnt, face, tight, hand, eyes, | 9         | 241            | 84                       |
|                                                                                           | 10        | 242            | 84                       |
| confused, leaning, stopped, awful, holding, light,                                        | 11        | 242            | 84                       |
| turned, top, thats, corner, stare, brick,                                                 | 12        | 242            | 84                       |
| shake, turning, heavy, hair, lighted, air,                                                | 13        | 242            | 84                       |
| shook, chair, show, putting, beside, table,                                               | 14        | 242            | 84                       |
| ceiling                                                                                   | 15        | 242            | 84                       |
| -least, than, return, only, visit,                                                        |           |                |                          |
| pleased, able, entirely, till, though, given                                              | mean      | 239            | 101                      |
|                                                                                           | sd        | 7              | 43                       |
|                                                                                           |           |                |                          |

Table 4.2.19: Combined ICA & RD on *DickensWorldSet*. Profile consistency over 15 iterations, showing 84 negative and positive features shared by all of Dickens profiles.

Table 4.2.20: Combined ICA & RD on *DickensWorldSet*. Profile consistency over 15 iterations, showing 26 negative and positive features shared by all World profiles.

|                                                | Iteration | Profile length | Terms after intersection |
|------------------------------------------------|-----------|----------------|--------------------------|
|                                                | 1         | 242            | 242                      |
|                                                | 2         | 246            | 189                      |
|                                                | 3         | 241            | 168                      |
|                                                | 4         | 248            | 162                      |
| Worlds 'positive and negative markers          | 5         | 248            | 145                      |
| enough, beginning, expected, really, possible, | 6         | 231            | 94                       |
| wanted, might, before, living, relief,         | 7         | 263            | 68                       |
| surprise, difficulty,talk                      | 8         | 232            | 42                       |
| -takes, gentleman,                             | 9         | 236            | 37                       |
| bar, asleep, midst, hearts, bottle,            | 10        | 235            | 26                       |
| becomes, drink, heres, knows, fellow,<br>ears  | 11        | 235            | 26                       |
|                                                | 12        | 235            | 26                       |
|                                                | 13        | 235            | 26                       |
|                                                | 14        | 235            | 26                       |
|                                                | 15        | 235            | 26                       |
|                                                | mean      | 240            | 87                       |
|                                                | sd        | 8              | 74                       |

characteristic terms identified by our different models, as we can see a marked appearance of scene-setting elements and a large number of body parts.

#### 4.3 DISCUSSION AND INTERPRETATION OF CHARACTERISTIC TERM RESULTS

The experiments conducted in this work are still only tentative, as we have not exhausted all possibilities with respect to all combinations of parameters. What can be said in general is that the choice of characteristic terms of an author by a particular model are highly dependent on the comparison set. When opposing Dickens and Collins, we obtain mainly markers that seem well able to separate those two authors. This does not mean that the terms are necessarily very characteristic for each author individually, but they become characteristic when both Dickens and Collins are compared.

All methods showed difficulty in finding common frequent terms of the *World set*. What is also interesting is the extent to which the *Representativeness & Distinctiveness* model and the ICA-based models seem to agree on certain characteristic markers, given the fact that one method is supervised and the other unsupervised.

#### 4.3.1 Comparing to Tabata's Random Forests

One objective of this study was to compare to the previous work of Tabata 2012 using *Random Forests* classification also comparing Dickens to Collins and the larger reference set of the 18th/19th century.

**RANDOM FORESTS CLASSIFICATION** *Random Forests* were first introduced in Breiman 2001 and are based on ensemble learning from a large number of decision trees. Like common decision trees, *Random Forests* can be used for both classification and regression, but with the additional advantages of ensemble learning through combining different individual models.

Building a forest of decision trees is based on different attributes in the nodes, where attributes at each node are chosen with respect to information gain that support classification. Different trees have access to a different random subset of the feature set. Given a training corpus, a different subset of this training data is selected with replacement to train each tree, while the remainder is used to estimate error and variable importance. The fact that variable importance is provided alongside the result makes it suitable for style analysis, where not only the decision is of importance, but also the motivation that led to this decision.

COMPARING CHARACTERISTIC TERMS OF DICKENS VS. COLLINS In order to recall, which terms where identified by Tabata 2012, these are again displayed in table 4.3.1 and table 4.3.4. We generally compare to the consistent terms of the intersections identified by our models. For *Representativeness & Distinctiveness*, we use only the frequent terms for each author. The terms for ICA and ICA combined with representative and distinctive components are taken from the respective intersecting features over all iterations. All tables show the intersections on terms of our models and the ones described in Tabata 2012, given the same input matrices. As we can observe from table 4.3.2 and table 4.3.5, there is fair agreement for the first model, but even more agreement when comparing to single ICA terms, as shown in table 4.3.3 and table 4.3.6. For this comparison. we leave out terms for ICA and representative and distinctive components, since there were only few common terms, which seemed thus less interesting.

COMPARING CHARACTERISTIC TERMS OF DICKENS VS. WORLD Tabata's terms are shown in table 4.3.7 and our results for the three models in table 4.3.8, table 4.3.9 and table 4.3.10 respectively. There is considerably less overlap for all models, with the first model still sharing most terms.

# Table 4.3.1: Dickens' markers, when compared to Collins according to Tabata's work using Random Forests.

#### Dickens' markers

very, many, upon, being, much, and, so, with, a, such, indeed, air, off, but, would, down, great, there, up, or, were, head, they, into, better, quite, brought, said, returned, rather, good, who, came, having, never, always, ever, replied, boy, where this, sir, well, gone, looking, dear, himself, through, should, too, together, these, like, an, how, though, then, long, going, its

Table 4.3.2: Intersection of Dickens' markers according to Representativeness & Distinctiveness and Tabata's Dickens' markers on the Collins' comparison.

### Dickens' markers

upon, being, but, so, though, much, such, and, with, very, off, up, down, a, then, many

Table 4.3.3: Intersection of Dickens' markers returned by ICA and Tabata's Dickens' markers on the Collins' comparison.

#### Dickens' markers

upon, its, down, great, much, being, such, though, like, then, many, where, never, returned, head, always, off, well, indeed

Table 4.3.4: Collins' markers, when compared to Dickens according to Tabata's work using Random Forests.

#### Collins' markers

first, words, only, end, left, moment, room, last, letter, to, enough, back, answer, leave, still, place, since, heard, answered, time, looked, person, mind, on, woman, at, told, she, own, under, just, ask, once, speak, found, passed, her, which, had, me, felt, from, asked, after, can, side, present, turned, life, next, word, new, went, say, over, while, far, london, don't, your, tell, now, before

Table 4.3.5: Intersection of Collins' markers yielded by Representativeness & Distinctiveness and Tabata's Collins' markers.

#### Collins' markers

first, only, left, words, end, to, enough, heard, letter, moment, answer, leave, on, looked, since, under, passed, place, felt, had

Table 4.3.6: Intersection of Collins' markers according to ICA and Tabata's Collins' markers. **Collins' markers** 

first, letter, only, asked, woman, room, looked, words, own, back, answered, left, still, moment, tell, enough, can, mind, life, heard, speak, answer, leave

Table 4.3.7: Tabata's Dickens markers, when compared to the reference corpus. **Positive Dickens' markers** 

eyes, hands, again, are, these, under, right, yes, up, sir, child, looked, together, here, back, it, at, am, long, quite, day, better, mean, why, turned, where, do, face, new, there, dear, people, they, door, cried, in, you, very, way, man

#### Negative Dickens' markers

lady, poor, less, of, things, leave, love, not, from, should, can, last, saw, now, next, my, having, began, our, letter, had, I, money, tell, such, to, nothing, person, be, would, those, far, miss, life, called, found, wish, how, must, more, herself, well, did, but, much, make, other, whose, as, own, take, go, no, gave, shall, some, against, wife, since, first, them, word

In conclusion, there seems to be considerably more overlap between our terms and Tabata's results on the first comparison for Dickens and Collins and the ICA model seems Table 4.3.8: Intersection of Dickens markers according to Representativeness & Distinctiveness and Tabata's set, when compared to the reference corpus. **Positive Dickens' markers** again, back, must,did,make,own,shall **Negative Dickens' markers** things,can, nothing,person

Table 4.3.9: Intersection of Dickens markers according to ICA and Tabata's set, when compared on the reference corpus. **Positive Dickens' markers** hands,again, looked **Negative Dickens' markers** did, make, own

Table 4.3.10: Intersection of Dickens markers according to combined ICA & RD and Tabata's set, when compared to the reference corpus. **Positive Dickens' markers** door,hands, face, eyes,turned **Negative Dickens' markers** 

to agree even more with Tabata's terms than the representative and distinctive terms selected. For the *World* set, there is considerably less overlap, which might be attributed to the different samples of input terms or also the possibility that a more inconsistent set, such as the reference set here affects our models a lot differently than two fairly coherent author sets. What is notable is that our methods, especially the ICA model return more body parts and terms than Tabata's analysis, which could be part of frequent collocations, such as *staring*, *looking*, *glancing*, *smoking* that could form part of Dickensian background ongoing characterisation that was already identified previously.

#### **4.3.2** Towards a More Suitable Evaluation for Representative and Distinctive Terms

As has been shown during this work, the current evaluation scheme is not suitable for characteristic terms chosen by the *Representativeness & Distinctiveness* measure. Even when only the more frequent items of the profiles are chosen, is it unlikely that the values correspond directly to relative frequencies used in evaluation. Since the method is supervised, we cannot evaluate on the weights directly as in the ICA evaluation. Moreover, representative and distinctive values are calculated over a number of documents and given a single test document, we could not achieve the same result. Thus, we propose evaluation of representative and distinctive terms on the basis of their respective representative values.

Given a representative and distinctive profile, containing a number of individual terms for an author, we select only the representative values for those terms. Also, we obtain another rival profile for comparison, also containing a number of other individual terms and select their representative values. In addition, we take a test corpus containing a sufficient number of documents of the author under investigation. The assumption is, that representative and distinctive terms for an author should also be closer in representativeness to the test corpus than the rival author. Another basic assumption is that the test corpus is large enough to detect representative terms. Thus, we calculate a representative profile for the test corpus on the basis of profile terms for author A and then author B. We then calculate histogram differences between the test corpus and both author profiles and compare closeness.

As a representative value does not reveal whether a term is frequent or less frequent for an author a disadvantage of this method is the need for a test corpus rather than a single test document, but values need to be calculated on the basis of comparison between different documents of an author. Naturally, this approach should be subjected to analysis and close scrutiny before admittance as a reliable evaluation scheme. However, if valid this would provide comparison based on comparable values, which would provide a more reliable method of evaluating representative and distinctive terms.

#### Contribution and Open Ends

The present work was yet tentative and exploratory and aimed at investigating *Repre*sentativeness & Distinctiveness and Independent Component Analysis for characteristic term extraction in authorship attribution.

In the process, we made attempts at developing evaluation methods for non-traditional stylometry that combined provide some measure of the degree of reliability and validity of the chosen characteristic terms. The measure of profile consistency could be further extended to exactly measure the degree of consistency taking into account profile length and number of profiles intersected.

In addition, one might consider different types of input features, such as part-of-speech tags to our current models. Also, it might be worthwhile to further investigate the influence of the exact composition of the authorship sets on the selected characteristic terms. While different subsets of an author's work seem to yield similar sets of markers, the opposing set seems to considerably influence the terms that are chosen for discrimination.

Dickens is said to be an unusual writer compared to his contemporaries, but for ascertaining general applicability of the proposed methods to authorship attribution it may be worthwhile conducting similar studies with other maybe less unusual authors to determine to what extent an individual style can still be detected.

Overall, our results are generally encouraging insofar as to suggest that there is in fact something consistent and detectable with respect to style in Dickens and that the presented methods should be further explored to improve results according to the criteria developed in this study.

### CONCLUSION AND FUTURE WORK

This thesis was an investigation into Dickens' style using two statistical measures to extract some salient features of the author. Apart from actually extracting style markers, we were also concerned about important characteristics of the results, such as discrimination and separation ability as well as consistency of discriminators given different subsets of an author's set. We also found indications that for most methods the composition of the reference set is vital for selection of representative characteristic terms.

If our findings with respect to Dickens can be generalized to authors in general, results strongly indicate that there is something of a measurable style in the writings of an author. These findings may even overlap with studies using different approaches, which additionally support their validity and general applicability. Thus, different *prisoners* using different methods arrived at similar conclusions.

The present study could not give justice to all aspects of the problem, but hopefully convincingly showed that the presented methods could be beneficial for stylometry. In order to draw more definite conclusions from the results, the presented statistical methods and evaluation schemes require consolidation.

Nevertheless, in conducting this study, we should at least have succeeded in letting some light into the *cave* of style analysis, so *shapes* will be better visible.

" It was further assumed that, owing to the well-known persistence of unconscious habit, *personal peculiarities* in the construction of sentences, in the use of long or short words, in the number of words in a sentence, etc., will in the long run manifest themselves with such regularity that their graphic representation may become a means of identification, at least by exclusion."

- Mendenhall 1901

#### BIBLIOGRAPHY

- [1] Harald Baayen et al. *JADT 2002: 6 es Journées internationales d'Analyse statistique des Données Textuelles An experiment in authorship attribution.* 2002.
- [2] Kyungim Baek et al. "PCA vs. ICA: a comparison on the FERET data set". In: *in Proc. of the 4th International Conference on Computer Vision, ICCV'02.* 2002, pp. 824–827.
- [3] Kirk Baker. "Singular Value Decomposition Tutorial". 2005.
- [4] R. A. Bosch and J. A. Smith. "Separating hyperplanes and the authorship of the disputed federalist papers." In: *American Mathematical Monthly* 105.7 (1998), pp. 601– 608.
- [5] Leo Breiman. "Random Forests". In: Machine Learning. 2001, pp. 5–32.
- [6] J. F. Burrows. "Not unless you ask nicely: The interpretative nexus between analysis and information." In: *Literary and Linguistic Computing* 7 (1992), pp. 91–109.
- [7] John Burrows. "All the Way Through: Testing for Authorship in Different Frequency Strata." In: *LLC* 22.1 (2007), pp. 27–47.
- [8] John Burrows. "'Delta': a Measure of Stylistic Difference and a Guide to Likely Authorship". In: *Literary and Linguistic Computing* 17.3 (Sept. 2002), pp. 267–287.
- [9] Alexander Michael Simon Clark. "Forensic Stylometric Authorship Analysis under the Daubert Standard". In: *Journal of Law & Literature eJournal* (2011).
- [10] Paul Clough. "Old and new challenges in automatic plagiarism detection". In: National Plagiarism Advisory Service, 2003. 2003, pp. 391–407.
- [11] Pierre Comon. "Independent component analysis, a new concept?" In: Signal Process. 36.3 (Apr. 1994), pp. 287–314.
- [12] Hugh Craig and John Drew. "Did Dickens write "Temperate Temperance"?: (An Attempt to Identify Authorship of an Anonymous Article in All the Year Round)". In: *Victorian Periodicals Review* 44 (3 2011), pp. 267–290.
- [13] Glenn Fung, Olvi Mangasarian, and John Jay. "The Disputed Federalist Papers: SVM Feature Selection via Concave Minimization". In: *in 'Proc. 2003 Conf. on Diversity in Computing'*, ACM. ACM Press, 2003, pp. 42–46.
- [14] Ramyaa Congzhou He and Khaled Rasheed. "Using Machine Learning Techniques for Stylometry". In: *IC-AI*. Ed. by Hamid R. Arabnia and Youngsong Mun. CSREA Press, 2004, pp. 897–903.
- [15] Jeanny Herault and Christian Jutten. "Space or time adaptive signal processing by neural network models". In: *AIP conference proceedings* 151 (1986), p. 206.
- [16] Timo Honkela and Aapo Hyvärinen. "Linguistic Feature Extraction using Independent Component Analysis". In: *Proceedings of IJCNN'04*. Budabest, Hungary, 2004, pp. 279–284.
- [17] David L. Hoover. "The Rarer They Are, the More There Are, the Less They Matter". In: *Proceedings of the Digital Humanities 2012*. DH2012. 2012.
- [18] Lawrence Hubert and Phipps Arabie. "Comparing partitions". In: Journal of Classification 2.1 (Dec. 1985), pp. 193–218.
- [19] Aapo Hyvärinen and Erkki Oja. "Independent component analysis: algorithms and applications". In: *Neural Networks* 13 (2000), pp. 411–430.

- [20] Daniel Jurafsky and James H. Martin. *Speech and Language Processing (2nd Edition)*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.
- [21] S.K. Khamis. "Inference and Disputed Authorship: The Federalist by F. Mosteller; D. L. Wallace". In: *Review of the International Statistical Institute* 34.2 (1966), pp. 277–279.
- [22] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. "Computational methods in authorship attribution". In: J. Am. Soc. Inf. Sci. Technol. 60.1 (Jan. 2009), pp. 9–26.
- [23] Michaela Mahlberg. "Clusters, key clusters and local textual functions in Dickens." In: Corpora 2.1 (2007), pp. 1–31.
- [24] M. B. Malyutov. *Authorship attribution of texts: a review*. 2005.
- [25] T. C. Mendenhall. "The characteristic curves of composition". In: Science 214S (1887), pp. 237–246.
- [26] T.C. Mendenhall. "A Mechanical Solution of a Literary Problem." In: *The Popular Science Monthly* 60 (1901), pp. 97–105.
- [27] Frederick Mosteller and David L. Wallace. Inference and Disputed Authorship: The Federalist. New Ed. The David Hume Series of Philosophy and Cognitive Science Reissues. Center for the Study of Language and Information, Dec. 2008.
- [28] Plato and B. Jowett. *The Republic*. The Modern library of the world's best books. Modern Library, 2011.
- [29] Jelena Prokić, Çağri Çöltekin, and John Nerbonne. "Detecting shibboleths". In: Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH. EACL 2012. Avignon, France: Association for Computational Linguistics, 2012, pp. 72–80.
- [30] Jonathon Shlens. *A Tutorial on Principal Component Analysis*. Tech. rep. Systems Neurobiology Laboratory, Salk Insitute for Biological Studies, Dec. 2005.
- [31] Efstathios Stamatatos. "A survey of modern authorship attribution methods". In: *J.Am.Soc.Inf.Sci.Technol.* 60.3 (Mar. 2009), pp. 538–556.
- [32] Tomoji Tabata. "Approaching Dickens' Style through Random Forests". In: *Proceedings* of the Digital Humanities 2012. DH2012. 2012.
- [33] Jaakko J. Väyrynen, Lasse Lindqvist, and Timo Honkela. "Sparse Distributed Representations for Words with Thresholded Independent Component Analysis". In: *IJCNN*. 2007, pp. 1031–1036.
- [34] Brian Vickers. "Shakespeare and Authorship Studies in the Twenty-First Century". In: *Shakespeare Quarterly* 62.1 (2011), pp. 106–142.
- [35] G. S. Watson. "Inference and Disputed Authorship: The Federalist. by Frederick Mosteller; David L. Wallace". English. In: *The Annals of Mathematical Statistics* 37.1 (1966), pp. 308–312.
- [36] G. K. Zipf. Selective Studies and the Principle of Relative Frequency in Language. Harvard University Press, 1932.

## AUTHORSHIP DATASETS

## A.1 DICKENS VS. COLLINS DATA SET (2)

| No. | Author            | Texts                                        | Abbr.    | Tabata label         |
|-----|-------------------|----------------------------------------------|----------|----------------------|
| 1   | Dickens           | Bleak House                                  | D1023    | D52_BH               |
| 2   | Dickens           | Great Expectations                           | D1400    | D6ob_GE              |
| 3   | Dickens           | Little Dorrit                                | D963     | D55_LD               |
| 4   | Dickens           | David Copperfield                            | D766     | D49_DC               |
| 5   | Dickens           | A Christmas Carol                            | D19337   | D43b_CB              |
| 6   | Dickens           | Life And Adventures Of Martin Chuzzlewit     | D968     | D43_MC               |
| 7   | Dickens           | The Mystery of Edwin Drood                   | D564     | D70_ED               |
| 8   | Dickens           | A Tale of Two Cities                         | D98      | D59_TTC              |
| 9   | Dickens           | Master Humphrey's Clock                      | D588     | D40a_MHC             |
| 10  | Dickens           | The Battle of Life: A Love Story             | D40723   | D43b_CB              |
| 11  | Dickens           | The Life And Adventures Of Nicholas Nickleby | D967     | D38_NN               |
| 12  | Dickens           | Barnaby Rudge                                | D917     | D41_BR               |
| 13  | Dickens           | Sketches of Young Couples                    | D916     | D37a_OEP             |
| 14  | Dickens           | The Uncommercial Traveller                   | D914     | D60a_UT              |
| 15  | Dickens           | Our Mutual Friend                            | D883     | D64_OMF              |
| 16  | Dickens           | Pictures From Italy                          | D650     | D46a_PFI             |
| 17  | Dickens           | Sketches by Boz                              | D882     | D <sub>33</sub> _SB  |
| 18  | Dickens           | A Child's History of England                 | D699     | D <sub>51</sub> _CHE |
| 19  | Dickens           | Reprinted Pieces                             | D872     | D <sub>5</sub> 6_RP  |
| 20  | Dickens           | Dombey and Son                               | D821     | D46b_DS              |
| 21  | Dickens           | Oliver Twist                                 | D730     | D37b_OT              |
| 22  | Dickens           | The Old Curiosity Shop                       | D700     | D40b_OCS             |
| 23  | Dickens           | American Notes                               | D675     | D42_AN               |
| 24  | Dickens           | The Pickwick Papers                          | D580     | D36_PP               |
| 25  | Dickens           | The Letters of Charles Dickens: Vol. 1       | D25852   | -                    |
| 26  | Dickens           | The Letters of Charles Dickens: Vol. 2       | D25853   | -                    |
| 27  | Dickens           | The Letters of Charles Dickens: Vol. 3       | D25854   | -                    |
| 28  | Dickens           | Mrs. Lirriper's Lodgings                     | D1416    | -                    |
| 29  | Dickens           | Captain Boldheart & the Latin-Grammar Master | D23765   | -                    |
| 30  | Dickens           | The Seven Poor Travellers                    | D1392    | -                    |
| 31  | Dickens           | Doctor Marigold                              | D1415    | -                    |
| 32  | Dickens           | The Holly-Tree                               | D1394    | -                    |
| 33  | Dickens (et al.)  | A Budget of Christmas Tales                  | Dal28198 | -                    |
| 34  | Dickens           | The Perils of Certain English Prisoners      | D1406    | -                    |
| 35  | Dickens           | A Message from the Sea                       | D1407    | -                    |
| 36  | Dickens           | Somebody's Luggage                           | D1414    | -                    |
| 37  | Dickens           | Mugby Junction                               | D1419    | -                    |
| 38  | Dickens           | Mrs. Lirriper's Legacy                       | D1421    | -                    |
| 39  | Dickens           | The Wreck of the Golden Mary                 | D1465    | -                    |
| 40  | Dickens           | The Cricket on the Hearth                    | D20795   | -                    |
| 41  | Dickens           | Mugby Junction                               | D27924   | -                    |
| 42  | Dickens           | The Magic Fishbone                           | D23344   | -                    |
| 43  | Dickens           | Charles Dickens' Children Stories            | D37121   | -                    |
| 44  | Dickens (et al.)  | A House to Let                               | Dal2324  | -                    |
| 45  | Dickens(/Collins) | No Thoroughfare                              | DC1423   | -                    |
| 44  | Dickens (et al.)  | A House to Let                               | Dal2324  | -                    |

Table A.1.1: Dickens' augmented set for second comparison as part of *DickensCollinsSet2*.

| No. | Author  | Texts                                         | Abbr.  | Tabata label         |
|-----|---------|-----------------------------------------------|--------|----------------------|
| 1   | Collins | After Dark                                    | C1626  | C56_AD               |
| 2   | Collins | Antonina                                      | C3606  | C50_Ant              |
| 3   | Collins | Armadale                                      | C1895  | C66_Armadale         |
| 4   | Collins | Man and Wife                                  | C1586  | C70_MW               |
| 5   | Collins | Little Novels                                 | C1630  | C87_LN               |
| 6   | Collins | Jezebel's Daughter                            | C3633  | C8o_JD               |
| 7   | Collins | I Say No                                      | C1629  | C84_ISN              |
| 8   | Collins | Hide and Seek                                 | C7893  | C <sub>54</sub> _HS  |
| 9   | Collins | Basil                                         | C4605  | C52_Basil            |
| 10  | Collins | A Rogue's Life                                | C1588  | C <sub>57</sub> _ARL |
| 11  | Collins | The Woman in White                            | C583   | C60_WIW              |
| 12  | Collins | The Two Destinies                             | C1624  | C76_TD               |
| 13  | Collins | The Queen of Hearts                           | C1917  | C59_QOH              |
| 14  | Collins | The New Magdalen                              | C1623  | C73_TNM              |
| 15  | Collins | The Moonstone                                 | C155   | C68_MS               |
| 16  | Collins | The Legacy of Cain                            | C1975  | C89_LOC              |
| 17  | Collins | The Law and the Lady                          | C1622  | C75_LL               |
| 18  | Collins | The Haunted Hotel: A Mystery of Modern Venice | C170   | C78_HH               |
| 19  | Collins | The Fallen Leaves                             | C7894  | C79_FL               |
| 20  | Collins | The Evil Genius                               | C1627  | C86_EG               |
| 21  | Collins | No Name                                       | C1438  | C62_NN               |
| 22  | Collins | Poor Miss Finch                               | C3632  | C72_PMF              |
| 23  | Collins | Rambles Beyond Railways                       | C28367 | C51_RBR              |
| 24  | Collins | The Black Robe                                | C1587  | C81_BR               |
| 25  | Collins | Miss or Mrs.?                                 | C1621  | -                    |
| 26  | Collins | My Lady's Money                               | C1628  | -                    |
| 27  | Collins | The Dead Alive                                | C7891  | -                    |
| 28  | Collins | The Frozen Deep                               | C1625  | -                    |
| 29  | Collins | The Guilty River                              | C3634  | -                    |

Table A.1.2: Collins' augmented set for second comparison as part of *DickensCollinsSet2*.

#### A.2 DICKENS VS. WORLD DATA SET

Table A.2.1: 18th century reference corpus to oppose Dickens as part of the *DickensWorldSet*.

|    | Author     | Texts                                     | Abbr.     | Date    | Word-token    |
|----|------------|-------------------------------------------|-----------|---------|---------------|
| 1  | Defoe      | Captain Singleton                         | Wd_6422   | 1720    | 110,916       |
| 2  | Defoe      | Journal of Prague year                    | Wd_376    | 1722    | 83,494        |
| 3  | Defoe      | Military Memoirs of Capt. George Carleton | Wd_14436  | 1728    | 80,617        |
| 4  | Defoe      | Moll Flanders                             | Wd_370    | 1724    | 138,094       |
| 5  | Defoe      | Robinson Crusoe                           | Wd_521    | 1719    | 232,453       |
| 6  | Fielding   | A journey from this world to the next     | Wf_1147   | 1749    | 45,024        |
| 7  | Fielding   | Amelia                                    | Wf_6098   | 1751    | 212,339       |
| 8  | Fielding   | Jonathan Wild                             | Wf_5256   | 1743    | 70,086        |
| 9  | Fielding   | Joseph Andrews I&II                       | Wf_9609   | 1742    | 126,342       |
| 10 | Fielding   | Tom Jones                                 | Wf_6593   | 1749    | 347,219       |
| 11 | Goldsmith  | The Vicar of Wakefield                    | Wgo_2667  | 1766    | 63,076        |
| 12 | Richardson | Clarrissa I - IX                          | Wr_12398  | 1748    | 939,448       |
| 13 | Richardson | Pamela                                    | Wr_6124   | 1740    | 439,562       |
| 14 | Smollett   | Peregrine Pickle                          | Ws_4084   | 1752    | 330,557       |
| 15 | Smollett   | Travels through France and Italy          | Ws_2311   | 1766    | 121,032       |
| 16 | Smollett   | The Adventures of Ferdinand Count Fathom  | Ws_6761   | 1753    | 157,032       |
| 17 | Smollett   | Humphrey Clinker                          | Ws_2160   | 1771    | 150,281       |
| 18 | Smollett   | The Adventures of Sir Launcelot Greaves   | Ws_6758   | 1760    | 89,010        |
| 19 | Smollett   | The Adventures of Roderick Random         | Ws_4085   | 1748    | 191,539       |
| 20 | Sterne     | A Sentimental Journey                     | Wst_804   | 1768    | 41,028        |
| 21 | Sterne     | The Life and Opinions of Tristram Shandy  | Wst_1079  | 1759-67 | 184,428       |
| 22 | Swift      | A Tale of a Tub                           | Wsw_4737  | 1704    | 44,225        |
| 23 | Swift      | Gulliver's Travels                        | Wsw_17157 | 1726    | 103,806       |
| 24 | Swift      | The Journal to Stella                     | Wsw_4208  | 1710-3  | 191,740       |
|    |            |                                           |           |         | sum: 4,493,34 |

| No. | Author     | Texts                 | Abbr.     | Date        | Word-token     |
|-----|------------|-----------------------|-----------|-------------|----------------|
| 1   | Bronte, A. | Agnes Grey            | Wa.b_767  | 1847        | 68,352         |
| 2   | Austen     | Emma                  | Wa_158    | 1815        | 160,899        |
| 3   | Austen     | Mansfield Park        | Wa_141    | 1814        | 159,921        |
| 4   | Austen     | Pride and Prejudice   | Wa_42671  | 1813        | 121,874        |
| 5   | Austen     | Northanger Abbey      | Wa_121    | 1803        | 77,810         |
| 6   | Austen     | Sense and Sensibility | Wa_21839  | 1811        | 119,793        |
| 7   | Austen     | Persuasion            | Wa_105    | 1816 (1818) | 83,380         |
| 8   | Bronte, C. | The Professor         | Wc.b_1028 | 1857        | 88,281         |
| 9   | Bronte, C. | Villette              | Wc.b_9182 | 1853        | 193,819        |
| 10  | Bronte, C. | Jane Eyre             | Wc.b_1260 | 1847        | 188,092        |
| 11  | Bronte, E. | Wuthering Heights     | We.b_768  | 1847        | 117,344        |
| 12  | Eliot      | Daniel Deronda        | We_7469   | 1876        | 311,400        |
| 13  | Eliot      | Silas Marner          | We_550    | 1861        | 71,449         |
| 14  | Eliot      | Middlemarch           | We_145    | 1871-2      | 317,975        |
| 15  | Eliot      | The Mill on the Floss | We_6688   | 1860        | 207,505        |
| 16  | Eliot      | Brother Jacob         | We_2171   | 1864        | 16,693         |
| 17  | Eliot      | Adam Bede             | We_507    | 1859        | 215,253        |
| 18  | Gaskell    | Cranford              | Wg_394    | 1851-3      | 71,037         |
| 19  | Gaskell    | Sylvia's Lovers       | Wg_4537   | 1863        | 191,176        |
| 20  | Gaskell    | Mary Barton           | Wg_2153   | 1848        | 161,098        |
| 21  | Thackeray  | Vanity Fair           | Wt_599    | 1848        | 303,530        |
| 22  | Thackeray  | Barry Lyndon          | Wt_4558   | 1844        | 125,986        |
| 23  | Trollope   | Doctor Thorne         | Wtr_3166  | 1857        | 220,867        |
| 24  | Trollope   | Barchester Towers     | Wtr_3409  | 1857        | 197,691        |
| 25  | Trollope   | The Warden            | Wtr_619   | 1855        | 72,068         |
| 26  | Trollope   | Phineas Finn          | Wtr_18000 | 1869        | 263,393        |
| 27  | Trollope   | Can You Forgive Her   | Wtr_19500 | 1865        | 316,349        |
| 28  | Trollope   | The Eustace Diamonds  | Wtr_7381  | 1873        | 269,981        |
| 29  | Collins    | After Dark            | Wc_1626   | 1882        | 136,356        |
| 30  | Collins    | The Moonstone         | Wc_155    | 1868        | 196,506        |
| 31  | Collins    | The Woman in White    | Wc_583    | 1859        | 246,917        |
|     |            |                       |           |             | sum: 5,292,795 |

Table A.2.2: 19th century reference corpus to oppose Dickens set as part of the *DickensWorld-Set*.

#### B.1 REPRESENTATIVE & DISTINCTIVE TERMS OF DICKENS VS. COLLINS (2)

Table B.1.1: Representativeness & Distinctiveness on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles.

|           |           |         | Au      | thor Profile Comp | arison  |                                   | Clustering  |
|-----------|-----------|---------|---------|-------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc. | Dist.D. | Dist.C. | (Dist.C-Dist.D)   | p-value | conf.interval (lower/upper bound) | adjust.Rand |
| 1         | D1023     | 0.0322  | 0.0105  | -0.0217           | 1.00    | -0.0341 Inf                       | 0.8         |
|           | D1392     | 0.0347  | 0.0089  | -0.0257           | 1.00    | -0.0391 Inf                       |             |
|           | D1394     | 0.0344  | 0.0087  | -0.0256           | 1.00    | -0.0351 Inf                       |             |
|           | D1400     | 0.0309  | 0.0103  | -0.0206           | 1.00    | -0.0314 Inf                       |             |
|           | D1406     | 0.0384  | 0.0102  | -0.0282           | 1.00    | -0.0369 Inf                       |             |
| 2         | D1407     | 0.0253  | 0.0088  | -0.0165           | 1.00    | -0.0240 Inf                       | 0.8         |
|           | D1414     | 0.0282  | 0.0111  | -0.0172           | 1.00    | -0.0233 Inf                       |             |
|           | D1415     | 0.0263  | 0.0103  | -0.0160           | 1.00    | -0.0231 Inf                       |             |
|           | D1416     | 0.0287  | 0.0110  | -0.0178           | 1.00    | -0.0271 Inf                       |             |
|           | D1419     | 0.0258  | 0.0105  | -0.0154           | 1.00    | -0.0241 Inf                       |             |
| 3         | D1421     | 0.0386  | 0.0081  | -0.0305           | 1.00    | -0.0397 Inf                       | 0.8         |
|           | D1465     | 0.0310  | 0.0086  | -0.0223           | 1.00    | -0.0312 Inf                       |             |
|           | D19337    | 0.0292  | 0.0103  | -0.0189           | 1.00    | -0.0292 Inf                       |             |
|           | D20795    | 0.0257  | 0.0100  | -0.0156           | 0.99    | -0.0251 Inf                       |             |
|           | D23344    | 0.0419  | 0.0064  | -0.0356           | 1.00    | -0.0563 Inf                       |             |
| 1         | D23765    | 0.0328  | 0.0069  | -0.0259           | 1.00    | -0.0349 Inf                       | 0.9         |
|           | D25852    | 0.0372  | 0.0108  | -0.0263           | 0.99    | -0.0441 Inf                       |             |
|           | D25853    | 0.0378  | 0.0116  | -0.0263           | 0.98    | -0.0473 Inf                       |             |
|           | D25854    | 0.0349  | 0.0117  | -0.0232           | 0.99    | -0.0401 Inf                       |             |
|           | D27924    | 0.0276  | 0.0102  | -0.0175           | 1.00    | -0.0258 Inf                       |             |
| ;         | D37121    | 0.0445  | 0.0090  | -0.0355           | 0.99    | -0.0572 Inf                       | 0.8         |
|           | D40723    | 0.0393  | 0.0093  | -0.0299           | 1.00    | -0.0416 Inf                       |             |
|           | D564      | 0.0278  | 0.0108  | -0.0170           | 0.99    | -0.0289 Inf                       |             |
|           | D580      | 0.0411  | 0.0105  | -0.0305           | 0.98    | -0.0554 Inf                       |             |
|           | D588      | 0.0400  | 0.0096  | -0.0304           | 1.00    | -0.0443 Inf                       |             |
| 5         | D650      | 0.0318  | 0.0132  | -0.0186           | 1.00    | -0.0290 Inf                       | 0.8         |
|           | D675      | 0.0290  | 0.0111  | -0.0179           | 1.00    | -0.0281 Inf                       |             |
|           | D699      | 0.0314  | 0.0123  | -0.0191           | 1.00    | -0.0299 Inf                       |             |
|           | D700      | 0.0276  | 0.0109  | -0.0167           | 1.00    | -0.0265 Inf                       |             |
|           | D730      | 0.0289  | 0.0112  | -0.0177           | 1.00    | -0.0275 Inf                       |             |
| 7         | D766      | 0.0322  | 0.0115  | -0.0207           | 1.00    | -0.0324 Inf                       | 0.8         |
|           | D821      | 0.0352  | 0.0110  | -0.0241           | 1.00    | -0.0354 Inf                       |             |
|           | D872      | 0.0379  | 0.0117  | -0.0262           | 1.00    | -0.0344 Inf                       |             |
|           | D882      | 0.0372  | 0.0110  | -0.0262           | 0.99    | -0.0436 Inf                       |             |
|           | D883      | 0.0298  | 0.0121  | -0.0177           | 0.99    | -0.0287 Inf                       |             |
| ;         | D914      | 0.0284  | 0.0109  | -0.0175           | 0.99    | -0.0297 Inf                       | 0.8         |
|           | D916      | 0.0499  | 0.0103  | -0.0396           | 1.00    | -0.0598 Inf                       |             |
|           | D917      | 0.0338  | 0.0107  | -0.0231           | 0.99    | -0.0368 Inf                       |             |
|           | D963      | 0.0288  | 0.0111  | -0.0177           | 0.99    | -0.0299 Inf                       |             |
|           | D967      | 0.0447  | 0.0101  | -0.0346           | 0.99    | -0.0557 Inf                       |             |
| )         | D968      | 0.0329  | 0.0103  | -0.0225           | 1.00    | -0.0349 Inf                       | 0.8         |
|           | D98       | 0.0268  | 0.0106  | -0.0162           | 1.00    | -0.0208 Inf                       |             |
|           | Dal2324   | 0.0360  | 0.0091  | -0.0270           | 1.00    | -0.0404 Inf                       |             |
|           | Dal28198  | 0.0321  | 0.0096  | -0.0225           | 1.00    | -0.0302 Inf                       |             |
|           | DC1423    | 0.0289  | 0.0083  | -0.0206           | 1.00    | -0.0301 Inf                       |             |
|           | mean      | 0.0333  | 0.0102  | -0.0230           |         |                                   |             |
|           | sd        | 0.0057  | 0.0013  | 0.0062            |         |                                   |             |
|           | SE        | 0.0009  | 0.0002  | 0.0009            |         |                                   |             |

Table B.1.2: Representativeness & Distinctiveness on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles.

| Clustering  |                                   | arison  | thor Profile Comp | Au      |         |           |           |
|-------------|-----------------------------------|---------|-------------------|---------|---------|-----------|-----------|
| adjust.Rand | conf.interval (lower/upper bound) | p-value | (Dist.C-Dist.D)   | Dist.C. | Dist.D. | Test Doc. | Iteration |
| 0.84        | 0.0198 Inf                        | 0.00    | -0.0334           | 0.0081  | 0.0415  | C1438     | 10        |
|             | 0.0218 Inf                        | 0.00    | -0.0320           | 0.0090  | 0.0410  | C155      |           |
|             | 0.0239 Inf                        | 0.00    | -0.0365           | 0.0088  | 0.0453  | C1586     |           |
|             | 0.0148 Inf                        | 0.00    | -0.0305           | 0.0086  | 0.0391  | C1587     |           |
|             | 0.0167 Inf                        | 0.00    | -0.0287           | 0.0096  | 0.0384  | C1588     |           |
| 0.95        | 0.0320 Inf                        | 0.00    | -0.0495           | 0.0086  | 0.0581  | C1621     | 11        |
|             | 0.0244 Inf                        | 0.00    | -0.0464           | 0.0077  | 0.0542  | C1622     |           |
|             | 0.0194 Inf                        | 0.00    | -0.0396           | 0.0080  | 0.0477  | C1623     |           |
|             | 0.0347 Inf                        | 0.00    | -0.0517           | 0.0079  | 0.0596  | C1624     |           |
|             | 0.0187 Inf                        | 0.01    | -0.0517           | 0.0095  | 0.0612  | C1625     |           |
| 0.84        | 0.0130 Inf                        | 0.00    | -0.0272           | 0.0096  | 0.0368  | C1626     | 12        |
|             | 0.0206 Inf                        | 0.00    | -0.0360           | 0.0090  | 0.0450  | C1627     |           |
|             | 0.0199 Inf                        | 0.00    | -0.0395           | 0.0085  | 0.0479  | C1628     |           |
|             | 0.0202 Inf                        | 0.00    | -0.0363           | 0.0092  | 0.0455  | C1629     |           |
|             | 0.0171 Inf                        | 0.00    | -0.0301           | 0.0086  | 0.0387  | C1630     |           |
| 0.89        | 0.0278 Inf                        | 0.00    | -0.0451           | 0.0069  | 0.0520  | C170      | 13        |
|             | 0.0230 Inf                        | 0.00    | -0.0417           | 0.0071  | 0.0488  | C1895     |           |
|             | 0.0156 Inf                        | 0.00    | -0.0344           | 0.0074  | 0.0418  | C1917     |           |
|             | 0.0233 Inf                        | 0.00    | -0.0397           | 0.0072  | 0.0469  | C1975     |           |
|             | 0.0225 Inf                        | 0.00    | -0.0336           | 0.0090  | 0.0426  | C28367    |           |
| 0.95        | 0.0210 Inf                        | 0.00    | -0.0317           | 0.0094  | 0.0411  | C3606     | 14        |
|             | 0.0269 Inf                        | 0.00    | -0.0408           | 0.0072  | 0.0480  | C3632     |           |
|             | 0.0255 Inf                        | 0.00    | -0.0420           | 0.0070  | 0.0490  | C3633     |           |
|             | 0.0291 Inf                        | 0.00    | -0.0455           | 0.0065  | 0.0520  | C3634     |           |
|             | 0.0082 Inf                        | 0.01    | -0.0260           | 0.0071  | 0.0331  | C4605     |           |
|             |                                   |         | -0.0380           | 0.0082  | 0.0462  | mean      |           |
|             |                                   |         | 0.0075            | 0.0010  | 0.0072  | sd        |           |
|             |                                   |         | 0.0015            | 0.0002  | 0.0014  | SE        |           |

Figure B.1.1: Clustering on representative and distinctive terms on *DickensCollinsSet2* with "complete link" method based on the 4th iteration profile terms of both authors.

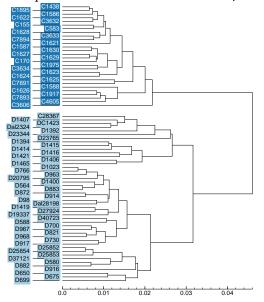


Table B.2.1: ICA on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characteristic terms of both profiles.

|           |                     |         | Aut     | hor Profile Comp | arison  |                                   | Clustering  |
|-----------|---------------------|---------|---------|------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc.           | Dist.D. | Dist.C. | (Dist.C-Dist.D)  | p-value | conf.interval (lower/upper bound) | adjust.Rand |
| 1         | D <sub>33</sub> _SB | 0.0107  | 0.0157  | 0.0050           | 0.00    | 0.0027 Inf                        | 0.83        |
|           | D <sub>3</sub> 6_PP | 0.0107  | 0.0160  | 0.0054           | 0.02    | 0.0011 Inf                        | 0           |
|           | D37a_OEP            | 0.0099  | 0.0155  | 0.0056           | 0.00    | 0.0023 Inf                        |             |
|           | D37b_OT             | 0.0086  | 0.0150  | 0.0064           | 0.00    | 0.0038 Inf                        |             |
|           | D <sub>3</sub> 8_NN | 0.0076  | 0.0158  | 0.0083           | 0.00    | 0.0058 Inf                        |             |
| 2         | D40a_MHC            | 0.0086  | 0.0166  | 0.0079           | 0.00    | 0.0051 Inf                        | 0.83        |
|           | D40b_OCS            | 0.0066  | 0.0168  | 0.0102           | 0.00    | 0.0074 Inf                        |             |
|           | D41_BR              | 0.0065  | 0.0170  | 0.0105           | 0.00    | 0.0081 Inf                        |             |
|           | D42_AN              | 0.0083  | 0.0160  | 0.0076           | 0.00    | 0.0052 Inf                        |             |
|           | D <sub>43</sub> _MC | 0.0064  | 0.0175  | 0.0111           | 0.00    | 0.0078 Inf                        |             |
| 3         | D46a_PFI            | 0.0089  | 0.0161  | 0.0072           | 0.00    | 0.0046 Inf                        | 0.83        |
|           | D46b_DS             | 0.0061  | 0.0166  | 0.0105           | 0.00    | 0.0082 Inf                        |             |
|           | D49_DC              | 0.0077  | 0.0154  | 0.0077           | 0.00    | 0.0056 Inf                        |             |
|           | D51_CHE             | 0.0107  | 0.0158  | 0.0051           | 0.02    | 0.0010 Inf                        |             |
|           | D52_BH              | 0.0076  | 0.0165  | 0.0089           | 0.00    | 0.0064 Inf                        |             |
| 4         | D54_HT              | 0.0090  | 0.0161  | 0.0070           | 0.00    | 0.0038 Inf                        | 0.83        |
|           | D55_LD              | 0.0072  | 0.0164  | 0.0092           | 0.00    | 0.0070 Inf                        |             |
|           | D56_RP              | 0.0085  | 0.0170  | 0.0085           | 0.00    | 0.0064 Inf                        |             |
|           | D59_TTC             | 0.0095  | 0.0152  | 0.0057           | 0.00    | 0.0034 Inf                        |             |
|           | D60a_UT             | 0.0084  | 0.0168  | 0.0084           | 0.00    | 0.0064 Inf                        |             |
| 5         | D6ob_GE             | 0.0110  | 0.0153  | 0.0044           | 0.00    | 0.0018 Inf                        | 0.83        |
|           | D64_OMF             | 0.0108  | 0.0151  | 0.0043           | 0.00    | 0.0016 Inf                        | -           |
|           | D70_ED              | 0.0100  | 0.0161  | 0.0061           | 0.00    | 0.0035 Inf                        |             |
|           | mean                | 0.0087  | 0.0161  | 0.0074           |         |                                   |             |
|           | sd                  | 0.0015  | 0.0007  | 0.0020           |         |                                   |             |
|           | SE                  | 0.0003  | 0.0001  | 0.0004           |         |                                   |             |

Table B.2.2: ICA on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characteristic terms of both profiles.

|           |                      |        | Auth   | or Profile Compa | arison  |                                   | Clustering  |
|-----------|----------------------|--------|--------|------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc.            | Dist.D | Dist.C | (Dist.C-Dist.D)  | p-value | conf.interval (lower/upper bound) | adjust.Rand |
|           | C50_Ant              | 0.0129 | 0.0137 | 0.0008           | 0.69    | -0.0034 Inf                       |             |
|           | C51_RBR              | 0.0124 | 0.0156 | 0.0033           | 0.96    | -0.0063 Inf                       |             |
| 6         | C52_Basil            | 0.0156 | 0.0105 | -0.0051          | 0.00    | 0.0025 Inf                        | 0.8         |
|           | C54_HS               | 0.0148 | 0.0128 | -0.0020          | 0.18    | -0.0016 Inf                       |             |
|           | C56_AD               | 0.0157 | 0.0109 | -0.0048          | 0.00    | 0.0019 Inf                        |             |
|           | C <sub>57</sub> _ARL | 0.0167 | 0.0118 | -0.0048          | 0.00    | 0.0021 Inf                        |             |
|           | C59_QOH              | 0.0170 | 0.0097 | -0.0073          | 0.00    | 0.0047 Inf                        |             |
| 7         | C6o_WIW              | 0.0180 | 0.0064 | -0.0116          | 0.00    | 0.0088 Inf                        | 0.8         |
|           | C62_NN               | 0.0178 | 0.0066 | -0.0112          | 0.00    | 0.0087 Inf                        |             |
|           | C66_Armadale         | 0.0180 | 0.0066 | -0.0114          | 0.00    | 0.0090 Inf                        |             |
|           | C68_MS               | 0.0174 | 0.0078 | -0.0097          | 0.00    | 0.0070 Inf                        |             |
|           | C70_MW               | 0.0171 | 0.0075 | -0.0096          | 0.00    | 0.0066 Inf                        |             |
| 8         | C72_PMF              | 0.0184 | 0.0067 | -0.0117          | 0.00    | 0.0083 Inf                        | 0.8         |
|           | C <sub>73</sub> _TNM | 0.0181 | 0.0061 | -0.0119          | 0.00    | 0.0086 Inf                        | -           |
|           | C75_LL               | 0.0179 | 0.0053 | -0.0125          | 0.00    | 0.0105 Inf                        |             |
|           | C <sub>7</sub> 6_TD  | 0.0181 | 0.0053 | -0.0128          | 0.00    | 0.0107 Inf                        |             |
|           | C <sub>7</sub> 8_HH  | 0.0178 | 0.0070 | -0.0108          | 0.00    | 0.0082 Inf                        |             |
| 9         | C79_FL               | 0.0166 | 0.0069 | -0.0097          | 0.00    | 0.0059 Inf                        | 0.8         |
| -         | C8o_JD               | 0.0174 | 0.0057 | -0.0117          | 0.00    | 0.0095 Inf                        | -           |
|           | C81_BR               | 0.0174 | 0.0073 | -0.0101          | 0.00    | 0.0062 Inf                        |             |
|           | C84_ISN              | 0.0175 | 0.0091 | -0.0084          | 0.00    | 0.0037 Inf                        |             |
|           | C86_EG               | 0.0171 | 0.0059 | -0.0112          | 0.00    | 0.0089 Inf                        |             |
|           | mean                 | 0.0168 | 0.0084 | -0.0084          |         |                                   |             |
|           | sd                   | 0.0016 | 0.0029 | 0.0045           |         |                                   |             |
|           | SE                   | 0.0003 | 0.0006 | 0.0009           |         |                                   |             |

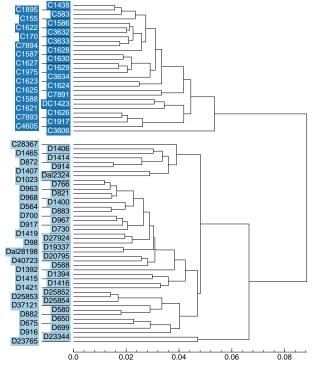
Table B.2.3: ICA on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents, also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characteristic terms of both profiles.

| Clusterin  |                                   | parison | thor Profile Com | Au      |         |           |           |
|------------|-----------------------------------|---------|------------------|---------|---------|-----------|-----------|
| adjust.Ran | conf.interval (lower/upper bound) | p-value | (Dist.C-Dist.D)  | Dist.C. | Dist.D. | Test Doc. | Iteration |
| 0.9        | 0.0046 Inf                        | 0.00    | 0.0049           | 0.0081  | 0.0032  | D1023     | 1         |
|            | 0.0011 Inf                        | 0.00    | 0.0017           | 0.0064  | 0.0046  | D1392     |           |
|            | 0.0018 Inf                        | 0.00    | 0.0024           | 0.0069  | 0.0045  | D1394     |           |
|            | 0.0040 Inf                        | 0.00    | 0.0044           | 0.0080  | 0.0036  | D1400     |           |
|            | 0.0028 Inf                        | 0.00    | 0.0033           | 0.0073  | 0.0040  | D1406     |           |
| 0.8        | 0.0013 Inf                        | 0.00    | 0.0018           | 0.0062  | 0.0044  | D1407     | 2         |
|            | 0.0023 Inf                        | 0.00    | 0.0028           | 0.0068  | 0.0040  | D1414     |           |
|            | 0.0014 Inf                        | 0.00    | 0.0021           | 0.0066  | 0.0046  | D1415     |           |
|            | 0.0030 Inf                        | 0.00    | 0.0036           | 0.0073  | 0.0038  | D1416     |           |
|            | 0.0028 Inf                        | 0.00    | 0.0033           | 0.0070  | 0.0037  | D1419     |           |
| 0.7        | 0.0014 Inf                        | 0.00    | 0.0020           | 0.0067  | 0.0047  | D1421     | 3         |
|            | 0.0013 Inf                        | 0.00    | 0.0019           | 0.0064  | 0.0045  | D1465     |           |
|            | 0.0040 Inf                        | 0.00    | 0.0045           | 0.0075  | 0.0030  | D19337    |           |
|            | 0.0044 Inf                        | 0.00    | 0.0048           | 0.0077  | 0.0029  | D20795    |           |
|            | -0.0023 Inf                       | 1.00    | -0.0017          | 0.0046  | 0.0063  | D23344    |           |
| 0.8        | -0.0021 Inf                       | 1.00    | -0.0016          | 0.0041  | 0.0057  | D23765    | 4         |
|            | 0.0029 Inf                        | 0.00    | 0.0035           | 0.0077  | 0.0042  | D25852    |           |
|            | 0.0027 Inf                        | 0.00    | 0.0032           | 0.0077  | 0.0044  | D25853    |           |
|            | 0.0023 Inf                        | 0.00    | 0.0029           | 0.0075  | 0.0046  | D25854    |           |
|            | 0.0033 Inf                        | 0.00    | 0.0038           | 0.0070  | 0.0032  | D27924    |           |
| o.8        | 0.0029 Inf                        | 0.00    | 0.0034           | 0.0070  | 0.0036  | D37121    | 5         |
|            | 0.0028 Inf                        | 0.00    | 0.0033           | 0.0070  | 0.0037  | D40723    |           |
|            | 0.0035 Inf                        | 0.00    | 0.0039           | 0.0077  | 0.0037  | D564      |           |
|            | 0.0033 Inf                        | 0.00    | 0.0038           | 0.0074  | 0.0036  | D580      |           |
|            | 0.0027 Inf                        | 0.00    | 0.0032           | 0.0070  | 0.0038  | D588      |           |
| 0.9        | 0.0035 Inf                        | 0.00    | 0.0040           | 0.0075  | 0.0035  | D650      | 6         |
|            | 0.0037 Inf                        | 0.00    | 0.0041           | 0.0076  | 0.0035  | D675      |           |
|            | 0.0023 Inf                        | 0.00    | 0.0028           | 0.0072  | 0.0044  | D699      |           |
|            | 0.0040 Inf                        | 0.00    | 0.0044           | 0.0079  | 0.0035  | D700      |           |
|            | 0.0031 Inf                        | 0.00    | 0.0036           | 0.0075  | 0.0039  | D730      |           |
| 0.8        | 0.0039 Inf                        | 0.00    | 0.0043           | 0.0079  | 0.0036  | D766      | 7         |
|            | 0.0041 Inf                        | 0.00    | 0.0045           | 0.0079  | 0.0034  | D821      |           |
|            | 0.0045 Inf                        | 0.00    | 0.0049           | 0.0078  | 0.0029  | D872      |           |
|            | 0.0031 Inf                        | 0.00    | 0.0036           | 0.0074  | 0.0038  | D882      |           |
|            | 0.0031 Inf                        | 0.00    | 0.0035           | 0.0077  | 0.0042  | D883      |           |
| o.8        | 0.0048 Inf                        | 0.00    | 0.0052           | 0.0078  | 0.0026  | D914      | 8         |
|            | 0.0022 Inf                        | 0.00    | 0.0028           | 0.0070  | 0.0043  | D916      |           |
|            | 0.0042 Inf                        | 0.00    | 0.0046           | 0.0078  | 0.0032  | D917      |           |
|            | 0.0037 Inf                        | 0.00    | 0.0041           | 0.0078  | 0.0038  | D963      |           |
|            | 0.0037 Inf                        | 0.00    | 0.0041           | 0.0077  | 0.0036  | D967      |           |
| 0.8        | 0.0045 Inf                        | 0.00    | 0.0048           | 0.0079  | 0.0031  | D968      | 9         |
|            | 0.0037 Inf                        | 0.00    | 0.0042           | 0.0076  | 0.0034  | D98       | -         |
|            | 0.0010 Inf                        | 0.00    | 0.0016           | 0.0063  | 0.0048  | Dal2324   |           |
|            | 0.0046 Inf                        | 0.00    | 0.0050           | 0.0079  | 0.0029  | Dal28198  |           |
|            | -0.0015 Inf                       | 1.00    | -0.0009          | 0.0052  | 0.0062  | DC1423    |           |
|            | -                                 |         | 0.0033           | 0.0072  | 0.0039  | mean      |           |
|            |                                   |         | 0.0016           | 0.0009  | 0.0008  | sd        |           |
|            |                                   |         | 0.0002           | 0.0001  | 0.0001  | SE        |           |

| Clustering  |                                   | parison | athor Profile Com | Au      |         |           | Author Profile Comparison |  |  |  |  |  |  |  |  |  |  |
|-------------|-----------------------------------|---------|-------------------|---------|---------|-----------|---------------------------|--|--|--|--|--|--|--|--|--|--|
| adjust.Rand | conf.interval (lower/upper bound) | p-value | (Dist.C-Dist.D)   | Dist.C. | Dist.D. | Test Doc. | Iteration                 |  |  |  |  |  |  |  |  |  |  |
| 0.8         | 0.0051 Inf                        | 0.00    | -0.0055           | 0.0024  | 0.0079  | C1438     | 10                        |  |  |  |  |  |  |  |  |  |  |
|             | 0.0045 Inf                        | 0.00    | -0.0049           | 0.0029  | 0.0078  | C155      |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0050 Inf                        | 0.00    | -0.0053           | 0.0026  | 0.0079  | C1586     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0052 Inf                        | 0.00    | -0.0055           | 0.0024  | 0.0080  | C1587     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0011 Inf                        | 0.00    | -0.0017           | 0.0047  | 0.0064  | C1588     |                           |  |  |  |  |  |  |  |  |  |  |
| 0.8         | 0.0030 Inf                        | 0.00    | -0.0035           | 0.0038  | 0.0073  | C1621     | 11                        |  |  |  |  |  |  |  |  |  |  |
|             | 0.0053 Inf                        | 0.00    | -0.0057           | 0.0024  | 0.0081  | C1622     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0049 Inf                        | 0.00    | -0.0053           | 0.0027  | 0.0080  | C1623     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0045 Inf                        | 0.00    | -0.0050           | 0.0028  | 0.0078  | C1624     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0018 Inf                        | 0.00    | -0.0024           | 0.0044  | 0.0068  | C1625     |                           |  |  |  |  |  |  |  |  |  |  |
| 0.8         | 0.0027 Inf                        | 0.00    | -0.0031           | 0.0035  | 0.0067  | C1626     | 12                        |  |  |  |  |  |  |  |  |  |  |
|             | 0.0047 Inf                        | 0.00    | -0.0051           | 0.0027  | 0.0078  | C1627     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0040 Inf                        | 0.00    | -0.0044           | 0.0032  | 0.0076  | C1628     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0046 Inf                        | 0.00    | -0.0050           | 0.0028  | 0.0078  | C1629     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0057 Inf                        | 0.00    | -0.0060           | 0.0019  | 0.0079  | C1630     |                           |  |  |  |  |  |  |  |  |  |  |
| 0.84        | 0.0051 Inf                        | 0.00    | -0.0055           | 0.0023  | 0.0078  | C170      | 13                        |  |  |  |  |  |  |  |  |  |  |
|             | 0.0058 Inf                        | 0.00    | -0.0061           | 0.0019  | 0.0080  | C1895     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0039 Inf                        | 0.00    | -0.0044           | 0.0030  | 0.0073  | C1917     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0047 Inf                        | 0.00    | -0.0051           | 0.0028  | 0.0079  | C1975     |                           |  |  |  |  |  |  |  |  |  |  |
|             | -0.0020 Inf                       | 1.00    | 0.0015            | 0.0061  | 0.0046  | C28367    |                           |  |  |  |  |  |  |  |  |  |  |
| 0.8         | -0.0009 Inf                       | 0.84    | 0.0003            | 0.0057  | 0.0054  | C3606     | 14                        |  |  |  |  |  |  |  |  |  |  |
|             | 0.0053 Inf                        | 0.00    | -0.0057           | 0.0023  | 0.0080  | C3632     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0049 Inf                        | 0.00    | -0.0053           | 0.0025  | 0.0078  | C3633     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0040 Inf                        | 0.00    | -0.0044           | 0.0032  | 0.0076  | C3634     |                           |  |  |  |  |  |  |  |  |  |  |
|             | 0.0021 Inf                        | 0.00    | -0.0026           | 0.0043  | 0.0069  | C4605     |                           |  |  |  |  |  |  |  |  |  |  |
|             |                                   |         | -0.0042           | 0.0032  | 0.0074  | mean      |                           |  |  |  |  |  |  |  |  |  |  |
|             |                                   |         | 0.0019            | 0.0011  | 0.0009  | sd        |                           |  |  |  |  |  |  |  |  |  |  |
|             |                                   |         | 0.0004            | 0.0002  | 0.0002  | SE        |                           |  |  |  |  |  |  |  |  |  |  |

Table B.2.4: ICA on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents, also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characteristic terms of both profiles.

Figure B.2.1: Clustering with ICA extracted characteristic terms on *DickensCollinsSet2* with "complete link" method based on iteration one.



# B.3 ICA WITH REPRESENTATIVE & DISTINCTIVE COMPONENTS ON DICKENS VS. COLLINS (1) AND (2)

Table B.3.1: Combined ICA&RD on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the on the basis of shared characteristic terms of both profiles.

|           |                     |         | Aut     | hor Profile Comp | arison  |                                   | Clustering  |
|-----------|---------------------|---------|---------|------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc.           | Dist.D. | Dist.C. | (Dist.C-Dist.D)  | p-value | conf.interval (lower/upper bound) | adjust.Rand |
| 1.        | D33_SB              | 0.0126  | 0.0248  | 0.0122           | 0.00    | 0.0087 Inf                        | 0.83        |
|           | D36_PP              | 0.0128  | 0.0246  | 0.0118           | 0.00    | 0.0053 Inf                        |             |
|           | D37a_OEP            | 0.0127  | 0.0244  | 0.0117           | 0.00    | 0.0064 Inf                        |             |
|           | D37b_OT             | 0.0107  | 0.0246  | 0.0139           | 0.00    | 0.0088 Inf                        |             |
|           | D <sub>3</sub> 8_NN | 0.0105  | 0.0257  | 0.0152           | 0.00    | 0.0094 Inf                        |             |
| 2         | D40a_MHC            | 0.0115  | 0.0224  | 0.0109           | 0.00    | 0.0069 Inf                        | 0.83        |
|           | D40b_OCS            | 0.0106  | 0.0228  | 0.0122           | 0.00    | 0.0081 Inf                        |             |
|           | D41_BR              | 0.0116  | 0.0227  | 0.0112           | 0.00    | 0.0070 Inf                        |             |
|           | D42_AN              | 0.0103  | 0.0228  | 0.0125           | 0.00    | 0.0089 Inf                        |             |
|           | D <sub>43</sub> _MC | 0.0119  | 0.0237  | 0.0118           | 0.00    | 0.0064 Inf                        |             |
| 3         | D46a_PFI            | 0.0157  | 0.0265  | 0.0108           | 0.00    | 0.0055 Inf                        | 0.83        |
|           | D46b_DS             | 0.0146  | 0.0266  | 0.0120           | 0.00    | 0.0046 Inf                        |             |
|           | D49_DC              | 0.0144  | 0.0240  | 0.0096           | 0.00    | 0.0046 Inf                        |             |
|           | D51_CHE             | 0.0165  | 0.0259  | 0.0094           | 0.01    | 0.0024 Inf                        |             |
|           | D52_BH              | 0.0132  | 0.0252  | 0.0120           | 0.00    | 0.0071 Inf                        |             |
| 4         | D <sub>54</sub> _HT | 0.0102  | 0.0211  | 0.0110           | 0.00    | 0.0065 Inf                        | 0.91        |
|           | D55_LD              | 0.0082  | 0.0211  | 0.0130           | 0.00    | 0.0099 Inf                        |             |
|           | D56_RP              | 0.0126  | 0.0211  | 0.0085           | 0.00    | 0.0049 Inf                        |             |
|           | D59_TTC             | 0.0144  | 0.0192  | 0.0048           | 0.02    | 0.0011 Inf                        |             |
|           | D60a_UT             | 0.0127  | 0.0208  | 0.0081           | 0.00    | 0.0049 Inf                        |             |
| 5         | D6ob_GE             | 0.0134  | 0.0195  | 0.0061           | 0.01    | 0.0016 Inf                        | 0.83        |
|           | D64_OMF             | 0.0146  | 0.0194  | 0.0047           | 0.04    | 0.0003 Inf                        |             |
|           | D70_ED              | 0.0121  | 0.0203  | 0.0082           | 0.00    | 0.0049 Inf                        |             |
|           | mean                | 0.0125  | 0.0230  | 0.0105           |         |                                   |             |
|           | sd                  | 0.0020  | 0.0023  | 0.0027           |         |                                   |             |
|           | SE                  | 0.0004  | 0.0005  | 0.0006           |         |                                   |             |

Table B.3.2: Combined ICA&RD on *DickensCollinsSet1*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the on the basis of shared characteristic terms of both profiles.

|           |                      |         | Auth    | or Profile Compa | rison   |                                   | Clustering  |
|-----------|----------------------|---------|---------|------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc.            | Dist.D. | Dist.C. | (Dist.C-Dist.D)  | p-value | conf.interval (lower/upper bound) | adjust.Rand |
|           | C50_Ant              | 0.0152  | 0.0177  | 0.0025           | 0.88    | -0.0060 Inf                       |             |
|           | C51_RBR              | 0.0120  | 0.0201  | 0.0081           | 1.00    | -0.0119 Inf                       |             |
| 6         | C52_Basil            | 0.0175  | 0.0123  | -0.0052          | 0.00    | 0.0022 Inf                        | 0.91        |
|           | C <sub>54</sub> _HS  | 0.0158  | 0.0161  | 0.0002           | 0.54    | -0.0046 Inf                       |             |
|           | C <sub>5</sub> 6_AD  | 0.0186  | 0.0128  | -0.0058          | 0.00    | .0025 Inf                         |             |
|           | C <sub>57</sub> _ARL | 0.0167  | 0.0151  | -0.0016          | 0.19    | -0.0014 Inf                       |             |
|           | C <sub>59</sub> _QOH | 0.0185  | 0.0122  | -0.0063          | 0.00    | 0.0035 Inf                        |             |
| 7         | C6o_WIW              | 0.0233  | 0.0111  | -0.0122          | 0.00    | 0.0082 Inf                        | 0.83        |
| -         | C62_NN               | 0.0242  | 0.0103  | -0.0139          | 0.00    | 0.0101 Inf                        | -           |
|           | C66_Armadale         | 0.0238  | 0.0120  | -0.0118          | 0.00    | 0.0074 Inf                        |             |
|           | C68_MS               | 0.0227  | 0.0103  | -0.0124          | 0.00    | 0.0091 Inf                        |             |
|           | C70_MW               | 0.0242  | 0.0106  | -0.0136          | 0.00    | 0.0092 Inf                        |             |
| 8         | C72_PMF              | 0.0229  | 0.0099  | -0.0130          | 0.00    | 0.0084 Inf                        | 0.91        |
|           | C <sub>73</sub> _TNM | 0.0240  | 0.0092  | -0.0149          | 0.00    | 0.0097 Inf                        |             |
|           | C75_LL               | 0.0236  | 0.0083  | -0.0153          | 0.00    | 0.0124 Inf                        |             |
|           | C <sub>7</sub> 6_TD  | 0.0235  | 0.0080  | -0.0156          | 0.00    | 0.0129 Inf                        |             |
|           | C <sub>7</sub> 8_HH  | 0.0235  | 0.0119  | -0.0116          | 0.00    | 0.0069 Inf                        |             |
| 9         | C79_FL               | 0.0203  | 0.0115  | -0.0087          | 0.01    | 0.0028 Inf                        | 0.83        |
|           | C8o_JD               | 0.0215  | 0.0078  | -0.0137          | 0.00    | 0.0110 Inf                        |             |
|           | C81_BR               | 0.0221  | 0.0106  | -0.0115          | 0.00    | 0.0060 Inf                        |             |
|           | C84_ISN              | 0.0215  | 0.0127  | -0.0088          | 0.01    | 0.0028 Inf                        |             |
|           | C86_EG               | 0.0223  | 0.0090  | -0.0133          | 0.00    | 0.0108 Inf                        |             |
|           | mean                 | 0.0208  | 0.0118  | -0.0090          |         |                                   |             |
|           | sd                   | 0.0035  | 0.0031  | 0.0064           |         |                                   |             |
|           | SE                   | 0.0007  | 0.0007  | 0.0014           |         |                                   |             |

Table B.3.3: Combined ICA&RD on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *Collins* profile to test document. Clustering and corresponding *adjusted Rand* is on the on the basis of shared characterisic terms of both profiles.

|           |           |         | Aı      | uthor Profile Com | parison |                                   | Clustering  |
|-----------|-----------|---------|---------|-------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc. | Dist.D. | Dist.C. | (Dist.C-Dist.D)   | p-value | conf.interval (lower/upper bound) | adjust.Rand |
| 1         | D1023     | 0.0023  | 0.0078  | 0.0056            | 0.00    | 0.0052 Inf                        | 0.84        |
|           | D1392     | 0.0049  | 0.0066  | 0.0016            | 0.00    | 0.0010 Inf                        |             |
|           | D1394     | 0.0044  | 0.0067  | 0.0023            | 0.00    | 0.0017 Inf                        |             |
|           | D1400     | 0.0027  | 0.0075  | 0.0048            | 0.00    | 0.0044 Inf                        |             |
|           | D1406     | 0.0040  | 0.0068  | 0.0028            | 0.00    | 0.0023 Inf                        |             |
| 2         | D1407     | 0.0050  | 0.0062  | 0.0012            | 0.00    | 0.0006 Inf                        | 0.70        |
|           | D1414     | 0.0038  | 0.0064  | 0.0027            | 0.00    | 0.0022 Inf                        |             |
|           | D1415     | 0.0041  | 0.0064  | 0.0023            | 0.00    | 0.0017 Inf                        |             |
|           | D1416     | 0.0036  | 0.0069  | 0.0034            | 0.00    | 0.0028 Inf                        |             |
|           | D1419     | 0.0037  | 0.0069  | 0.0032            | 0.00    | 0.0027 Inf                        |             |
| 3         | D1421     | 0.0047  | 0.0070  | 0.0023            | 0.00    | 0.0016 Inf                        | 0.84        |
|           | D1465     | 0.0048  | 0.0063  | 0.0015            | 0.00    | 0.0009 Inf                        |             |
|           | D19337    | 0.0033  | 0.0074  | 0.0041            | 0.00    | 0.0036 Inf                        |             |
|           | D20795    | 0.0028  | 0.0080  | 0.0052            | 0.00    | 0.0047 Inf                        |             |
|           | D23344    | 0.0067  | 0.0054  | -0.0013           | 1.00    | -0.0019 Inf                       |             |
| 4         | D23765    | 0.0058  | 0.0042  | -0.0016           | 1.00    | -0.0021 Inf                       | 0.84        |
|           | D25852    | 0.0039  | 0.0074  | 0.0035            | 0.00    | 0.0030 Inf                        |             |
|           | D25853    | 0.0042  | 0.0072  | 0.0030            | 0.00    | 0.0025 Inf                        |             |
|           | D25854    | 0.0042  | 0.0071  | 0.0029            | 0.00    | 0.0023 Inf                        |             |
|           | D27924    | 0.0037  | 0.0068  | 0.0031            | 0.00    | 0.0026 Inf                        |             |
| 5         | D37121    | 0.0037  | 0.0067  | 0.0030            | 0.00    | 0.0025 Inf                        | 0.84        |
|           | D40723    | 0.0033  | 0.0072  | 0.0039            | 0.00    | 0.0034 Inf                        |             |
|           | D564      | 0.0028  | 0.0076  | 0.0049            | 0.00    | 0.0044 Inf                        |             |
|           | D580      | 0.0032  | 0.0072  | 0.0039            | 0.00    | 0.0035 Inf                        |             |
|           | D588      | 0.0034  | 0.0072  | 0.0038            | 0.00    | 0.0033 Inf                        |             |
| 6         | D650      | 0.0036  | 0.0072  | 0.0036            | 0.00    | 0.0031 Inf                        | 0.84        |
|           | D675      | 0.0035  | 0.0072  | 0.0038            | 0.00    | 0.0033 Inf                        |             |
|           | D699      | 0.0041  | 0.0068  | 0.0026            | 0.00    | 0.0021 Inf                        |             |
|           | D700      | 0.0027  | 0.0076  | 0.0049            | 0.00    | 0.0046 Inf                        |             |
|           | D730      | 0.0034  | 0.0070  | 0.0036            | 0.00    | 0.0032 Inf                        |             |
| 7         | D766      | 0.0027  | 0.0077  | 0.0049            | 0.00    | 0.0046 Inf                        | 0.84        |
|           | D821      | 0.0027  | 0.0078  | 0.0051            | 0.00    | 0.0048 Inf                        |             |
|           | D872      | 0.0024  | 0.0076  | 0.0052            | 0.00    | 0.0049 Inf                        |             |
|           | D882      | 0.0032  | 0.0073  | 0.0041            | 0.00    | 0.0037 Inf                        |             |
|           | D883      | 0.0032  | 0.0075  | 0.0043            | 0.00    | 0.0039 Inf                        |             |
| 8         | D914      | 0.0022  | 0.0076  | 0.0054            | 0.00    | 0.0051 Inf                        | 0.84        |
|           | D916      | 0.0038  | 0.0069  | 0.0031            | 0.00    | 0.0026 Inf                        |             |
|           | D917      | 0.0026  | 0.0077  | 0.0051            | 0.00    | 0.0048 Inf                        |             |
|           | D963      | 0.0027  | 0.0077  | 0.0050            | 0.00    | 0.0046 Inf                        |             |
|           | D967      | 0.0027  | 0.0076  | 0.0049            | 0.00    | 0.0045 Inf                        |             |
| 9         | D968      | 0.0024  | 0.0078  | 0.0054            | 0.00    | 0.0050 Inf                        | 0.84        |
|           | D98       | 0.0032  | 0.0072  | 0.0040            | 0.00    | 0.0035 Inf                        |             |
|           | Dal2324   | 0.0046  | 0.0061  | 0.0015            | 0.00    | 0.0010 Inf                        |             |
|           | Dal28198  | 0.0028  | 0.0078  | 0.0050            | 0.00    | 0.0047 Inf                        |             |
|           | DC1423    | 0.0061  | 0.0050  | -0.0011           | 1.00    | -0.0016 Inf                       |             |
|           | mean      | 0.0036  | 0.0070  | 0.0034            |         |                                   |             |
|           | sd        | 0.0010  | 0.0008  | 0.0017            |         |                                   |             |
|           | SE        | 0.0002  | 0.0001  | 0.0003            |         |                                   |             |

Table B.3.4: Combined ICA&RD on *DickensCollinsSet2*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Collins' documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the on the basis of shared characteristic terms of both profiles.

| Clustering  |                                   | parison | thor Profile Com | Au      | Author Profile Comparison |           |           |  |  |  |  |  |  |  |
|-------------|-----------------------------------|---------|------------------|---------|---------------------------|-----------|-----------|--|--|--|--|--|--|--|
| adjust.Rand | conf.interval (lower/upper bound) | p-value | (Dist.C-Dist.D)  | Dist.C. | Dist.D.                   | Test Doc. | Iteration |  |  |  |  |  |  |  |
| 0.8         | 0.0055 Inf                        | 0.00    | -0.0059          | 0.0025  | 0.0084                    | C1438     | 10        |  |  |  |  |  |  |  |
|             | 0.0050 Inf                        | 0.00    | -0.0055          | 0.0026  | 0.0081                    | C155      |           |  |  |  |  |  |  |  |
|             | 0.0054 Inf                        | 0.00    | -0.0058          | 0.0025  | 0.0083                    | C1586     |           |  |  |  |  |  |  |  |
|             | 0.0057 Inf                        | 0.00    | -0.0061          | 0.0023  | 0.0084                    | C1587     |           |  |  |  |  |  |  |  |
|             | 0.0011 Inf                        | 0.00    | -0.0017          | 0.0050  | 0.0067                    | C1588     |           |  |  |  |  |  |  |  |
| 0.8         | 0.0034 Inf                        | 0.00    | -0.0040          | 0.0035  | 0.0075                    | C1621     | 11        |  |  |  |  |  |  |  |
|             | 0.0057 Inf                        | 0.00    | -0.0061          | 0.0021  | 0.0082                    | C1622     |           |  |  |  |  |  |  |  |
|             | 0.0050 Inf                        | 0.00    | -0.0054          | 0.0027  | 0.0081                    | C1623     |           |  |  |  |  |  |  |  |
|             | 0.0048 Inf                        | 0.00    | -0.0053          | 0.0028  | 0.0081                    | C1624     |           |  |  |  |  |  |  |  |
|             | 0.0027 Inf                        | 0.00    | -0.0033          | 0.0039  | 0.0072                    | C1625     |           |  |  |  |  |  |  |  |
| 0.7         | 0.0027 Inf                        | 0.00    | -0.0032          | 0.0041  | 0.0073                    | C1626     | 12        |  |  |  |  |  |  |  |
|             | 0.0053 Inf                        | 0.00    | -0.0056          | 0.0023  | 0.0080                    | C1627     |           |  |  |  |  |  |  |  |
|             | 0.0044 Inf                        | 0.00    | -0.0048          | 0.0029  | 0.0077                    | C1628     |           |  |  |  |  |  |  |  |
|             | 0.0055 Inf                        | 0.00    | -0.0058          | 0.0021  | 0.0080                    | C1629     |           |  |  |  |  |  |  |  |
|             | 0.0067 Inf                        | 0.00    | -0.0069          | 0.0012  | 0.0081                    | C1630     |           |  |  |  |  |  |  |  |
| 0.7         | 0.0051 Inf                        | 0.00    | -0.0055          | 0.0023  | 0.0077                    | C170      | 13        |  |  |  |  |  |  |  |
|             | 0.0057 Inf                        | 0.00    | -0.0060          | 0.0019  | 0.0079                    | C1895     |           |  |  |  |  |  |  |  |
|             | 0.0035 Inf                        | 0.00    | -0.0040          | 0.0033  | 0.0073                    | C1917     |           |  |  |  |  |  |  |  |
|             | 0.0051 Inf                        | 0.00    | -0.0055          | 0.0021  | 0.0077                    | C1975     |           |  |  |  |  |  |  |  |
|             | -0.0023 Inf                       | 1.00    | 0.0018           | 0.0066  | 0.0048                    | C28367    |           |  |  |  |  |  |  |  |
| 0.7         | -0.0013 Inf                       | 0.99    | 0.0008           | 0.0057  | 0.0050                    | C3606     | 14        |  |  |  |  |  |  |  |
|             | 0.0053 Inf                        | 0.00    | -0.0057          | 0.0022  | 0.0079                    | C3632     |           |  |  |  |  |  |  |  |
|             | 0.0052 Inf                        | 0.00    | -0.0056          | 0.0024  | 0.0080                    | C3633     |           |  |  |  |  |  |  |  |
|             | 0.0039 Inf                        | 0.00    | -0.0043          | 0.0032  | 0.0075                    | C3634     |           |  |  |  |  |  |  |  |
|             | 0.0018 Inf                        | 0.00    | -0.0023          | 0.0045  | 0.0068                    | C4605     |           |  |  |  |  |  |  |  |
|             |                                   |         | -0.0045          | 0.0031  | 0.0075                    | mean      |           |  |  |  |  |  |  |  |
|             |                                   |         | 0.0021           | 0.0013  | 0.0009                    | sd        |           |  |  |  |  |  |  |  |
|             |                                   |         | 0.0004           | 0.0003  | 0.0002                    | SE        |           |  |  |  |  |  |  |  |

Figure B.3.1: Clustering on combined ICA & RD characteristic terms on *DickensCollinsSet2* with "complete link" method based on iteration 11.

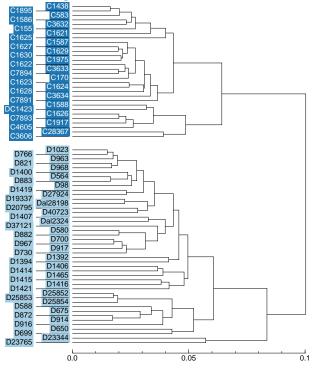


Table B.4.1: Representativeness & Distinctiveness on *DickensWorldSetSet*. Results of evaluating distances for profiles  $P_D$  and  $P_W$  to test closeness to Dickens' documents with failed t-test due to too few frequent terms in *World* profile. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles

|           |           |         | Α       | uthor Profile Con | nparison |               |                     | Clustering  |
|-----------|-----------|---------|---------|-------------------|----------|---------------|---------------------|-------------|
| Iteration | Test Doc. | Dist.D. | Dist.W. | (Dist.W-Dist.D)   | p-value  | conf.interval | (lower/upper bound) | adjust.Rand |
| 1         | D1023     | 0.0106  | 0.1836  | 0.1730            | NA       | NA            | NA                  | 0.41        |
|           | D1400     | 0.0108  | 0.1513  | 0.1405            | NA       | NA            | NA                  |             |
|           | D19337    | 0.0091  | 0.1282  | 0.1191            | NA       | NA            | NA                  |             |
|           | D40723    | 0.0105  | 0.2821  | 0.2716            | NA       | NA            | NA                  |             |
|           | D564      | 0.0099  | 0.2141  | 0.2042            | NA       | NA            | NA                  |             |
| 2         | D580      | 0.0071  | 0.1058  | 0.0987            | NA       | NA            | NA                  | 0.90        |
|           | D588      | 0.0076  | 0.0296  | 0.0220            | NA       | NA            | NA                  |             |
|           | D650      | 0.0069  | 0.0058  | -0.0011           | NA       | NA            | NA                  |             |
|           | D675      | 0.0070  | 0.0776  | 0.0706            | NA       | NA            | NA                  |             |
|           | D699      | 0.0099  | 0.0657  | 0.0558            | NA       | NA            | NA                  |             |
| 3         | D700      | 0.0108  | 0.1033  | 0.0925            | NA       | NA            | NA                  | 0.44        |
| -         | D730      | 0.0110  | 0.1578  | 0.1468            | NA       | NA            | NA                  |             |
|           | D766      | 0.0115  | 0.1441  | 0.1325            | NA       | NA            | NA                  |             |
|           | D821      | 0.0113  | 0.1276  | 0.1163            | NA       | NA            | NA                  |             |
|           | D872      | 0.0111  | 0.1962  | 0.1851            | NA       | NA            | NA                  |             |
| 4         | D882      | 0.0100  | 0.1500  | 0.1400            | NA       | NA            | NA                  | 0.90        |
|           | D883      | 0.0103  | 0.2120  | 0.2017            | NA       | NA            | NA                  |             |
|           | D914      | 0.0095  | 0.1034  | 0.0938            | NA       | NA            | NA                  |             |
|           | D916      | 0.0095  | 0.0808  | 0.0713            | NA       | NA            | NA                  |             |
|           | D917      | 0.0106  | 0.1678  | 0.1573            | NA       | NA            | NA                  |             |
| 5         | D963      | 0.0104  | 0.1350  | 0.1247            | NA       | NA            | NA                  | 0.90        |
| -         | D967      | 0.0104  | 0.1720  | 0.1616            | NA       | NA            | NA                  |             |
|           | D968      | 0.0104  | 0.1519  | 0.1415            | NA       | NA            | NA                  |             |
|           | D98       | 0.0099  | 0.1301  | 0.1201            | NA       | NA            | NA                  |             |
|           | mean      | 0.0098  | 0.1365  | 0.1266            | NA       | NA            | NA                  |             |
|           | sd        | 0.0014  | 0.0610  | 0.0601            | NA       | NA            | NA                  |             |
|           | SE        | 0.0003  | 0.0124  | 0.0123            | NA       | NA            | NA                  |             |

Table B.4.2: Representativeness & Distinctiveness on *DickensWorldSetSet*. Results of evaluating distances for profiles  $P_D$  and  $P_W$  to test closeness to World documents with failed t-test due to too few frequent terms in *World* profile. Clustering and corresponding *adjusted Rand* is on the basis of shared representative and distinctive terms of both profiles

|           |                   |                  | Au               | thor Profile Com | parison  |               |                     | Clustering  |
|-----------|-------------------|------------------|------------------|------------------|----------|---------------|---------------------|-------------|
| Iteration | Test Doc.         | Dist.D.          | Dist.W.          | (Dist.W-Dist.D)  | p-value  | conf.interval | (lower/upper bound) | adjust.Rand |
|           | Wa_105            | 0.0143           | 0.1387           | 0.1244           | NA       | NA            | NA                  |             |
| 6         | Wa_121            | 0.0119           | 0.0000           | -0.0119          | NA       | NA            | NA                  | 0.41        |
|           | Wa_141            | 0.0132           | 0.0000           | -0.0132          | NA       | NA            | NA                  |             |
|           | Wa_158            | 0.0138           | 0.0000           | -0.0138          | NA       | NA            | NA                  |             |
|           | Wa_21839          | 0.0132           | 0.0000           | -0.0132          | NA       | NA            | NA                  |             |
|           | Wa_42671          | 0.0133           | 0.0000           | -0.0133          | NA       | NA            | NA                  |             |
| 7         | Wa.b_767          | 0.0110           | 0.2868           | 0.2758           | NA       | NA            | NA                  | 0.41        |
|           | Wc_155            | 0.0111           | 0.0792           | 0.0680           | NA       | NA            | NA                  |             |
|           | Wc_1626           | 0.0100           | 0.1890           | 0.1789           | NA       | NA            | NA                  |             |
|           | Wc_583            | 0.0105           | 0.2530           | 0.2425           | NA       | NA            | NA                  |             |
|           | Wc.b_1028         | 0.0099           | 0.2270           | 0.2171           | NA       | NA            | NA                  |             |
| 8         | Wc.b_1260         | 0.0105           | 0.1110           | 0.1005           | NA       | NA            | NA                  | 0.32        |
|           | Wc.b_9182         | 0.0107           | 0.0964           | 0.0857           | NA       | NA            | NA                  |             |
|           | Wd_14436          | 0.0128           | 0.0687           | 0.0560           | NA       | NA            | NA                  |             |
|           | Wd_370            | 0.0146           | 0.1795           | 0.1650           | NA       | NA            | NA                  |             |
|           | Wd_376            | 0.0134           | 0.1707           | 0.1574           | NA       | NA            | NA                  |             |
| 9         | Wd_521            | 0.0128           | 0.1085           | 0.0956           | NA       | NA            | NA                  | 0.32        |
| -         | Wd_6422           | 0.0137           | 0.1959           | 0.1821           | NA       | NA            | NA                  | 0           |
|           | We_145            | 0.0106           | 0.1466           | 0.1360           | NA       | NA            | NA                  |             |
|           | We_2171           | 0.0093           | 0.0744           | 0.0651           | NA       | NA            | NA                  |             |
|           | We_507            | 0.0105           | 0.1490           | 0.1384           | NA       | NA            | NA                  |             |
| 10        | We_550            | 0.0098           | 0.1864           | 0.1766           | NA       | NA            | NA                  | 0.29        |
|           | We_6688           | 0.0101           | 0.2212           | 0.2111           | NA       | NA            | NA                  | ,           |
|           | We_7469           | 0.0101           | 0.1579           | 0.1478           | NA       | NA            | NA                  |             |
|           | We.b_768          | 0.0098           | 0.1619           | 0.1521           | NA       | NA            | NA                  |             |
|           | Wf_1147           | 0.0114           | 0.0731           | 0.0616           | NA       | NA            | NA                  |             |
| 11        | Wf_5256           | 0.0136           | 0.1920           | 0.1784           | NA       | NA            | NA                  | 0.41        |
|           | Wf_6098           | 0.0150           | 0.1868           | 0.1718           | NA       | NA            | NA                  |             |
|           | Wf_6593           | 0.0144           | 0.1032           | 0.0888           | NA       | NA            | NA                  |             |
|           | Wf_9609           | 0.0141           | 0.0576           | 0.0436           | NA       | NA            | NA                  |             |
|           | Wg_2153           | 0.0123           | 0.1994           | 0.1871           | NA       | NA            | NA                  |             |
| 12        | Wg_394            | 0.0104           | 0.0981           | 0.0877           | NA       | NA            | NA                  | 0.41        |
|           | Wg_4537           | 0.0104           | 0.0984           | 0.0880           | NA       | NA            | NA                  |             |
|           | Wgo_2667          | 0.0123           | 0.2115           | 0.1992           | NA       | NA            | NA                  |             |
|           | Wr_12398          | 0.0133           | 0.1080           | 0.0947           | NA       | NA            | NA                  |             |
|           | Wr_6124           | 0.0144           | 0.1716           | 0.1572           | NA       | NA            | NA                  |             |
| 13        | Ws_2160           | 0.0125           | 0.2222           | 0.2097           | NA       | NA            | NA                  | 0.41        |
|           | Ws_2311           | 0.0121           | 0.2131           | 0.2009           | NA       | NA            | NA                  |             |
|           | Ws_4084           | 0.0135           | 0.2082           | 0.1947           | NA       | NA            | NA                  |             |
|           | Ws_4085           | 0.0128           | 0.3127           | 0.2999           | NA       | NA            | NA                  |             |
|           | Ws_6758           | 0.0115           | 0.2235           | 0.2121           | NA       | NA            | NA                  |             |
| 14        | Ws_6761           | 0.0118           | 0.1102           | 0.0984           | NA       | NA            | NA                  | 0.41        |
| - 7       | Wst_1079          | 0.0124           | 0.1315           | 0.1192           | NA       | NA            | NA                  |             |
|           | Wst_804           | 0.0110           | 0.0613           | 0.0504           | NA       | NA            | NA                  |             |
|           | Wsw_17157         | 0.0108           | 0.0319           | 0.0212           | NA       | NA            | NA                  |             |
|           | Wsw_4208          | 0.0154           | 0.1514           | 0.1360           | NA       | NA            | NA                  |             |
| 15        | Wsw_4737          | 0.0123           | 0.0593           | 0.0470           | NA       | NA            | NA                  | 0.38        |
|           | Wt_4558           | 0.0129           | 0.1317           | 0.1200           | NA       | NA            | NA                  | 0.90        |
|           | Wt_4550<br>Wt_599 | 0.0110           | 0.1317           | 0.1223           | NA       | NA            | NA                  |             |
|           | Wtr_18000         | 0.0114           | 0.0793           | 0.1223           | NA       | NA            | NA                  |             |
|           | Wtr_19500         | 0.0133           | 0.0793           | 0.0820           | NA       | NA            | NA                  |             |
|           | _ //              |                  |                  |                  | NA       | NA            | NA                  |             |
|           | mean<br>sd        | 0.0121<br>0.0016 | 0.1346<br>0.0761 | 0.1225<br>0.0763 | NA<br>NA | NA<br>NA      | NA<br>NA            |             |
|           | SE                |                  |                  | , ,              |          |               | NA                  |             |
|           | 9E                | 0.0002           | 0.0107           | 0.0107           | NA       | NA            | INA                 |             |

Table B.5.1: ICA on *DickensWorldSet*. Results of evaluating distances for profiles  $P_D$  and  $P_W$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *World* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characterisic terms of both profiles.

|           |           |         | A       | uthor Profile Com | parison |                                   | Clustering  |
|-----------|-----------|---------|---------|-------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc. | Dist.D. | Dist.W. | (Dist.W-Dist.D)   | p-value | conf.interval (lower/upper bound) | adjust.Rand |
| 1         | D1023     | 0.0031  | 0.0079  | 0.0048            | 0.00    | 0.0043 Inf                        | 0.95        |
|           | D1400     | 0.0029  | 0.0081  | 0.0052            | 0.00    | 0.0048 Inf                        | ,,,         |
|           | D19337    | 0.0035  | 0.0077  | 0.0041            | 0.00    | 0.0036 Inf                        |             |
|           | D40723    | 0.0038  | 0.0075  | 0.0037            | 0.00    | 0.0032 Inf                        |             |
|           | D564      | 0.0034  | 0.0079  | 0.0045            | 0.00    | 0.0040 Inf                        |             |
| 2         | D580      | 0.0031  | 0.0077  | 0.0046            | 0.00    | 0.0041 Inf                        | 0.95        |
|           | D588      | 0.0039  | 0.0072  | 0.0033            | 0.00    | 0.0027 Inf                        |             |
|           | D650      | 0.0044  | 0.0075  | 0.0030            | 0.00    | 0.0025 Inf                        |             |
|           | D675      | 0.0046  | 0.0071  | 0.0025            | 0.00    | 0.0019 Inf                        |             |
|           | D699      | 0.0073  | 0.0048  | -0.0025           | 1.00    | -0.0031 Inf                       |             |
| 3         | D700      | 0.0026  | 0.0081  | 0.0055            | 0.00    | 0.0051 Inf                        | 0.95        |
|           | D730      | 0.0030  | 0.0079  | 0.0049            | 0.00    | 0.0045 Inf                        |             |
|           | D766      | 0.0031  | 0.0078  | 0.0047            | 0.00    | 0.0043 Inf                        |             |
|           | D821      | 0.0029  | 0.0081  | 0.0052            | 0.00    | 0.0048 Inf                        |             |
|           | D872      | 0.0034  | 0.0074  | 0.0040            | 0.00    | 0.0035 Inf                        |             |
| 4         | D882      | 0.0037  | 0.0077  | 0.0040            | 0.00    | 0.0034 Inf                        | 0.90        |
|           | D883      | 0.0024  | 0.0082  | 0.0058            | 0.00    | 0.0054 Inf                        |             |
|           | D914      | 0.0030  | 0.0078  | 0.0049            | 0.00    | 0.0044 Inf                        |             |
|           | D916      | 0.0048  | 0.0071  | 0.0024            | 0.00    | 0.0017 Inf                        |             |
|           | D917      | 0.0018  | 0.0081  | 0.0063            | 0.00    | 0.0059 Inf                        |             |
| 5         | D963      | 0.0029  | 0.0082  | 0.0053            | 0.00    | 0.0049 Inf                        | 0.95        |
|           | D967      | 0.0028  | 0.0080  | 0.0052            | 0.00    | 0.0047 Inf                        |             |
|           | D968      | 0.0029  | 0.0081  | 0.0052            | 0.00    | 0.0048 Inf                        |             |
|           | D98       | 0.0034  | 0.0080  | 0.0046            | 0.00    | 0.0041 Inf                        |             |
|           | mean      | 0.0034  | 0.0077  | 0.0042            |         |                                   |             |
|           | sd        | 0.0011  | 0.0007  | 0.0017            |         |                                   |             |
|           | SE        | 0.0002  | 0.0001  | 0.0004            |         |                                   |             |

Table B.5.2: ICA on *DickensWorldSet*. Results of evaluating distances for profiles  $P_D$  and  $P_W$  to test closeness to World documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis of shared characteristic terms of both profiles.

|           | Author Profile Comparison |         |         |                 |         |                                   |            |  |
|-----------|---------------------------|---------|---------|-----------------|---------|-----------------------------------|------------|--|
| Iteration | Test Doc.                 | Dist.D. | Dist.W. | (Dist.W-Dist.D) | p-value | conf.interval (lower/upper bound) | adjust.Ran |  |
|           | Wa_105                    | 0.0074  | 0.0034  | -0.0039         | 0.00    | 0.0035 Inf                        |            |  |
| 5         | Wa_121                    | 0.0072  | 0.0057  | -0.0014         | 0.00    | 0.0008 Inf                        | 0.0        |  |
|           | Wa_141                    | 0.0077  | 0.0044  | -0.0033         | 0.00    | 0.0028 Inf                        | -          |  |
|           | Wa_158                    | 0.0076  | 0.0045  | -0.0031         | 0.00    | 0.0026 Inf                        |            |  |
|           | Wa_21839                  | 0.0077  | 0.0044  | -0.0033         | 0.00    | 0.0028 Inf                        |            |  |
|           | Wa_42671                  | 0.0077  | 0.0043  | -0.0033         | 0.00    | 0.0028 Inf                        |            |  |
| 7         | Wa.b_767                  | 0.0068  | 0.0044  | -0.0024         | 0.00    | 0.0017 Inf                        | 0.9        |  |
|           | Wc_155                    | 0.0054  | 0.0067  | 0.0013          | 1.00    | -0.0020 Inf                       |            |  |
|           | Wc_1626                   | 0.0048  | 0.0074  | 0.0026          | 1.00    | -0.0033 Inf                       |            |  |
|           | Wc_583                    | 0.0055  | 0.0068  | 0.0012          | 1.00    | -0.0019 Inf                       |            |  |
|           | Wc.b_1028                 | 0.0051  | 0.0063  | 0.0013          | 1.00    | -0.0019 Inf                       |            |  |
|           | Wc.b_1260                 | 0.0051  | 0.0059  | 0.0009          | 0.99    | -0.0015 Inf                       | 0.0        |  |
|           | Wc.b_9182                 | 0.0051  | 0.0059  | 0.0008          | 0.98    | -0.0014 Inf                       |            |  |
|           | Wd_14436                  | 0.0070  | 0.0036  | -0.0035         | 0.00    | 0.0030 Inf                        |            |  |
|           | Wd_370                    | 0.0073  | 0.0033  | -0.0041         | 0.00    | 0.0036 Inf                        |            |  |
|           | Wd_376                    | 0.0068  | 0.0040  | -0.0028         | 0.00    | 0.0022 Inf                        |            |  |
|           | Wd_521                    | 0.0067  | 0.0050  | -0.0017         | 0.00    | 0.0011 Inf                        | 0.         |  |
|           | Wd_6422                   | 0.0070  | 0.0043  | -0.0028         | 0.00    | 0.0022 Inf                        |            |  |
|           | We_145                    | 0.0069  | 0.0049  | -0.0020         | 0.00    | 0.0015 Inf                        |            |  |
|           | We_2171                   | 0.0048  | 0.0067  | 0.0019          | 1.00    | -0.0025 Inf                       |            |  |
|           | We_507                    | 0.0054  | 0.0070  | 0.0016          | 1.00    | -0.0023 Inf                       |            |  |
| )         | We_550                    | 0.0053  | 0.0071  | 0.0018          | 1.00    | -0.0024 Inf                       | 0.         |  |
|           | We_6688                   | 0.0059  | 0.0067  | 0.0008          | 0.99    | -0.0014 Inf                       |            |  |
|           | We_7469                   | 0.0065  | 0.0056  | -0.0009         | 0.01    | 0.0003 Inf                        |            |  |
|           | We.b_768                  | 0.0052  | 0.0065  | 0.0013          | 1.00    | -0.0019 Inf                       |            |  |
|           | Wf_1147                   | 0.0073  | 0.0040  | -0.0033         | 0.00    | 0.0027 Inf                        |            |  |
| 1         | Wf_5256                   | 0.0075  | 0.0048  | -0.0028         | 0.00    | 0.0022 Inf                        | 0.         |  |
|           | Wf_6098                   | 0.0079  | 0.0041  | -0.0038         | 0.00    | 0.0033 Inf                        |            |  |
|           | Wf_6593                   | 0.0080  | 0.0041  | -0.0039         | 0.00    | 0.0035 Inf                        |            |  |
|           | Wf_9609                   | 0.0077  | 0.0046  | -0.0031         | 0.00    | 0.0026 Inf                        |            |  |
|           | Wg_2153                   | 0.0054  | 0.0057  | 0.0003          | 0.79    | -0.0009 Inf                       |            |  |
| 2         | Wg_394                    | 0.0056  | 0.0057  | 0.0001          | 0.56    | -0.0007 Inf                       | 0.         |  |
|           | Wg_4537                   | 0.0049  | 0.0071  | 0.0022          | 1.00    | -0.0028 Inf                       |            |  |
|           | Wgo_2667                  | 0.0071  | 0.0043  | -0.0028         | 0.00    | 0.0023 Inf                        |            |  |
|           | Wr_12398                  | 0.0079  | 0.0031  | -0.0048         | 0.00    | 0.0044 Inf                        |            |  |
|           | Wr_6124                   | 0.0076  | 0.0039  | -0.0037         | 0.00    | 0.0031 Inf                        |            |  |
| 3         | Ws_2160                   | 0.0072  | 0.0056  | -0.0016         | 0.00    | 0.0010 Inf                        | 0.         |  |
|           | Ws_2311                   | 0.0064  | 0.0056  | -0.0008         | 0.01    | 0.0002 Inf                        |            |  |
|           | Ws_4084                   | 0.0074  | 0.0056  | -0.0018         | 0.00    | 0.0012 Inf                        |            |  |
|           | Ws_4085                   | 0.0074  | 0.0055  | -0.0018         | 0.00    | 0.0013 Inf                        |            |  |
|           | Ws_6758                   | 0.0067  | 0.0064  | -0.0004         | 0.17    | -0.0003 Inf                       |            |  |
| 4         | Ws_6761                   | 0.0073  | 0.0043  | -0.0030         | 0.00    | 0.0025 Inf                        | 0.         |  |
|           | Wst_1079                  | 0.0061  | 0.0054  | -0.0007         | 0.04    | 0.0001 Inf                        |            |  |
|           | Wst_804                   | 0.0054  | 0.0064  | 0.0010          | 0.99    | -0.0017 Inf                       |            |  |
|           | Wsw_17157                 | 0.0062  | 0.0052  | -0.0010         | 0.00    | 0.0004 Inf                        |            |  |
|           | Wsw_4208                  | 0.0069  | 0.0038  | -0.0031         | 0.00    | 0.0025 Inf                        |            |  |
| 5         | Wsw_4737                  | 0.0062  | 0.0045  | -0.0017         | 0.00    | 0.0011 Inf                        | 0.         |  |
|           | Wt_4558                   | 0.0066  | 0.0048  | -0.0018         | 0.00    | 0.0012 Inf                        |            |  |
|           | Wt_599                    | 0.0059  | 0.0058  | -0.0001         | 0.38    | -0.0005 Inf                       |            |  |
|           | Wtr_18000                 | 0.0072  | 0.0041  | -0.0031         | 0.00    | 0.0026 Inf                        |            |  |
|           | Wtr_19500                 | 0.0072  | 0.0043  | -0.0029         | 0.00    | 0.0023 Inf                        |            |  |
|           | mean                      | 0.0066  | 0.0052  | -0.0014         |         |                                   |            |  |
|           | sd                        | 0.0010  | 0.0011  | 0.0020          |         |                                   |            |  |
|           | SE                        | 0.0001  | 0.0002  | 0.0003          |         |                                   |            |  |

Table B.6.1: Combined ICA& RD on *DickensWorldSet*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to Dickens' documents also showing t-test results for hypothesis assuming greater mean for *World* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis shared characteristic terms of both profiles.

| Clustering  |                                   | parison | athor Profile Com | Au      |         |           |           |
|-------------|-----------------------------------|---------|-------------------|---------|---------|-----------|-----------|
| adjust.Rand | conf.interval (lower/upper bound) | p-value | (Dist.W-Dist.D)   | Dist.W. | Dist.D. | Test Doc. | Iteration |
| 0.03        | 0.0034 Inf                        | 0.00    | 0.0040            | 0.0068  | 0.0028  | D1023     | 1         |
| 0           | 0.0027 Inf                        | 0.00    | 0.0032            | 0.0060  | 0.0028  | D1400     |           |
|             | 0.0026 Inf                        | 0.00    | 0.0032            | 0.0065  | 0.0034  | D19337    |           |
|             | 0.0026 Inf                        | 0.00    | 0.0031            | 0.0065  | 0.0034  | D40723    |           |
|             | 0.0030 Inf                        | 0.00    | 0.0036            | 0.0070  | 0.0033  | D564      |           |
| -0.01       | 0.0039 Inf                        | 0.00    | 0.0044            | 0.0074  | 0.0030  | D580      | 2         |
|             | 0.0024 Inf                        | 0.00    | 0.0030            | 0.0070  | 0.0040  | D588      |           |
|             | 0.0018 Inf                        | 0.00    | 0.0024            | 0.0071  | 0.0047  | D650      |           |
|             | 0.0013 Inf                        | 0.00    | 0.0019            | 0.0069  | 0.0050  | D675      |           |
|             | -0.0025 Inf                       | 1.00    | -0.0019           | 0.0050  | 0.0069  | D699      |           |
| 0.85        | 0.0040 Inf                        | 0.00    | 0.0045            | 0.0072  | 0.0027  | D700      | 3         |
| 5           | 0.0036 Inf                        | 0.00    | 0.0042            | 0.0072  | 0.0030  | D730      |           |
|             | 0.0031 Inf                        | 0.00    | 0.0037            | 0.0063  | 0.0027  | D766      |           |
|             | 0.0041 Inf                        | 0.00    | 0.0047            | 0.0072  | 0.0026  | D821      |           |
|             | 0.0026 Inf                        | 0.00    | 0.0031            | 0.0068  | 0.0037  | D872      |           |
| 0.90        | 0.0019 Inf                        | 0.00    | 0.0025            | 0.0066  | 0.0042  | D882      | 4         |
|             | 0.0042 Inf                        | 0.00    | 0.0047            | 0.0071  | 0.0024  | D883      |           |
|             | 0.0030 Inf                        | 0.00    | 0.0036            | 0.0070  | 0.0035  | D914      |           |
|             | 0.0009 Inf                        | 0.00    | 0.0015            | 0.0064  | 0.0049  | D916      |           |
|             | 0.0050 Inf                        | 0.00    | 0.0054            | 0.0073  | 0.0018  | D917      |           |
| 0.03        | 0.0025 Inf                        | 0.00    | 0.0031            | 0.0059  | 0.0028  | D963      | 5         |
| -           | 0.0027 Inf                        | 0.00    | 0.0032            | 0.0063  | 0.0032  | D967      | -         |
|             | 0.0029 Inf                        | 0.00    | 0.0034            | 0.0066  | 0.0032  | D968      |           |
|             | 0.0024 Inf                        | 0.00    | 0.0030            | 0.0064  | 0.0035  | D98       |           |
|             |                                   |         | 0.0032            | 0.0067  | 0.0035  | mean      |           |
|             |                                   |         | 0.0014            | 0.0005  | 0.0011  | sd        |           |
|             |                                   |         | 0.0003            | 0.0001  | 0.0002  | SE        |           |

Table B.6.2: Combined ICA& RD on *DickensWorldSet*. Results of evaluating distances for profiles  $P_D$  and  $P_C$  to test closeness to World documents also showing t-test results for hypothesis assuming greater mean for *Dickens* profile to test document. Clustering and corresponding *adjusted Rand* is on the basis shared characteristic terms of both profiles.

|           |           |         | Aut     | hor Profile Comp | arison  |                                   | Clustering  |
|-----------|-----------|---------|---------|------------------|---------|-----------------------------------|-------------|
| Iteration | Test Doc. | Dist.D. | Dist.W. | (Dist.W-Dist.D)  | p-value | conf.interval (lower/upper bound) | adjust.Rand |
|           | Wa_105    | 0.0079  | 0.0029  | -0.0050          | 0.00    | 0.0045 Inf                        |             |
| 6         | Wa_121    | 0.0076  | 0.0050  | -0.0026          | 0.00    | 0.0020 Inf                        | 0.8         |
|           | Wa_141    | 0.0083  | 0.0045  | -0.0038          | 0.00    | 0.0034 Inf                        |             |
|           | Wa_158    | 0.0083  | 0.0051  | -0.0031          | 0.00    | 0.0026 Inf                        |             |
|           | Wa_21839  | 0.0081  | 0.0049  | -0.0032          | 0.00    | 0.0027 Inf                        |             |
|           | Wa_42671  | 0.0081  | 0.0049  | -0.0031          | 0.00    | 0.0026 Inf                        |             |
| 7         | Wa.b_767  | 0.0072  | 0.0037  | -0.0035          | 0.00    | 0.0029 Inf                        | 0.95        |
|           | Wc_155    | 0.0057  | 0.0049  | -0.0007          | 0.02    | 0.0001 Inf                        |             |
|           | Wc_1626   | 0.0051  | 0.0054  | 0.0003           | 0.83    | -0.0008 Inf                       |             |
|           | Wc_583    | 0.0056  | 0.0047  | -0.0010          | 0.00    | 0.0004 Inf                        |             |
|           | Wc.b_1028 | 0.0056  | 0.0047  | -0.0009          | 0.00    | 0.0004 Inf                        |             |
| 8         | Wc.b_1260 | 0.0053  | 0.0051  | -0.0002          | 0.29    | -0.0004 Inf                       | -0.0        |
|           | Wc.b_9182 | 0.0053  | 0.0053  | 0.0001           | 0.56    | -0.0006 Inf                       |             |
|           | Wd_14436  | 0.0080  | 0.0065  | -0.0016          | 0.00    | 0.0010 Inf                        |             |
|           | Wd_370    | 0.0085  | 0.0060  | -0.0025          | 0.00    | 0.0019 Inf                        |             |
|           | Wd_376    | 0.0081  | 0.0066  | -0.0015          | 0.00    | 0.0009 Inf                        |             |
| 9         | Wd_521    | 0.0065  | 0.0053  | -0.0012          | 0.00    | 0.0006 Inf                        | 0.8         |
|           | Wd_6422   | 0.0070  | 0.0051  | -0.0019          | 0.00    | 0.0013 Inf                        |             |
|           | We_145    | 0.0065  | 0.0036  | -0.0029          | 0.00    | 0.0024 Inf                        |             |
|           | We_2171   | 0.0055  | 0.0059  | 0.0004           | 0.85    | -0.0011 Inf                       |             |
|           | We_507    | 0.0047  | 0.0050  | 0.0003           | 0.83    | -0.0008 Inf                       |             |
| 10        | We_550    | 0.0048  | 0.0065  | 0.0016           | 1.00    | -0.0023 Inf                       | 0.3         |
|           | We_6688   | 0.0050  | 0.0061  | 0.0011           | 1.00    | -0.0017 Inf                       |             |
|           | We_7469   | 0.0060  | 0.0048  | -0.0012          | 0.00    | 0.0007 Inf                        |             |
|           | We.b_768  | 0.0045  | 0.0057  | 0.0012           | 1.00    | -0.0018 Inf                       |             |
|           | Wf_1147   | 0.0075  | 0.0042  | -0.0033          | 0.00    | 0.0027 Inf                        |             |
| 11        | Wf_5256   | 0.0078  | 0.0044  | -0.0034          | 0.00    | 0.0028 Inf                        | 0.3         |
|           | Wf_6098   | 0.0081  | 0.0040  | -0.0040          | 0.00    | 0.0035 Inf                        |             |
|           | Wf_6593   | 0.0081  | 0.0041  | -0.0040          | 0.00    | 0.0035 Inf                        |             |
|           | Wf_9609   | 0.0078  | 0.0048  | -0.0029          | 0.00    | 0.0024 Inf                        |             |
|           | Wg_2153   | 0.0049  | 0.0056  | 0.0007           | 0.98    | -0.0013 Inf                       |             |
| 12        | Wg_394    | 0.0056  | 0.0048  | -0.0007          | 0.02    | 0.0002 Inf                        | 0.3         |
|           | Wg_4537   | 0.0045  | 0.0061  | 0.0017           | 1.00    | -0.0023 Inf                       |             |
|           | Wgo_2667  | 0.0075  | 0.0048  | -0.0026          | 0.00    | 0.0020 Inf                        |             |
|           | Wr_12398  | 0.0080  | 0.0043  | -0.0036          | 0.00    | 0.0031 Inf                        |             |
|           | Wr_6124   | 0.0074  | 0.0049  | -0.0024          | 0.00    | 0.0018 Inf                        |             |
| 13        | Ws_2160   | 0.0073  | 0.0059  | -0.0014          | 0.00    | 0.0008 Inf                        | 0.3         |
|           | Ws_2311   | 0.0067  | 0.0058  | -0.0009          | 0.01    | 0.0002 Inf                        |             |
|           | Ws_4084   | 0.0075  | 0.0046  | -0.0029          | 0.00    | 0.0023 Inf                        |             |
|           | Ws_4085   | 0.0073  | 0.0052  | -0.0021          | 0.00    | 0.0015 Inf                        |             |
|           | Ws_6758   | 0.0066  | 0.0061  | -0.0006          | 0.08    | -0.0001 Inf                       |             |
| 14        | Ws_6761   | 0.0074  | 0.0049  | -0.0024          | 0.00    | 0.0018 Inf                        | 0.3         |
| •         | Wst_1079  | 0.0064  | 0.0061  | -0.0004          | 0.18    | -0.0003 Inf                       |             |
|           | Wst_804   | 0.0055  | 0.0064  | 0.0009           | 0.98    | -0.0015 Inf                       |             |
|           | Wsw_17157 | 0.0066  | 0.0050  | -0.0016          | 0.00    | 0.0010 Inf                        |             |
|           | Wsw_4208  | 0.0070  | 0.0045  | -0.0025          | 0.00    | 0.0019 Inf                        |             |
| 15        | Wsw_4737  | 0.0071  | 0.0055  | -0.0016          | 0.00    | 0.0009 Inf                        | 0.3         |
| 2         | Wt_4558   | 0.0067  | 0.0056  | -0.0011          | 0.00    | 0.0004 Inf                        | J.J.        |
|           | Wt_599    | 0.0055  | 0.0061  | 0.0006           | 0.96    | -0.0012 Inf                       |             |
|           | Wtr_18000 | 0.0070  | 0.0045  | -0.0025          | 0.00    | 0.0012 ··· Inf                    |             |
|           | Wtr_19500 | 0.0067  | 0.0045  | -0.0022          | 0.00    | 0.0016 Inf                        |             |
|           | mean      | 0.0067  | 0.0051  | -0.0016          |         |                                   |             |
|           | sd        | 0.0007  | 0.0051  | 0.0016           |         |                                   |             |
|           | SE        | 0.00012 | 0.0001  | 0.0002           |         |                                   |             |

| Iteration 5 | Iteration 4 | Iteration 3 | Iteration 2 | Iteration 1 | Rank |
|-------------|-------------|-------------|-------------|-------------|------|
| letter      | only        | first       | upon        | first       | 1    |
| left        | first       | only        | first       | discovered  | 2    |
| only        | letter      | letter      | left        | produced    | 3    |
| first       | future      | discovered  | return      | only        | 4    |
| future      | left        | future      | future      | left        | 5    |
| wait        | discovered  | tried       | only        | resolution  | 6    |
| words       | upon        | return      | letter      | upon        | 7    |
| news        | return      | second      | discovered  | future      | 8    |
| discovered  | later       | end         | news        | letter      | 9    |
| upor        | lines       | left        | end         | being       | 10   |
| serious     | words       | to          | happened    | words       | 11   |
| advice      | wait        | words       | words       | attempt     | 12   |
| later       | position    | met         | advice      | return      | 13   |
| return      | resolution  | produced    | produced    | end         | 14   |
| writter     | produced    | upon        | written     | but         | 15   |
| happened    | end         | advice      | lines       | serious     | 16   |
| end         | news        | wait        | wait        | followed    | 17   |
| lines       | second      | resolution  | resolution  | wait        | 18   |
| resolution  | advice      | written     | enough      | events      | 19   |
| answei      | serious     | serious     | serious     | suddenly    | 20   |
| chance      | happened    | position    | much        | later       | 21   |
| questions   | moment      | news        | later       | news        | 22   |
| produced    | written     | promised    | position    | lines       | 23   |
| write       | experience  | happened    | waited      | advice      | 24   |
| leave       | chance      | with        | absence     | so          | 25   |
| warning     | waited      | down        | chance      | absence     | 26   |
| second      | absence     | later       | already     | chance      | 27   |
| waited      | entirely    | lines       | moment      | written     | 28   |
| enough      | events      | moment      | longer      | position    | 29   |
| absence     | motives     | change      | with        | happened    | 30   |

Table B.7.1: Ranking of Dickens' terms over the first five iterations using Representativeness & Distinctiveness on the *DickensCollinsSet*1.

| Iteration 5 | Iteration 4 | Iteration 3 | Iteration 2 | Iteration 1 | Rank   |
|-------------|-------------|-------------|-------------|-------------|--------|
| upon        | upon        | upon        | upon        | upon        | 1      |
| great       | old         | down        | much        | its         | 2      |
| old         | great       | much        | down        | down        | 3      |
| down        | down        | great       | dear        | great       | 4      |
| its         | oliver      | such        | great       | much        | 5<br>6 |
| such        | then        | its         | come        | being       | 6      |
| much        | much        | many        | being       | come        | 7      |
| many        | being       | being       | then        | such        | 8      |
| where       | such        | come        | says        | though      | 9      |
| oliver      | dear        | though      | such        | like        | 10     |
| every       | replied     | old         | like        | then        | 11     |
| some        | come        | oliver      | where       | many        | 12     |
| these       | though      | then        | well        | old         | 13     |
| being       | should      | joe         | always      | where       | 14     |
| nicholas    | some        | replied     | oliver      | sir         | 15     |
| then        | many        | never       | old         | says        | 16     |
| replied     | boy         | where       | know        | good        | 17     |
| night       | sir         | these       | sir         | never       | 18     |
| though      | its         | here        | head        | returned    | 19     |
| come        | where       | night       | never       | night       | 20     |
| says        | joe         | boffin      | here        | dear        | 21     |
| like        | head        | off         | dorrit      | know        | 22     |
| never       | boffin      | young       | clennam     | head        | 23     |
| micawber    | quite       | well        | going       | these       | 24     |
| always      | says        | always      | its         | always      | 25     |
| mother      | it.s        | some        | though      | some        | 26     |
| peggotty    | micawber    | every       | replied     | any         | 27     |
| people      | nicholas    | boy         | off         | off         | 28     |
| long        | returned    | gentleman   | dombey      | here        | 29     |
| dombey      | know        | X.em        | nicholas    | fire        | 30     |

Table B.7.2: Ranking of Dickens' terms over the first five iterations using separate ICA on the *DickensCollinsSet1*.

Table B.7.3: Ranking of Dickens' terms over the first five iterations using ICA combined with representative and distinctive components on the *DickensCollinsSet*1.

|             |             |             |             | *           |      |
|-------------|-------------|-------------|-------------|-------------|------|
| Iteration 5 | Iteration 4 | Iteration 3 | Iteration 2 | Iteration 1 | Rank |
| great       | sir         | upon        | upon        | upon        | 1    |
| upon        | upon        | young       | much        | much        | 2    |
| much        | dear        | gentleman   | says        | sir         | 3    |
| pickwick    | much        | boffin      | being       | says        | 4    |
| says        | boffin      | much        | great       | great       | 5    |
| many        | says        | miss        | young       | should      | 6    |
| these       | being       | sir         | boffin      | dear        | 7    |
| such        | should      | bella       | dear        | where       | 8    |
| its         | it.s        | should      | should      | old         | 9    |
| being       | know        | being       | where       | being       | 10   |
| where       | bella       | wegg        | its         | down        | 11   |
| some        | young       | great       | down        | its         | 12   |
| young       | don.t       | nicholas    | like        | then        | 13   |
| about       | gentleman   | then        | come        | though      | 14   |
| never       | wegg        | pickwick    | always      | came        | 15   |
| our         | well        | franklin    | never       | boffin      | 16   |
| sir         | miss        | sergeant    | bella       | many        | 17   |
| down        | lady        | says        | then        | richard     | 18   |
| people      | come        | off         | miss        | come        | 19   |
| weller      | quite       | dear        | got         | george      | 20   |
| every       | then        | john        | going       | king        | 21   |
| sam         | say         | down        | about       | pickwick    | 22   |
| off         | never       | most        | many        | these       | 23   |
| any         | old         | having      | off         | know        | 24   |
| old         | that.s      | gentlemen   | wegg        | never       | 25   |
| then        | down        | than        | joe         | long        | 26   |
| gentleman   | richard     | it.s        | gentleman   | head        | 27   |
| dorrit      | about       | came        | our         | john        | 28   |
| two         | came        | many        | know        | joe         | 29   |
| always      | george      | its         | well        | bella       | 30   |